1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#[cfg(feature = "group_by_list")]
use polars_arrow::kernels::list_bytes_iter::numeric_list_bytes_iter;
use polars_arrow::kernels::sort_partition::{create_clean_partitions, partition_to_groups};
use polars_arrow::prelude::*;

use super::*;
use crate::config::verbose;
use crate::utils::_split_offsets;
use crate::utils::flatten::flatten_par;

/// Used to create the tuples for a group_by operation.
pub trait IntoGroupsProxy {
    /// Create the tuples need for a group_by operation.
    ///     * The first value in the tuple is the first index of the group.
    ///     * The second value in the tuple is are the indexes of the groups including the first value.
    fn group_tuples(&self, _multithreaded: bool, _sorted: bool) -> PolarsResult<GroupsProxy> {
        unimplemented!()
    }
}

fn group_multithreaded<T: PolarsDataType>(ca: &ChunkedArray<T>) -> bool {
    // TODO! change to something sensible
    ca.len() > 1000
}

fn num_groups_proxy<T>(ca: &ChunkedArray<T>, multithreaded: bool, sorted: bool) -> GroupsProxy
where
    T: PolarsIntegerType,
    T::Native: Hash + Eq + Send + AsU64,
    Option<T::Native>: AsU64,
{
    if multithreaded && group_multithreaded(ca) {
        let n_partitions = _set_partition_size() as u64;

        // use the arrays as iterators
        if ca.null_count() == 0 {
            let keys = ca
                .downcast_iter()
                .map(|arr| arr.values().as_slice())
                .collect::<Vec<_>>();
            group_by_threaded_slice(keys, n_partitions, sorted)
        } else {
            let keys = ca.downcast_iter().collect::<Vec<_>>();
            group_by_threaded_iter(&keys, n_partitions, sorted)
        }
    } else if !ca.has_validity() {
        group_by(ca.into_no_null_iter(), sorted)
    } else {
        group_by(ca.into_iter(), sorted)
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: NumCast,
{
    fn create_groups_from_sorted(&self, multithreaded: bool) -> GroupsSlice {
        if verbose() {
            eprintln!("group_by keys are sorted; running sorted key fast path");
        }
        let arr = self.downcast_iter().next().unwrap();
        if arr.is_empty() {
            return GroupsSlice::default();
        }
        let mut values = arr.values().as_slice();
        let null_count = arr.null_count();
        let length = values.len();

        // all nulls
        if null_count == length {
            return vec![[0, length as IdxSize]];
        }

        let mut nulls_first = false;
        if null_count > 0 {
            nulls_first = arr.get(0).is_none()
        }

        if nulls_first {
            values = &values[null_count..];
        } else {
            values = &values[..length - null_count];
        };

        let n_threads = POOL.current_num_threads();
        let groups = if multithreaded && n_threads > 1 {
            let parts =
                create_clean_partitions(values, n_threads, self.is_sorted_descending_flag());
            let n_parts = parts.len();

            let first_ptr = &values[0] as *const T::Native as usize;
            let groups = POOL
                .install(|| {
                    parts.par_iter().enumerate().map(|(i, part)| {
                        // we go via usize as *const is not send
                        let first_ptr = first_ptr as *const T::Native;

                        let part_first_ptr = &part[0] as *const T::Native;
                        let mut offset =
                            unsafe { part_first_ptr.offset_from(first_ptr) } as IdxSize;

                        // nulls first: only add the nulls at the first partition
                        if nulls_first && i == 0 {
                            partition_to_groups(part, null_count as IdxSize, true, offset)
                        }
                        // nulls last: only compute at the last partition
                        else if !nulls_first && i == n_parts - 1 {
                            partition_to_groups(part, null_count as IdxSize, false, offset)
                        }
                        // other partitions
                        else {
                            if nulls_first {
                                offset += null_count as IdxSize;
                            };

                            partition_to_groups(part, 0, false, offset)
                        }
                    })
                })
                .collect::<Vec<_>>();
            flatten_par(&groups)
        } else {
            partition_to_groups(values, null_count as IdxSize, nulls_first, 0)
        };
        groups
    }
}

#[cfg(all(feature = "dtype-categorical", feature = "performant"))]
impl IntoGroupsProxy for CategoricalChunked {
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        Ok(self.group_tuples_perfect(multithreaded, sorted))
    }
}

impl<T> IntoGroupsProxy for ChunkedArray<T>
where
    T: PolarsNumericType,
    T::Native: NumCast,
{
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        // sorted path
        if self.is_sorted_ascending_flag() || self.is_sorted_descending_flag() {
            // don't have to pass `sorted` arg, GroupSlice is always sorted.
            return Ok(GroupsProxy::Slice {
                groups: self.rechunk().create_groups_from_sorted(multithreaded),
                rolling: false,
            });
        }

        let out = match self.dtype() {
            DataType::UInt64 => {
                // convince the compiler that we are this type.
                let ca: &UInt64Chunked = unsafe {
                    &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt64Type>)
                };
                num_groups_proxy(ca, multithreaded, sorted)
            },
            DataType::UInt32 => {
                // convince the compiler that we are this type.
                let ca: &UInt32Chunked = unsafe {
                    &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt32Type>)
                };
                num_groups_proxy(ca, multithreaded, sorted)
            },
            DataType::Int64 | DataType::Float64 => {
                let ca = self.bit_repr_large();
                num_groups_proxy(&ca, multithreaded, sorted)
            },
            DataType::Int32 | DataType::Float32 => {
                let ca = self.bit_repr_small();
                num_groups_proxy(&ca, multithreaded, sorted)
            },
            #[cfg(all(feature = "performant", feature = "dtype-i8", feature = "dtype-u8"))]
            DataType::Int8 => {
                // convince the compiler that we are this type.
                let ca: &Int8Chunked =
                    unsafe { &*(self as *const ChunkedArray<T> as *const ChunkedArray<Int8Type>) };
                let s = ca.reinterpret_unsigned();
                return s.group_tuples(multithreaded, sorted);
            },
            #[cfg(all(feature = "performant", feature = "dtype-i8", feature = "dtype-u8"))]
            DataType::UInt8 => {
                // convince the compiler that we are this type.
                let ca: &UInt8Chunked =
                    unsafe { &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt8Type>) };
                num_groups_proxy(ca, multithreaded, sorted)
            },
            #[cfg(all(feature = "performant", feature = "dtype-i16", feature = "dtype-u16"))]
            DataType::Int16 => {
                // convince the compiler that we are this type.
                let ca: &Int16Chunked =
                    unsafe { &*(self as *const ChunkedArray<T> as *const ChunkedArray<Int16Type>) };
                let s = ca.reinterpret_unsigned();
                return s.group_tuples(multithreaded, sorted);
            },
            #[cfg(all(feature = "performant", feature = "dtype-i16", feature = "dtype-u16"))]
            DataType::UInt16 => {
                // convince the compiler that we are this type.
                let ca: &UInt16Chunked = unsafe {
                    &*(self as *const ChunkedArray<T> as *const ChunkedArray<UInt16Type>)
                };
                num_groups_proxy(ca, multithreaded, sorted)
            },
            _ => {
                let ca = unsafe { self.cast_unchecked(&DataType::UInt32).unwrap() };
                let ca = ca.u32().unwrap();
                num_groups_proxy(ca, multithreaded, sorted)
            },
        };
        Ok(out)
    }
}
impl IntoGroupsProxy for BooleanChunked {
    fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        #[cfg(feature = "performant")]
        {
            let ca = self.cast(&DataType::UInt8).unwrap();
            let ca = ca.u8().unwrap();
            ca.group_tuples(multithreaded, sorted)
        }
        #[cfg(not(feature = "performant"))]
        {
            let ca = self.cast(&DataType::UInt32).unwrap();
            let ca = ca.u32().unwrap();
            ca.group_tuples(multithreaded, sorted)
        }
    }
}

impl IntoGroupsProxy for Utf8Chunked {
    #[allow(clippy::needless_lifetimes)]
    fn group_tuples<'a>(&'a self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        self.as_binary().group_tuples(multithreaded, sorted)
    }
}

impl IntoGroupsProxy for BinaryChunked {
    #[allow(clippy::needless_lifetimes)]
    fn group_tuples<'a>(&'a self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        let hb = RandomState::default();
        let null_h = get_null_hash_value(hb.clone());

        let out = if multithreaded {
            let n_partitions = _set_partition_size();

            let split = _split_offsets(self.len(), n_partitions);

            let byte_hashes = POOL.install(|| {
                split
                    .into_par_iter()
                    .map(|(offset, len)| {
                        let ca = self.slice(offset as i64, len);
                        ca.into_iter()
                            .map(|opt_b| {
                                let hash = match opt_b {
                                    Some(s) => hb.hash_one(s),
                                    None => null_h,
                                };
                                // Safety:
                                // the underlying data is tied to self
                                unsafe {
                                    std::mem::transmute::<BytesHash<'_>, BytesHash<'a>>(
                                        BytesHash::new(opt_b, hash),
                                    )
                                }
                            })
                            .collect_trusted::<Vec<_>>()
                    })
                    .collect::<Vec<_>>()
            });
            let byte_hashes = byte_hashes.iter().collect::<Vec<_>>();
            group_by_threaded_slice(byte_hashes, n_partitions as u64, sorted)
        } else {
            let byte_hashes = self
                .into_iter()
                .map(|opt_b| {
                    let hash = match opt_b {
                        Some(s) => hb.hash_one(s),
                        None => null_h,
                    };
                    BytesHash::new(opt_b, hash)
                })
                .collect_trusted::<Vec<_>>();
            group_by(byte_hashes.iter(), sorted)
        };
        Ok(out)
    }
}

impl IntoGroupsProxy for ListChunked {
    #[allow(clippy::needless_lifetimes)]
    #[allow(unused_variables)]
    fn group_tuples<'a>(&'a self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        #[cfg(feature = "group_by_list")]
        {
            polars_ensure!(
                self.inner_dtype().to_physical().is_numeric(),
                ComputeError: "grouping on list type is only allowed if the inner type is numeric"
            );

            let hb = RandomState::default();
            let null_h = get_null_hash_value(hb.clone());

            let arr_to_hashes = |ca: &ListChunked| {
                let mut out = Vec::with_capacity(ca.len());

                for arr in ca.downcast_iter() {
                    out.extend(numeric_list_bytes_iter(arr)?.map(|opt_bytes| {
                        let hash = match opt_bytes {
                            Some(s) => hb.hash_one(s),
                            None => null_h,
                        };

                        // Safety:
                        // the underlying data is tied to self
                        unsafe {
                            std::mem::transmute::<BytesHash<'_>, BytesHash<'a>>(BytesHash::new(
                                opt_bytes, hash,
                            ))
                        }
                    }))
                }
                Ok(out)
            };

            if multithreaded {
                let n_partitions = _set_partition_size();
                let split = _split_offsets(self.len(), n_partitions);

                let groups: PolarsResult<_> = POOL.install(|| {
                    let bytes_hashes = split
                        .into_par_iter()
                        .map(|(offset, len)| {
                            let ca = self.slice(offset as i64, len);
                            arr_to_hashes(&ca)
                        })
                        .collect::<PolarsResult<Vec<_>>>()?;
                    let bytes_hashes = bytes_hashes.iter().collect::<Vec<_>>();
                    Ok(group_by_threaded_slice(
                        bytes_hashes,
                        n_partitions as u64,
                        sorted,
                    ))
                });
                groups
            } else {
                let hashes = arr_to_hashes(self)?;
                Ok(group_by(hashes.iter(), sorted))
            }
        }
        #[cfg(not(feature = "group_by_list"))]
        {
            panic!("activate 'group_by_list' feature")
        }
    }
}

#[cfg(feature = "dtype-array")]
impl IntoGroupsProxy for ArrayChunked {
    #[allow(clippy::needless_lifetimes)]
    #[allow(unused_variables)]
    fn group_tuples<'a>(
        &'a self,
        _multithreaded: bool,
        _sorted: bool,
    ) -> PolarsResult<GroupsProxy> {
        todo!("grouping FixedSizeList not yet supported")
    }
}

#[cfg(feature = "object")]
impl<T> IntoGroupsProxy for ObjectChunked<T>
where
    T: PolarsObject,
{
    fn group_tuples(&self, _multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
        Ok(group_by(self.into_iter(), sorted))
    }
}