pointprocesses/likelihood/mod.rs
1//! Utility functions to compute the log-likelihood of the data under the models.
2//! The general form is given by
3//! $$
4//! \ell(\Theta) = \sum_i \log(\lambda_{t_i}) - \int_0^T \lambda_t dt
5//! $$
6mod hawkes;
7
8pub use hawkes::{hawkes_likelihood,HawkesLikelihood};
9
10use ndarray::prelude::*;
11
12use crate::temporal::{PoissonProcess, DeterministicIntensity};
13
14/// Log-likelihood of the data under the given Poisson model
15/// $$ \ell(\lambda) =
16/// N\ln\lambda - \lambda T
17/// $$
18pub fn poisson_likelihood(
19 times: ArrayView1<f64>,
20 model: &PoissonProcess,
21 tmax: f64) -> f64
22{
23 let n_events = times.len();
24 let lbda = model.intensity(0.);
25 n_events as f64 * lbda.ln() - lbda * tmax
26}
27