1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
//! Views into non-hierarchical parts of `PortView`s.
use std::collections::BTreeSet;
use crate::{
algorithms::{ConvexChecker, TopoConvexChecker},
Direction, LinkView, NodeIndex, PortIndex, PortView,
};
use super::filter::FilteredGraph;
type NodeCallback = fn(NodeIndex, &SubgraphContext) -> bool;
type PortCallback = fn(PortIndex, &SubgraphContext) -> bool;
/// View into a subgraph of a PortView.
///
/// The subgraph is given by boundary edges that define where one "enters" the
/// subgraph (incoming boundary edge) and one "leaves" it (outgoing boundary
/// edges).
///
/// A subgraph is well-defined if the incoming/outgoing boundary edges partition
/// the edges between the children of the root node into three sets:
/// - boundary edges: either incoming boundary or outgoing boundary edges,
/// - interior edges: edges such that all the successor edges are either
/// outgoing boundary edges or interior edges AND all the predecessor edges
/// are either incoming boundary edges or interior edges,
/// - exterior edges: edges such that all the successor edges are either
/// incoming boundary edges or exterior edges AND all the predecessor edges
/// are either outgoing boundary edges or exterior edges.
///
/// Then the subgraph is made of the interior edges and contains all nodes that
/// are
/// - adjacent to an interior edge, or
/// - are the target of an incoming boundary edge AND the source of an outgoing boundary edge.
///
/// An intuitive way of looking at this definition is to imagine that the
/// boundary edges form a wall around the subgraph, and the subgraph is given
/// by all nodes and edges that can be reached from within without crossing the
/// wall. The directedness of edges (incoming/outgoing) defines which side of
/// the wall is inside, and which is outside.
///
/// If both incoming and outgoing boundary edges are empty, the subgraph is
/// taken to be the entire graph.
///
/// If an invalid subgraph is defined, then behaviour is undefined.
///
/// At initialisation, this performs a one-off expensive computation (linear in
/// the size of the subgraph) to determine the nodes that are in the subgraph.
pub type Subgraph<G> = FilteredGraph<G, NodeCallback, PortCallback, SubgraphContext>;
/// Internal context used in the [`Subgraph`] adaptor.
#[derive(Debug, Clone)]
pub struct SubgraphContext {
nodes: BTreeSet<NodeIndex>,
ports: BTreeSet<PortIndex>,
inputs: Vec<PortIndex>,
outputs: Vec<PortIndex>,
}
impl<G: LinkView> Subgraph<G>
where
G: Clone,
{
/// Create a new subgraph view of `graph`.
///
/// ### Arguments
///
/// - `graph`: the graph to take a subgraph from,
/// - `boundary`: the boundary ports. Incoming ports are incoming boundary edges,
/// and outgoing ports are outgoing boundary edges.
///
/// This initialisation is linear in the size of the subgraph.
pub fn new_subgraph(graph: G, boundary: impl IntoIterator<Item = PortIndex>) -> Self {
let mut inputs = Vec::new();
let mut outputs = Vec::new();
let boundary = boundary.into_iter().map(|p| {
match graph.port_direction(p).unwrap() {
Direction::Incoming => inputs.push(p),
Direction::Outgoing => outputs.push(p),
};
p
});
let (nodes, ports) = traverse_subgraph(graph.clone(), boundary);
let context = SubgraphContext {
nodes: nodes.into_iter().collect(),
ports: ports.into_iter().collect(),
inputs,
outputs,
};
Self::new(
graph,
|n, ctx| ctx.nodes.contains(&n),
|p, ctx| ctx.ports.contains(&p),
context,
)
}
/// Whether the subgraph is convex.
pub fn is_convex(&self) -> bool {
let checker = TopoConvexChecker::new(self.graph());
self.is_convex_with_checker(&checker)
}
/// Whether the subgraph is convex, using a pre-existing checker.
pub fn is_convex_with_checker(&self, checker: &impl ConvexChecker) -> bool {
checker.is_convex(
self.nodes_iter(),
self.context().inputs.iter().copied(),
self.context().outputs.iter().copied(),
)
}
}
/// Traverse the subgraph defined by the boundary edges.
///
/// Start just inside the boundaries and follow each edge that is not itself
/// a boundary.
fn traverse_subgraph<G: LinkView>(
graph: G,
boundary: impl IntoIterator<Item = PortIndex>,
) -> (BTreeSet<NodeIndex>, BTreeSet<PortIndex>) {
// Nodes within subgraph
let mut nodes = BTreeSet::new();
// Ports within subgraph
let mut ports = BTreeSet::new();
// For every visited edge, we mark both ports as visited
let mut visited = BTreeSet::new();
// The set of nodes to traverse
let mut nodes_to_process: BTreeSet<_> = boundary
.into_iter()
.map(|p| {
let this_node = graph.port_node(p).unwrap();
if let Some(other_port) = graph.port_link(p) {
visited.insert(other_port.into());
}
visited.insert(p);
this_node
})
.collect();
if nodes_to_process.is_empty() {
// Edge case: no boundary edges, so the subgraph is the entire graph
nodes_to_process = graph.nodes_iter().collect();
}
while let Some(node) = nodes_to_process.pop_first() {
nodes.insert(node);
// Traverse every unvisited edge in `node`
for p in graph.all_ports(node) {
if visited.insert(p) {
// Visit it
ports.insert(p);
if let Some(other_port) = graph.port_link(p) {
visited.insert(other_port.into());
ports.insert(other_port.into());
// Possibly a new node!
let other_node = graph.port_node(other_port).unwrap();
nodes_to_process.insert(other_node);
}
}
}
}
(nodes, ports)
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use crate::{LinkMut, PortGraph, PortMut, PortView};
use super::*;
/// Create the following graph
///
/// ┌─────┐┌─┐
/// │0 ││3│
/// └┬───┬┘└┬┘
/// │ │ │
/// ┌▽─┐┌▽─┐│
/// │1 ││2 ││
/// └┬┬┘└┬┬┘│
/// ││ ┌┘│ │
/// │└─│┐│┌┘
/// │┌─┘│││
/// ┌▽▽┐┌▽▽▽┐
/// │5 ││4 │
/// └──┘└───┘
fn graph() -> PortGraph {
let mut graph = PortGraph::new();
let n0 = graph.add_node(0, 2);
let n1 = graph.add_node(1, 2);
let n2 = graph.add_node(1, 2);
let n3 = graph.add_node(0, 1);
let n4 = graph.add_node(3, 0);
let n5 = graph.add_node(2, 0);
graph.link_nodes(n0, 0, n1, 0).unwrap();
graph.link_nodes(n0, 1, n2, 0).unwrap();
graph.link_nodes(n3, 0, n4, 0).unwrap();
graph.link_nodes(n1, 0, n4, 1).unwrap();
graph.link_nodes(n2, 1, n4, 2).unwrap();
graph.link_nodes(n1, 1, n5, 0).unwrap();
graph.link_nodes(n2, 0, n5, 1).unwrap();
graph
}
#[test]
fn test_traverse_subgraph_single_node() {
let graph = graph();
let (_, n1, _, _, _, _) = (0..6).map(NodeIndex::new).collect_tuple().unwrap();
// Define the incoming and outgoing boundary edges
let boundary = graph.all_ports(n1);
// Traverse the subgraph
let (nodes, ports) = traverse_subgraph(&graph, boundary);
// Check that the correct nodes and ports were found
assert_eq!(nodes, [n1].into_iter().collect());
assert!(ports.is_empty());
}
#[test]
fn test_traverse_subgraph_all_but_one_edge() {
let graph = graph();
let (_, n1, _, _, n4, _) = (0..6).map(NodeIndex::new).collect_tuple().unwrap();
// Define the incoming and outgoing boundary edges
let boundary = [graph.output(n1, 0).unwrap(), graph.input(n4, 1).unwrap()];
// Traverse the subgraph
let (nodes, ports) = traverse_subgraph(&graph, boundary);
// Check that the correct nodes and ports were found
assert_eq!(nodes, graph.nodes_iter().collect());
assert_eq!(ports.len(), graph.port_count() - 2);
}
#[test]
fn test_traverse_subgraph_basic() {
let graph = graph();
let (_, n1, n2, _, _, n5) = (0..6).map(NodeIndex::new).collect_tuple().unwrap();
// Define the incoming and outgoing boundary edges
let incoming = [graph.inputs(n1), graph.inputs(n2)].into_iter().flatten();
let outgoing = [graph.output(n1, 0).unwrap(), graph.output(n2, 1).unwrap()];
// Traverse the subgraph
let (nodes, ports) = traverse_subgraph(&graph, incoming.chain(outgoing));
// Check that the correct nodes and ports were found
assert_eq!(nodes, [n1, n2, n5].into_iter().collect());
assert_eq!(ports.len(), 4)
}
#[test]
fn test_traverse_subgraph_almost_complete() {
let graph = graph();
let (n0, n1, n2, n3, n4, n5) = (0..6).map(NodeIndex::new).collect_tuple().unwrap();
// Define the incoming and outgoing boundary edges
let incoming = [
graph.input(n1, 0).unwrap(),
graph.input(n4, 2).unwrap(),
graph.input(n5, 1).unwrap(),
];
let outgoing = [
graph.output(n0, 0).unwrap(),
graph.output(n2, 1).unwrap(),
graph.output(n2, 0).unwrap(),
];
let boundary = incoming.into_iter().chain(outgoing);
// Traverse the subgraph
let (nodes, ports) = traverse_subgraph(&graph, boundary);
// Check that the correct nodes and ports were found
assert_eq!(nodes, [n0, n1, n2, n3, n4, n5].into_iter().collect());
assert_eq!(
ports,
[
vec![graph.output(n0, 1).unwrap()],
graph.outputs(n1).collect(),
graph.inputs(n2).collect(),
graph.all_ports(n3).collect(),
vec![graph.input(n4, 0).unwrap(), graph.input(n4, 1).unwrap()],
vec![graph.input(n5, 0).unwrap()],
]
.into_iter()
.flatten()
.collect()
);
}
#[test]
fn test_traverse_subgraph_complete() {
let graph = graph();
// Traverse the subgraph
let (nodes, ports) = traverse_subgraph(&graph, []);
assert_eq!(nodes, graph.nodes_iter().collect());
assert_eq!(ports, graph.ports_iter().collect());
}
#[test]
fn test_is_convex() {
let graph = graph();
let (n0, n1, n2, _, n4, n5) = (0..6).map(NodeIndex::new).collect_tuple().unwrap();
let boundary = graph.all_ports(n1);
let subg = Subgraph::new_subgraph(&graph, boundary);
assert!(subg.is_convex());
let boundary = [graph.output(n1, 0).unwrap(), graph.input(n4, 1).unwrap()];
let subg = Subgraph::new_subgraph(&graph, boundary);
assert!(!subg.is_convex());
// Define the incoming and outgoing boundary edges
let incoming = [
graph.input(n1, 0).unwrap(),
graph.input(n4, 2).unwrap(),
graph.input(n5, 1).unwrap(),
];
let outgoing = [
graph.output(n0, 0).unwrap(),
graph.output(n2, 1).unwrap(),
graph.output(n2, 0).unwrap(),
];
let boundary = incoming.into_iter().chain(outgoing);
let subg = Subgraph::new_subgraph(&graph, boundary);
assert!(!subg.is_convex());
}
#[test]
fn test_is_convex_line() {
let mut graph = PortGraph::new();
let n0 = graph.add_node(0, 1);
let n1 = graph.add_node(1, 1);
let n2 = graph.add_node(1, 0);
graph.link_nodes(n0, 0, n1, 0).unwrap();
graph.link_nodes(n1, 0, n2, 0).unwrap();
let boundary = [graph.output(n0, 0).unwrap(), graph.input(n2, 0).unwrap()];
let subg = Subgraph::new_subgraph(&graph, boundary);
assert_eq!(subg.nodes_iter().collect_vec(), [n0, n2]);
assert!(!subg.is_convex());
}
}