1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
//! Provides the [`FkTable`] type.
use super::grid::{Grid, GridError, Order};
use super::lumi::LumiCache;
use super::subgrid::Subgrid;
use float_cmp::approx_eq;
use ndarray::Array4;
use std::collections::HashMap;
use std::fmt::{self, Display, Formatter};
use std::io::Write;
use std::str::FromStr;
use thiserror::Error;
/// Structure implementing FK tables. These are special [`Grid`]s, for which the following
/// additional guarantees are given:
///
/// - all subgrids of the grid evaluate the PDFs at a single factorization scale given by
/// [`FkTable::muf2`].
/// - all subgrids, for both hadronic initial states (if both initial states are hadronic), share
/// the same `x` grid. See [`FkTable::x_grid`].
/// - the luminosity function is *simple*, meaning that every entry consists of a single pair of
/// partons with trivial factor `1.0`, and all tuples are distinct from each other. See
/// [`Grid::lumi`].
/// - the FK table's grid contains only a single [`Order`], whose exponents are all zero.
#[repr(transparent)]
pub struct FkTable {
grid: Grid,
}
/// The error type returned when a conversion of a [`Grid`] to an [`FkTable`] fails.
#[derive(Debug, Error)]
pub enum TryFromGridError {
/// Error if the grid contains multiple scales instead of a single one.
#[error("multiple scales detected")]
MultipleScales,
/// Error if the luminosity is not simple.
#[error("complicated luminosity function detected")]
InvalidLumi,
/// Error if the order of the grid was not a single one with all zeros in the exponents.
#[error("multiple orders detected")]
NonTrivialOrder,
/// Error if the certain metadata is missing.
#[error("metadata is missing: expected key `{0}` to have a value")]
MetadataMissing(String),
}
/// The optimization assumptions for an [`FkTable`], needed for [`FkTable::optimize`]. Since FK
/// tables are typically stored at very small `Q2 = Q0`, the PDFs `f(x,Q0)` of heavy quarks are
/// typically set to zero at this scale or set to the same value as their anti-quark PDF. This is
/// used to optimize the size of FK tables.
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum FkAssumptions {
/// All quark PDFs are non-zero at the FK table scale and completely independent.
Nf6Ind,
/// Like [`Nf6Ind`](Self::Nf6Ind), but the PDFs of top and anti-top quarks are the same at FK
/// table scale.
Nf6Sym,
/// Like [`Nf6Ind`](Self::Nf6Ind), but the PDFs of top and anti-top quarks are zero at FK table
/// scale.
Nf5Ind,
/// Like [`Nf5Ind`](Self::Nf5Ind), but the PDFs of bottom and anti-bottom quarks are the same
/// at FK table scale.
Nf5Sym,
/// Like [`Nf5Ind`](Self::Nf5Ind), but the PDFs of bottom and anti-bottom quarks are zero at FK
/// table scale.
Nf4Ind,
/// Like [`Nf4Ind`](Self::Nf4Ind), but the PDFs of charm and anti-charm quarks are the same at
/// FK table scale. PDF sets that make this assumption are NNPDF4.0 and NNPDF3.1 at fitting
/// scale.
Nf4Sym,
/// Like [`Nf4Ind`](Self::Nf4Ind), but the PDFs of charm and anti-charm quarks are zero at FK
/// table scale. PDF sets that make this assumption are MSHT20 and NNPDF3.0 at fitting scale.
Nf3Ind,
/// Like [`Nf3Ind`](Self::Nf3Ind), but the PDFs of strange and anti-strange are the same at FK
/// table scale. A PDF set that makes this assumption is CT18 at fitting scale.
Nf3Sym,
}
/// Error type when trying to construct [`FkAssumptions`] with a string.
#[derive(Debug, Eq, Error, PartialEq)]
#[error("unknown variant for FkAssumptions: {variant}")]
pub struct UnknownFkAssumption {
variant: String,
}
impl Display for FkAssumptions {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(
f,
"{}",
match self {
Self::Nf6Ind => "Nf6Ind",
Self::Nf6Sym => "Nf6Sym",
Self::Nf5Ind => "Nf5Ind",
Self::Nf5Sym => "Nf5Sym",
Self::Nf4Ind => "Nf4Ind",
Self::Nf4Sym => "Nf4Sym",
Self::Nf3Ind => "Nf3Ind",
Self::Nf3Sym => "Nf3Sym",
}
)
}
}
impl FromStr for FkAssumptions {
type Err = UnknownFkAssumption;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(match s {
"Nf6Ind" => Self::Nf6Ind,
"Nf6Sym" => Self::Nf6Sym,
"Nf5Ind" => Self::Nf5Ind,
"Nf5Sym" => Self::Nf5Sym,
"Nf4Ind" => Self::Nf4Ind,
"Nf4Sym" => Self::Nf4Sym,
"Nf3Ind" => Self::Nf3Ind,
"Nf3Sym" => Self::Nf3Sym,
_ => {
return Err(UnknownFkAssumption {
variant: s.to_string(),
});
}
})
}
}
impl FkTable {
/// Returns the [`Grid`] object for this `FkTable`.
#[must_use]
pub const fn grid(&self) -> &Grid {
&self.grid
}
/// Converts the `FkTable` back to a [`Grid`].
#[must_use]
pub fn into_grid(self) -> Grid {
self.grid
}
/// Returns the FK table represented as a four-dimensional array indexed by `bin`, `lumi`,
/// `x1` and `x2`, in this order.
///
/// # Panics
///
/// TODO
#[must_use]
pub fn table(&self) -> Array4<f64> {
let has_pdf1 = self.grid.has_pdf1();
let has_pdf2 = self.grid.has_pdf2();
let x_grid = self.x_grid();
let mut result = Array4::zeros((
self.bins(),
self.grid.lumi().len(),
if has_pdf1 { x_grid.len() } else { 1 },
if has_pdf2 { x_grid.len() } else { 1 },
));
for bin in 0..self.bins() {
for lumi in 0..self.grid.lumi().len() {
let subgrid = self.grid().subgrid(0, bin, lumi);
let indices1 = if has_pdf1 {
subgrid
.x1_grid()
.iter()
.map(|&s| x_grid.iter().position(|&x| approx_eq!(f64, s, x, ulps = 2)))
.collect::<Option<_>>()
.unwrap()
} else {
vec![0]
};
let indices2 = if has_pdf2 {
subgrid
.x2_grid()
.iter()
.map(|&s| x_grid.iter().position(|&x| approx_eq!(f64, s, x, ulps = 2)))
.collect::<Option<_>>()
.unwrap()
} else {
vec![0]
};
for ((_, ix1, ix2), value) in subgrid.indexed_iter() {
result[[bin, lumi, indices1[ix1], indices2[ix2]]] = value;
}
}
}
result
}
/// Returns the number of bins for this `FkTable`.
#[must_use]
pub fn bins(&self) -> usize {
self.grid.bin_info().bins()
}
/// Extract the normalizations for each bin.
#[must_use]
pub fn bin_normalizations(&self) -> Vec<f64> {
self.grid.bin_info().normalizations()
}
/// Extract the number of dimensions for bins.
#[must_use]
pub fn bin_dimensions(&self) -> usize {
self.grid.bin_info().dimensions()
}
/// Extract the left edges of a specific bin dimension.
#[must_use]
pub fn bin_left(&self, dimension: usize) -> Vec<f64> {
self.grid.bin_info().left(dimension)
}
/// Extract the right edges of a specific bin dimension.
#[must_use]
pub fn bin_right(&self, dimension: usize) -> Vec<f64> {
self.grid.bin_info().right(dimension)
}
/// Access meta data
#[must_use]
pub const fn key_values(&self) -> Option<&HashMap<String, String>> {
self.grid.key_values()
}
/// Returns the (simplified) luminosity function for this `FkTable`. All factors are `1.0`.
#[must_use]
pub fn lumi(&self) -> Vec<(i32, i32)> {
self.grid
.lumi()
.iter()
.map(|entry| (entry.entry()[0].0, entry.entry()[0].1))
.collect()
}
/// Returns the single `muf2` scale of this `FkTable`.
#[must_use]
pub fn muf2(&self) -> f64 {
if let &[muf2] = &self.grid.evolve_info(&[true]).fac1[..] {
muf2
} else {
// every `FkTable` has only a single factorization scale
unreachable!()
}
}
/// Returns the x grid that all subgrids for all hadronic initial states share.
#[must_use]
pub fn x_grid(&self) -> Vec<f64> {
self.grid.evolve_info(&[true]).x1
}
/// Propagate write to grid
///
/// # Errors
///
/// TODO
pub fn write(&self, writer: impl Write) -> Result<(), GridError> {
self.grid.write(writer)
}
/// Propagate `write_lz4` to `Grid`.
///
/// # Errors
///
/// See [`Grid::write_lz4`].
pub fn write_lz4(&self, writer: impl Write) -> Result<(), GridError> {
self.grid.write_lz4(writer)
}
/// Propagate convolute to grid
pub fn convolute(
&self,
lumi_cache: &mut LumiCache,
bin_indices: &[usize],
lumi_mask: &[bool],
) -> Vec<f64> {
self.grid
.convolute(lumi_cache, &[], bin_indices, lumi_mask, &[(1.0, 1.0)])
}
/// Set a metadata key-value pair
pub fn set_key_value(&mut self, key: &str, value: &str) {
self.grid.set_key_value(key, value);
}
/// Optimizes the storage of FK tables based of assumptions of the PDFs at the FK table's
/// scale.
///
/// # Panics
///
/// TODO
pub fn optimize(&mut self, assumptions: FkAssumptions) {
let mut add = Vec::new();
match assumptions {
FkAssumptions::Nf6Ind => {
// nothing to do here
}
FkAssumptions::Nf6Sym => {
add.push((235, 200));
}
FkAssumptions::Nf5Ind => {
add.extend_from_slice(&[(235, 200), (135, 100)]);
}
FkAssumptions::Nf5Sym => {
add.extend_from_slice(&[(235, 200), (135, 100), (224, 200)]);
}
FkAssumptions::Nf4Ind => {
add.extend_from_slice(&[(235, 200), (135, 100), (224, 200), (124, 100)]);
}
FkAssumptions::Nf4Sym => {
add.extend_from_slice(&[
(235, 200),
(135, 100),
(224, 200),
(124, 100),
(215, 200),
]);
}
FkAssumptions::Nf3Ind => {
add.extend_from_slice(&[
(235, 200),
(135, 100),
(224, 200),
(124, 100),
(215, 200),
(115, 100),
]);
}
FkAssumptions::Nf3Sym => {
add.extend_from_slice(&[
(235, 200),
(135, 100),
(224, 200),
(124, 100),
(215, 200),
(115, 100),
(208, 200),
]);
}
}
self.grid.rewrite_lumi(&add, &[]);
// store the assumption so that we can check it later on
self.grid
.set_key_value("fk_assumptions", &assumptions.to_string());
self.grid.optimize();
}
}
impl TryFrom<Grid> for FkTable {
type Error = TryFromGridError;
fn try_from(grid: Grid) -> Result<Self, Self::Error> {
let mut muf2 = -1.0;
if grid.orders()
!= [Order {
alphas: 0,
alpha: 0,
logxir: 0,
logxif: 0,
}]
{
return Err(TryFromGridError::NonTrivialOrder);
}
for bin in 0..grid.bin_info().bins() {
for lumi in 0..grid.lumi().len() {
let subgrid = grid.subgrid(0, bin, lumi);
if subgrid.is_empty() {
continue;
}
let mu2_grid = subgrid.mu2_grid();
if mu2_grid.len() > 1 {
return Err(TryFromGridError::MultipleScales);
}
if muf2 < 0.0 {
muf2 = mu2_grid[0].fac;
} else if muf2 != mu2_grid[0].fac {
return Err(TryFromGridError::MultipleScales);
}
}
}
for lumi in grid.lumi() {
let entry = lumi.entry();
if entry.len() != 1 || entry[0].2 != 1.0 {
return Err(TryFromGridError::InvalidLumi);
}
}
if (1..grid.lumi().len()).any(|i| grid.lumi()[i..].contains(&grid.lumi()[i - 1])) {
return Err(TryFromGridError::InvalidLumi);
}
if let Some(key_values) = grid.key_values() {
let keys = vec![
"initial_state_1".to_string(),
"initial_state_2".to_string(),
"lumi_id_types".to_string(),
];
for key in keys {
if !key_values.contains_key(&key) {
return Err(TryFromGridError::MetadataMissing(key));
}
}
} else {
return Err(TryFromGridError::MetadataMissing(
"initial_states_1".to_string(),
));
}
Ok(Self { grid })
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn fk_assumptions_try_from() {
assert_eq!(FkAssumptions::from_str("Nf6Ind"), Ok(FkAssumptions::Nf6Ind));
assert_eq!(FkAssumptions::from_str("Nf6Sym"), Ok(FkAssumptions::Nf6Sym));
assert_eq!(FkAssumptions::from_str("Nf5Ind"), Ok(FkAssumptions::Nf5Ind));
assert_eq!(FkAssumptions::from_str("Nf5Sym"), Ok(FkAssumptions::Nf5Sym));
assert_eq!(FkAssumptions::from_str("Nf4Ind"), Ok(FkAssumptions::Nf4Ind));
assert_eq!(FkAssumptions::from_str("Nf4Sym"), Ok(FkAssumptions::Nf4Sym));
assert_eq!(FkAssumptions::from_str("Nf3Ind"), Ok(FkAssumptions::Nf3Ind));
assert_eq!(FkAssumptions::from_str("Nf3Sym"), Ok(FkAssumptions::Nf3Sym));
assert_eq!(
FkAssumptions::from_str("XXXXXX"),
Err(UnknownFkAssumption {
variant: "XXXXXX".to_string()
})
);
}
#[test]
fn fk_assumptions_display() {
assert_eq!(format!("{}", FkAssumptions::Nf6Ind), "Nf6Ind");
assert_eq!(format!("{}", FkAssumptions::Nf6Sym), "Nf6Sym");
assert_eq!(format!("{}", FkAssumptions::Nf5Ind), "Nf5Ind");
assert_eq!(format!("{}", FkAssumptions::Nf5Sym), "Nf5Sym");
assert_eq!(format!("{}", FkAssumptions::Nf4Ind), "Nf4Ind");
assert_eq!(format!("{}", FkAssumptions::Nf4Sym), "Nf4Sym");
assert_eq!(format!("{}", FkAssumptions::Nf3Ind), "Nf3Ind");
assert_eq!(format!("{}", FkAssumptions::Nf3Sym), "Nf3Sym");
}
}