1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
use num_traits::One;
use std::iter;
use std::ops::Add;
use std::{
marker::PhantomData,
ops::{Mul, Sub},
};
pub type OwnedNewtonPolynomial<C, X> = NewtonPolynomial<C, X, Vec<C>, Vec<X>>;
#[cfg(feature = "generic_const_exprs")]
pub type StaticNewtonPolynomial<C, X, const DEGREE: usize> =
NewtonPolynomial<C, X, [C; DEGREE + 1], [X; DEGREE]>;
pub type RefNewtonPolynomial<'a, C, X> = NewtonPolynomial<C, X, &'a [C], &'a [X]>;
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct NewtonPolynomial<C, X, DataC, DataX>
where
DataC: AsRef<[C]>,
DataX: AsRef<[X]>,
{
coeffs: DataC,
basis_elems: DataX,
_phantom: PhantomData<(C, X)>,
}
impl<C, X, DataC, DataX> NewtonPolynomial<C, X, DataC, DataX>
where
DataC: AsRef<[C]>,
DataX: AsRef<[X]>,
{
pub fn new(coeffs: DataC, basis_elems: DataX) -> Self {
assert_eq!(coeffs.as_ref().len(), basis_elems.as_ref().len() + 1);
assert!(!coeffs.as_ref().is_empty());
Self {
coeffs,
basis_elems,
_phantom: PhantomData,
}
}
pub fn left_eval<Y>(&self, x: X) -> Y
where
C: Clone,
X: Clone + One + Sub<Output = X> + Mul<C, Output = Y> + Mul<Y, Output = Y>,
Y: Add<Output = Y>,
{
let mut it = self
.basis_elems
.as_ref()
.iter()
.map(|x_i| x.clone() - x_i.clone())
.rev()
.chain(iter::once(X::one()))
.zip(self.coeffs.as_ref().iter().rev());
let init = {
let (x, alpha) = it.next().unwrap();
x * alpha.clone()
};
it.fold(init, |acc, (x_i, alpha_i)| {
x_i * (X::one() * alpha_i.clone() + acc)
})
}
pub fn into_raw(self) -> (DataC, DataX) {
let Self {
coeffs,
basis_elems,
..
} = self;
(coeffs, basis_elems)
}
}
#[cfg(test)]
mod tests {
use super::NewtonPolynomial;
#[test]
fn left_eval() {
let poly = NewtonPolynomial::new(vec![-1, 2, 3], vec![10, 20]);
assert_eq!(poly.left_eval(10), -1);
assert_eq!(poly.left_eval(20), 19);
assert_eq!(poly.left_eval(15), -66);
assert_eq!(poly.left_eval(2), 415);
assert_eq!(poly.left_eval(5), 214);
}
}