1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
use crate::Asn1DerError;
use std::{
    io::{self, Read, Write},
    mem::size_of,
};

/// The byte size of an `usize`
const USIZE_LEN: usize = size_of::<usize>();

/// An extension for `io::Read`
pub trait ReadExt {
    /// Reads the next byte
    fn read_one(&mut self) -> io::Result<u8>;
}
impl<T: Read> ReadExt for T {
    fn read_one(&mut self) -> io::Result<u8> {
        let mut buf = [0];
        self.read_exact(&mut buf)?;
        Ok(buf[0])
    }
}
/// An extension for `io::Write`
pub trait WriteExt {
    /// Writes on `byte`
    fn write_one(&mut self, byte: u8) -> io::Result<usize>;
    /// Writes all bytes in `data`
    fn write_exact(&mut self, data: &[u8]) -> io::Result<usize>;
}
impl<T: Write> WriteExt for T {
    fn write_one(&mut self, byte: u8) -> io::Result<usize> {
        self.write_exact(&[byte])
    }
    fn write_exact(&mut self, data: &[u8]) -> io::Result<usize> {
        self.write_all(data)?;
        Ok(data.len())
    }
}

const PEEKED_BUFFER_SIZE: usize = 10;

#[derive(Debug)]
pub struct PeekedContent {
    len: usize,
    buffer: [u8; PEEKED_BUFFER_SIZE],
}

impl PeekedContent {
    fn new() -> Self {
        Self {
            len: 0,
            buffer: [0; PEEKED_BUFFER_SIZE],
        }
    }

    pub fn take(&mut self) -> Self {
        let mut val = Self::new();
        std::mem::swap(&mut val, self);
        val
    }

    pub fn len(&self) -> usize {
        self.len
    }

    pub fn buffer(&self) -> [u8; PEEKED_BUFFER_SIZE] {
        self.buffer
    }
}

/// A peekable reader
pub struct PeekableReader<R: Read> {
    reader: R,
    peeked: PeekedContent,
    pos: usize,
}
impl<R: Read> PeekableReader<R> {
    /// Creates a new `PeekableReader` with `reader` as source
    pub fn new(reader: R) -> Self {
        Self {
            reader,
            peeked: PeekedContent::new(),
            pos: 0,
        }
    }

    /// Peeks one byte without removing it from the `read`-queue
    ///
    /// Multiple successive calls to `peek_one` will always return the same next byte
    pub fn peek_one(&mut self) -> io::Result<u8> {
        // Check if we already have peeked data
        if self.peeked.len == 0 {
            self.peeked.buffer[0] = self.reader.read_one()?;
            self.peeked.len = 1;
        }
        Ok(self.peeked.buffer[0])
    }

    /// Peeks several bytes at once without removing them from the `read`-queue
    /// Buffer size is defined by `PeekedBuffer`.
    ///
    /// Successive calls to `peek_buffer` always return the same bytes.
    pub fn peek_buffer(&mut self) -> io::Result<&PeekedContent> {
        // Check if we already have peeked data
        if self.peeked.len < PEEKED_BUFFER_SIZE {
            let n = self.reader.read(&mut self.peeked.buffer[self.peeked.len..])?;
            self.peeked.len += n;
        }

        Ok(&self.peeked)
    }

    /// The current position (amount of bytes read)
    pub fn pos(&self) -> usize {
        self.pos
    }
}
impl<R: Read> Read for PeekableReader<R> {
    fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
        let mut read = 0;

        let peeked = self.peeked.take();
        let new_start_index = if buf.len() <= peeked.len {
            buf.copy_from_slice(&peeked.buffer[..buf.len()]);

            // keep remaining peeked bytes
            let remaining_bytes = peeked.len - buf.len();
            if remaining_bytes > 0 {
                self.peeked.buffer[..remaining_bytes].copy_from_slice(&peeked.buffer[buf.len()..peeked.len]);
                self.peeked.len = remaining_bytes;
            }

            buf.len()
        } else {
            buf[..peeked.len].copy_from_slice(&peeked.buffer[..peeked.len]);
            peeked.len
        };
        read += new_start_index;
        buf = &mut buf[new_start_index..];

        // Read remaining bytes
        read += self.reader.read(buf)?;

        self.pos += read;

        Ok(read)
    }
}

/// An implementation of the ASN.1-DER length
pub struct Length;
impl Length {
    /// Deserializes a length from `reader`
    pub fn deserialized(mut reader: impl Read) -> Result<usize, Asn1DerError> {
        // Deserialize length
        Ok(match reader.read_one()? {
            n @ 128..=255 => {
                // Deserialize the amount of length bytes
                let len = n as usize & 127;
                if len > USIZE_LEN {
                    return Err(Asn1DerError::UnsupportedValue);
                }

                // Deserialize value
                let mut num = [0; USIZE_LEN];
                reader.read_exact(&mut num[USIZE_LEN - len..])?;
                usize::from_be_bytes(num)
            }
            n => n as usize,
        })
    }

    /// Serializes `len` to `writer`
    pub fn serialize(len: usize, mut writer: impl Write) -> Result<usize, Asn1DerError> {
        // Determine the serialized length
        let written = match len {
            0..=127 => writer.write_one(len as u8)?,
            _ => {
                let to_write = USIZE_LEN - (len.leading_zeros() / 8) as usize;
                // Write number of bytes used to encode length
                let mut written = writer.write_one(to_write as u8 | 0x80)?;

                // Write length
                let mut buf = [0; USIZE_LEN];
                buf.copy_from_slice(&len.to_be_bytes());
                written += writer.write_exact(&buf[USIZE_LEN - to_write..])?;

                written
            }
        };

        Ok(written)
    }

    /// Returns how many bytes are going to be needed to encode `len`.
    pub fn encoded_len(len: usize) -> usize {
        match len {
            0..=127 => 1,
            _ => 1 + USIZE_LEN - (len.leading_zeros() / 8) as usize,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn asn1_short_form_length() {
        let mut writer: Vec<u8> = Vec::new();
        let written = Length::serialize(10, &mut writer).expect("serialization failed");
        assert_eq!(written, 1);
        assert_eq!(writer.len(), 1);
        assert_eq!(writer[0], 10);
    }

    #[test]
    fn asn1_long_form_length_1_byte() {
        let mut writer: Vec<u8> = Vec::new();
        let written = Length::serialize(129, &mut writer).expect("serialization failed");
        assert_eq!(written, 2);
        assert_eq!(writer.len(), 2);
        assert_eq!(writer[0], 0x81);
        assert_eq!(writer[1], 0x81);
    }

    #[test]
    fn asn1_long_form_length_2_bytes() {
        let mut writer: Vec<u8> = Vec::new();
        let written = Length::serialize(290, &mut writer).expect("serialization failed");
        assert_eq!(written, 3);
        assert_eq!(writer.len(), 3);
        assert_eq!(writer[0], 0x82);
        assert_eq!(writer[1], 0x01);
        assert_eq!(writer[2], 0x22);
    }
}