1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
use generalized::domains::Set;
use ndarray::stack;
use ndarray::prelude::*;
use rand::thread_rng;
use rand::distributions::Uniform;
use rand::distributions::Poisson;
use rand::prelude::*;
pub fn poisson_process<T>(lambda: f64, domain: &T) -> Array2<f64>
where T: Set {
let bounds = domain.bounding_box();
let mut area = 1.0;
let n = bounds.shape()[0];
let d = bounds.shape()[1];
for i in 0..n {
area *= bounds[[1,i]] - bounds[[0,i]];
}
let ref mut rng = thread_rng();
let num_events = Poisson::new(lambda*area).sample(rng) as usize;
let mut res = unsafe {
Array::uninitialized((1,d))
};
for _ in 0..num_events {
let mut ev = Array::zeros((d,));
for i in 0..d {
ev[i] = rng.sample(Uniform::new(bounds[[0,i]], bounds[[1,i]]));
}
if domain.contains(&ev) {
res = stack(
Axis(0),
&[res.view(), ev.into_shape((1,d)).unwrap().view()]
).unwrap();
}
}
res
}
pub fn variable_poisson<F, T>(lambda: F, max_lambda: f64, domain: &T) -> Array2<f64>
where F: Fn(&Array1<f64>) -> f64,
T: Set
{
let bounds = domain.bounding_box();
let mut area = 1.0;
let n = bounds.shape()[0];
let d = bounds.shape()[1];
for i in 0..n {
area *= bounds[[1,i]] - bounds[[0,i]];
}
let ref mut rng = thread_rng();
let num_events = Poisson::new(max_lambda*area).sample(rng) as usize;
let mut res = unsafe {
Array::uninitialized((1,d))
};
for _ in 0..num_events {
let mut ev = Array::zeros((d,));
let intens = max_lambda*random::<f64>();
for i in 0..d {
ev[i] = rng.sample(Uniform::new(bounds[[0,i]], bounds[[1,i]]));
}
if domain.contains(&ev) && intens < lambda(&ev) {
res = stack(
Axis(0),
&[res.view(), ev.into_shape((1,d)).unwrap().view()]
).unwrap();
}
}
res
}