1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
use rand::thread_rng;
use rand::distributions::Uniform;
use rand::distributions::Poisson;
use rand::prelude::*;
use ndarray::prelude::*;
pub trait Set {
fn contains(&self, p: &Array<f64, Ix1>) -> bool;
fn bounding_box(&self) -> Array<f64, Ix2>;
}
pub trait Measurable: Set {
fn measure(&self) -> f64;
}
pub struct Rectangle(Array<f64, Ix1>, Array<f64, Ix1>);
impl Rectangle {
pub fn new(close: Array<f64, Ix1>, far: Array<f64, Ix1>) -> Rectangle {
Rectangle(close, far)
}
}
impl Set for Rectangle {
fn contains(&self, p: &Array<f64, Ix1>) -> bool {
assert_eq!(p.len(), self.0.shape()[0]);
let further = self.0.iter().zip(p.iter())
.fold(true, |acc: bool, (v,w)| {
acc & (w > v)
});
let closer = self.1.iter().zip(p.iter())
.fold(true, |acc: bool, (v,w)| {
acc & (w < v)
});
further & closer
}
fn bounding_box(&self) -> Array<f64, Ix2> {
let mut result = unsafe {
Array::uninitialized((self.0.shape()[0], 2))
};
result.slice_mut(s![0,..]).assign(&self.0);
result.slice_mut(s![1,..]).assign(&self.1);
result
}
}
impl Measurable for Rectangle {
fn measure(&self) -> f64 {
let n: usize = self.0.shape()[0];
let mut result = 1.0;
for i in 0..n {
result *= self.1[i] - self.0[i];
}
result
}
}
pub struct Sphere {
center: Array<f64, Ix1>,
radius: f64
}
impl Sphere {
pub fn new(center: Array<f64, Ix1>, radius: f64) -> Sphere {
assert!(radius > 0.0);
Sphere {
center, radius
}
}
}
impl Set for Sphere {
fn contains(&self, p: &Array<f64, Ix1>) -> bool {
let diff = &self.center - p;
let distance = diff.dot(&diff).sqrt();
distance <= self.radius
}
fn bounding_box(&self) -> Array<f64, Ix2> {
let n = self.center.shape()[0];
let mut res = unsafe {
Array::uninitialized((n, 2))
};
for i in 0..n {
res[[0,i]] = self.center[i] - self.radius;
res[[1,i]] = self.center[i] + self.radius;
}
res
}
}
impl Measurable for Sphere {
fn measure(&self) -> f64 {
use std::f64::consts::PI as PI;
const MONTE_CARLO_STEPS: u32 = 1000000;
let n = self.center.shape()[0];
match n {
0 => 0.0,
1 => 2.0*self.radius,
2 => PI*self.radius.powi(2),
3 => 4.0*PI*self.radius.powi(3)/3.0,
_ => {
let ref mut rng = thread_rng();
let bounds = self.bounding_box();
let mut count = 0;
for _ in 0..MONTE_CARLO_STEPS {
let mut p = unsafe {
Array::uninitialized((n,))
};
for i in 0..n {
p[i] = rng.sample(Uniform::new(bounds[[0,i]], bounds[[1,i]]));
}
if self.contains(&p) {
count += 1;
}
}
count as f64/MONTE_CARLO_STEPS as f64
}
}
}
}
pub fn poisson_process<T>(lambda: f64, domain: &T) -> Array<f64, Ix2>
where T: Measurable {
let area: f64 = domain.measure();
let bounds = domain.bounding_box();
let d: usize = bounds.shape()[1];
let ref mut rng = thread_rng();
let num_events = Poisson::new(lambda*area).sample(rng) as usize;
let mut res = unsafe {
Array::uninitialized((num_events, d))
};
let mut counter = 0_usize;
while counter < num_events {
let mut ev = Array::zeros((d,));
for i in 0..d {
ev[i] = rng.sample(Uniform::new(bounds[[0,i]], bounds[[1,i]]));
}
if domain.contains(&ev) {
res.slice_mut(s![counter,..]).assign(&ev);
counter += 1;
}
}
res
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn rectangle_test() {
let close = array![0.0, 1.0];
let far = array![1.0, 4.0];
let rect = Rectangle::new(close, far);
assert_eq!(rect.measure(), 3.0);
let p = array![0.5, 1.5];
assert!(rect.contains(&p));
let p = array![-1.0,2.0];
assert!(!rect.contains(&p));
}
}