1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use ndarray::stack;
use ndarray::prelude::*;

use rand::thread_rng;
use rand::distributions::Uniform;
use rand::distributions::Poisson;
use rand::prelude::*;



/// `structs` implementing this trait represent regions in n-dimensional space.
pub trait Set {
    /// Returns whether or not a given vector `p` lies in the instance.
    fn contains(&self, p: &Array<f64, Ix1>) -> bool;

    /// Returns a bounding box for the set.
    /// This function is used for point process simulation by rejection, but can also be used to implement a Monte Carlo estimation of the set"s measure.
    fn bounding_box(&self) -> Array<f64, Ix2>;
}

/// General n-dimensional hyperrectangle.
pub struct Rectangle(Array<f64, Ix1>, Array<f64, Ix1>);

impl Rectangle {
    /// `close` is the point with smaller coordinates,
    /// `far` is the further point delimiting the rectangle,
    /// with the largest coordinates.
    pub fn new(close: Array<f64, Ix1>, far: Array<f64, Ix1>) -> Rectangle {
        Rectangle(close, far)
    }
}


impl Set for Rectangle {
    fn contains(&self, p: &Array<f64, Ix1>) -> bool {
        assert_eq!(p.len(), self.0.shape()[0]);
        
        // check if p is further away than the closer point
        let further = self.0.iter().zip(p.iter())
            .fold(true, |acc: bool, (v,w)| {
                acc & (w > v)
            });
        
        // check if p is closer than the far point
        let closer = self.1.iter().zip(p.iter())
            .fold(true, |acc: bool, (v,w)| {
                acc & (w < v)
            });

        // if both conditions are true then we're in the rectangle
        further & closer
    }

    fn bounding_box(&self) -> Array<f64, Ix2> {
        let mut result = unsafe {
            Array::uninitialized((self.0.shape()[0], 2))
        };
        
        result.slice_mut(s![0,..]).assign(&self.0);
        result.slice_mut(s![1,..]).assign(&self.1);
        result
    }
}

/// The n-dimensional ball.
pub struct Ball {
    center: Array<f64, Ix1>,
    radius: f64
}

impl Ball {
    pub fn new(center: Array<f64, Ix1>, radius: f64) -> Ball {
        assert!(radius > 0.0);

        Ball {
            center, radius
        }
    }
}

impl Set for Ball {
    fn contains(&self, p: &Array<f64, Ix1>) -> bool {
        let diff = &self.center - p;
        let distance = diff.dot(&diff).sqrt();
        distance <= self.radius
    }

    fn bounding_box(&self) -> Array<f64, Ix2> {
        // Dimension of current space
        let n = self.center.shape()[0];

        let mut res = unsafe {
            Array::uninitialized((n, 2))
        };

        for i in 0..n {
            res[[0,i]] = self.center[i] - self.radius;
            res[[1,i]] = self.center[i] + self.radius;
        }

        res
    }
}

/// A higher-dimensional homogeneous Poisson process.
pub fn poisson_process<T>(lambda: f64, domain: &T) -> Array<f64, Ix2> 
    where T: Set {
    let bounds = domain.bounding_box();
    let mut area = 1.0;

    let n = bounds.shape()[0];
    let d = bounds.shape()[1];

    for i in 0..n {
        area *= bounds[[1,i]] - bounds[[0,i]];
    }

    // get number of events to generate
    // events outside of the set will be rejected
    let ref mut rng = thread_rng();
    let num_events = Poisson::new(lambda*area).sample(rng) as usize;

    let mut res = unsafe {
        Array::uninitialized((1,d))
    };
    
    for _ in 0..num_events {
        // generate a point inside the bounding box
        let mut ev = Array::zeros((d,));

        for i in 0..d {
            ev[i] = rng.sample(Uniform::new(bounds[[0,i]], bounds[[1,i]]));
        }

        // if it's in, then keep it
        if domain.contains(&ev) {
            res = stack(
                Axis(0), 
                &[res.view(), ev.into_shape((1,d)).unwrap().view()]
                ).unwrap();
        }
    }

    res
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn rectangle_test() {
        let close = array![0.0, 1.0];
        let far = array![1.0, 4.0];
        
        let rect = Rectangle::new(close, far);

        let p = array![0.5, 1.5];
        assert!(rect.contains(&p));

        let p = array![-1.0,2.0];
        assert!(!rect.contains(&p));

    }
}