petgraph 0.0.5

Graph data structure.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
//! **Graph\<N, E, Ty, Ix\>** is a graph datastructure using an adjacency list representation.

use std::fmt;
use std::slice;
use std::iter;
use std::ops::{Index, IndexMut};

use super::{
    EdgeDirection, Outgoing, Incoming,
    Undirected,
    Directed,
    EdgeType,
};

/// The default integer type for node and edge indices in **Graph**.
/// **u32** is the default to reduce the size of the graph's data and improve
/// performance in the common case.
pub type DefIndex = u32;

/// Trait for the unsigned integer type used for node and edge indices.
pub trait IndexType : Copy + Clone + Ord + fmt::Debug + 'static
{
    fn new(x: usize) -> Self;
    fn index(&self) -> usize;
    fn max() -> Self;
}

impl IndexType for usize {
    #[inline(always)]
    fn new(x: usize) -> Self { x }
    #[inline(always)]
    fn index(&self) -> Self { *self }
    #[inline(always)]
    fn max() -> Self { ::std::usize::MAX }
}

impl IndexType for u32 {
    #[inline(always)]
    fn new(x: usize) -> Self { x as u32 }
    #[inline(always)]
    fn index(&self) -> usize { *self as usize }
    #[inline(always)]
    fn max() -> Self { ::std::u32::MAX }
}

// FIXME: These aren't stable, so a public wrapper of node/edge indices
// should be lifetimed just like pointers.
/// Node identifier.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct NodeIndex<Ix=DefIndex>(Ix);

impl<Ix: IndexType = DefIndex> NodeIndex<Ix>
{
    #[inline]
    pub fn new(x: usize) -> Self {
        NodeIndex(IndexType::new(x))
    }

    #[inline]
    pub fn index(self) -> usize
    {
        self.0.index()
    }

    #[inline]
    pub fn end() -> Self
    {
        NodeIndex(IndexType::max())
    }
}

/// Edge identifier.
#[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct EdgeIndex<Ix=DefIndex>(Ix);

impl<Ix: IndexType = DefIndex> EdgeIndex<Ix>
{
    #[inline]
    pub fn new(x: usize) -> Self {
        EdgeIndex(IndexType::new(x))
    }

    #[inline]
    pub fn index(self) -> usize
    {
        self.0.index()
    }

    /// An invalid **EdgeIndex** used to denote absence of an edge, for example
    /// to end an adjacency list.
    #[inline]
    pub fn end() -> Self {
        EdgeIndex(IndexType::max())
    }
}

impl<Ix: IndexType> fmt::Debug for EdgeIndex<Ix>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        try!(write!(f, "EdgeIndex("));
        if *self == EdgeIndex::end() {
            try!(write!(f, "End"));
        } else {
            try!(write!(f, "{}", self.index()));
        }
        write!(f, ")")
    }
}

const DIRECTIONS: [EdgeDirection; 2] = [EdgeDirection::Outgoing, EdgeDirection::Incoming];

/// The graph's node type.
#[derive(Debug, Clone)]
pub struct Node<N, Ix: IndexType = DefIndex> {
    /// Associated node data.
    pub weight: N,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex<Ix>; 2],
}

impl<N, Ix: IndexType = DefIndex> Node<N, Ix>
{
    /// Accessor for data structure internals: the first edge in the given direction.
    pub fn next_edge(&self, dir: EdgeDirection) -> EdgeIndex<Ix>
    {
        self.next[dir as usize]
    }
}

/// The graph's edge type.
#[derive(Debug, Clone)]
pub struct Edge<E, Ix: IndexType = DefIndex> {
    /// Associated edge data.
    pub weight: E,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex<Ix>; 2],
    /// Start and End node index
    node: [NodeIndex<Ix>; 2],
}

impl<E, Ix: IndexType = DefIndex> Edge<E, Ix>
{
    /// Accessor for data structure internals: the next edge for the given direction.
    pub fn next_edge(&self, dir: EdgeDirection) -> EdgeIndex<Ix>
    {
        self.next[dir as usize]
    }

    /// Return the source node index.
    pub fn source(&self) -> NodeIndex<Ix>
    {
        self.node[0]
    }

    /// Return the target node index.
    pub fn target(&self) -> NodeIndex<Ix>
    {
        self.node[1]
    }
}

/// **Graph\<N, E, Ty, Ix\>** is a graph datastructure using an adjacency list representation.
///
/// **Graph** is parameterized over the node weight **N**, edge weight **E**, 
/// edge type **Ty** that determines whether the graph has directed edges or not,
/// and **Ix** which is the index type used.
///
/// Based on the graph implementation in rustc.
///
/// The graph maintains unique indices for nodes and edges, and node and edge
/// weights may be accessed mutably.
///
/// **NodeIndex** and **EdgeIndex** are types that act as references to nodes and edges,
/// but these are only stable across certain operations. **Removing nodes or edges may shift
/// other indices**. Adding to the graph keeps
/// all indices stable, but removing a node will force the last node to shift its index to
/// take its place. Similarly, removing an edge shifts the index of the last edge.
///
/// The fact that the node and edge indices in the graph are numbered in a compact interval from
/// 0 to *n* - 1 simplifies some graph algorithms.
///
/// The **Ix** parameter is **u32** by default. The goal is that you can ignore this parameter
/// completely unless you need a very big graph -- then you can use **usize**.
#[derive(Clone)]
pub struct Graph<N, E, Ty = Directed, Ix: IndexType = DefIndex> {
    nodes: Vec<Node<N, Ix>>,
    edges: Vec<Edge<E, Ix>>,
}

impl<N, E, Ty, Ix> fmt::Debug for Graph<N, E, Ty, Ix> where
    N: fmt::Debug, E: fmt::Debug, Ty: EdgeType, Ix: IndexType
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for (index, n) in self.nodes.iter().enumerate() {
            try!(writeln!(f, "{}: {:?}", index, n));
        }
        for (index, n) in self.edges.iter().enumerate() {
            try!(writeln!(f, "{}: {:?}", index, n));
        }
        Ok(())
    }
}

enum Pair<T> {
    Both(T, T),
    One(T),
    None,
}

fn index_twice<T>(slc: &mut [T], a: usize, b: usize) -> Pair<&mut T>
{
    if a == b {
        slc.get_mut(a).map_or(Pair::None, Pair::One)
    } else {
        if a >= slc.len() || b >= slc.len() {
            Pair::None
        } else {
            // safe because a, b are in bounds and distinct
            unsafe {
                let ar = &mut *(slc.get_unchecked_mut(a) as *mut _);
                let br = &mut *(slc.get_unchecked_mut(b) as *mut _);
                Pair::Both(ar, br)
            }
        }
    }
}

impl<N, E> Graph<N, E, Directed>
{
    /// Create a new **Graph** with directed edges.
    pub fn new() -> Self
    {
        Graph{nodes: Vec::new(), edges: Vec::new()}
    }
}

impl<N, E> Graph<N, E, Undirected>
{
    /// Create a new **Graph** with undirected edges.
    pub fn new_undirected() -> Self
    {
        Graph{nodes: Vec::new(), edges: Vec::new()}
    }
}

impl<N, E, Ty=Directed, Ix=DefIndex> Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    /// Create a new **Graph** with estimated capacity.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self
    {
        Graph{nodes: Vec::with_capacity(nodes), edges: Vec::with_capacity(edges)}
    }

    /// Return the number of nodes (vertices) in the graph.
    pub fn node_count(&self) -> usize
    {
        self.nodes.len()
    }

    /// Return the number of edges in the graph.
    ///
    /// Computes in **O(1)** time.
    pub fn edge_count(&self) -> usize
    {
        self.edges.len()
    }

    /// Remove all nodes and edges
    pub fn clear(&mut self)
    {
        self.nodes.clear();
        self.edges.clear();
    }

    /// Return whether the graph has directed edges or not.
    #[inline]
    pub fn is_directed(&self) -> bool
    {
        <Ty as EdgeType>::is_directed()
    }

    /// Cast the graph as either undirected or directed. No edge adjustments
    /// are done.
    ///
    /// Computes in **O(1)** time.
    pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix> where
        NewTy: EdgeType
    {
        Graph{nodes: self.nodes, edges: self.edges}
    }

    /// Add a node (also called vertex) with weight **w** to the graph.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Return the index of the new node.
    pub fn add_node(&mut self, w: N) -> NodeIndex<Ix>
    {
        let node = Node{weight: w, next: [EdgeIndex::end(), EdgeIndex::end()]};
        let node_idx = NodeIndex::new(self.nodes.len());
        assert!(NodeIndex::end() != node_idx);
        self.nodes.push(node);
        node_idx
    }

    /// Access node weight for node **a**.
    pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>
    {
        self.nodes.get(a.index()).map(|n| &n.weight)
    }

    /// Access node weight for node **a**.
    pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>
    {
        self.nodes.get_mut(a.index()).map(|n| &mut n.weight)
    }

    /// Return an iterator of all nodes with an edge starting from **a**.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// Iterator element type is **NodeIndex<Ix>**.
    pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
    {
        if self.is_directed() {
            self.neighbors_directed(a, Outgoing)
        } else {
            self.neighbors_undirected(a)
        }
    }

    /// Return an iterator of all neighbors that have an edge between them and **a**,
    /// in the specified direction.
    /// If the graph is undirected, this is equivalent to *.neighbors(a)*.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// Iterator element type is **NodeIndex<Ix>**.
    pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: EdgeDirection) -> Neighbors<E, Ix>
    {
        let mut iter = self.neighbors_undirected(a);
        if self.is_directed() {
            // remove the other edges not wanted.
            let k = dir as usize;
            iter.next[1 - k] = EdgeIndex::end();
        }
        iter
    }

    /// Return an iterator of all neighbors that have an edge between them and **a**,
    /// in either direction.
    /// If the graph is undirected, this is equivalent to *.neighbors(a)*.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// Iterator element type is **NodeIndex<Ix>**.
    pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>
    {
        Neighbors {
            edges: &self.edges,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::end(), EdgeIndex::end()],
                Some(n) => n.next,
            }
        }
    }

    /// Return an iterator over the neighbors of node **a**, paired with their respective edge
    /// weights.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// Iterator element type is **(NodeIndex<Ix>, &'a E)**.
    pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ix>
    {
        let mut iter = self.edges_both(a);
        if self.is_directed() {
            iter.next[Incoming as usize] = EdgeIndex::end();
        }
        iter
    }

    /// Return an iterator over the edgs from **a** to its neighbors, then *to* **a** from its
    /// neighbors.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// Iterator element type is **(NodeIndex<Ix>, &'a E)**.
    pub fn edges_both(&self, a: NodeIndex<Ix>) -> Edges<E, Ix>
    {
        Edges{
            edges: &self.edges,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::end(), EdgeIndex::end()],
                Some(n) => n.next,
            }
        }
    }
    
    /// Add an edge from **a** to **b** to the graph, with its edge weight.
    ///
    /// **Note:** **Graph** allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [*.update_edge(a, b, weight)*](#method.update_edge) instead.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Return the index of the new edge.
    ///
    /// **Panics** if any of the nodes don't exist.
    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
    {
        let edge_idx = EdgeIndex::new(self.edges.len());
        assert!(edge_idx != EdgeIndex::end());
        match index_twice(self.nodes.as_mut_slice(), a.index(), b.index()) {
            Pair::None => panic!("NodeIndices out of bounds"),
            Pair::One(an) => {
                let edge = Edge {
                    weight: weight,
                    node: [a, b],
                    next: an.next,
                };
                an.next[0] = edge_idx;
                an.next[1] = edge_idx;
                self.edges.push(edge);
            }
            Pair::Both(an, bn) => {
                // a and b are different indices
                let edge = Edge {
                    weight: weight,
                    node: [a, b],
                    next: [an.next[0], bn.next[1]],
                };
                an.next[0] = edge_idx;
                bn.next[1] = edge_idx;
                self.edges.push(edge);
            }
        }
        edge_idx
    }

    /// Add or update an edge from **a** to **b**.
    ///
    /// If the edge already exists, its weight is updated.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to the vertices **a** (and **b**).
    ///
    /// Return the index of the affected edge.
    ///
    /// **Panics** if any of the nodes don't exist.
    pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix>
    {
        if let Some(ix) = self.find_edge(a, b) {
            match self.edge_weight_mut(ix) {
                Some(ed) => {
                    *ed = weight;
                    return ix;
                }
                None => {}
            }
        }
        self.add_edge(a, b, weight)
    }

    /// Access the edge weight for **e**.
    pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>
    {
        self.edges.get(e.index()).map(|ed| &ed.weight)
    }

    /// Access the edge weight for **e** mutably.
    pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>
    {
        self.edges.get_mut(e.index()).map(|ed| &mut ed.weight)
    }

    /// Remove **a** from the graph if it exists, and return its weight.
    /// If it doesn't exist in the graph, return **None**.
    pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>
    {
        match self.nodes.get(a.index()) {
            None => return None,
            _ => {}
        }
        for d in DIRECTIONS.iter() { 
            let k = *d as usize;
            /*
            println!("Starting edge removal for k={}, node={}", k, a);
            for (i, n) in self.nodes.iter().enumerate() {
                println!("Node {}: Edges={}", i, n.next);
            }
            for (i, ed) in self.edges.iter().enumerate() {
                println!("Edge {}: {}", i, ed);
            }
            */
            // Remove all edges from and to this node.
            loop {
                let next = self.nodes[a.index()].next[k];
                if next == EdgeIndex::end() {
                    break
                }
                let ret = self.remove_edge(next);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }

        // Use swap_remove -- only the swapped-in node is going to change
        // NodeIndex<Ix>, so we only have to walk its edges and update them.

        let node = self.nodes.swap_remove(a.index());

        // Find the edge lists of the node that had to relocate.
        // It may be that no node had to relocate, then we are done already.
        let swap_edges = match self.nodes.get(a.index()) {
            None => return Some(node.weight),
            Some(ed) => ed.next,
        };

        // The swapped element's old index
        let old_index = NodeIndex::new(self.nodes.len());
        let new_index = a;

        // Adjust the starts of the out edges, and ends of the in edges.
        for &d in DIRECTIONS.iter() {
            let k = d as usize;
            for (_, curedge) in EdgesMut::new(self.edges.as_mut_slice(), swap_edges[k], d) {
                debug_assert!(curedge.node[k] == old_index);
                curedge.node[k] = new_index;
            }
        }
        Some(node.weight)
    }

    /// For edge **e** with endpoints **edge_node**, replace links to it,
    /// with links to **edge_next**.
    fn change_edge_links(&mut self, edge_node: [NodeIndex<Ix>; 2], e: EdgeIndex<Ix>,
                         edge_next: [EdgeIndex<Ix>; 2])
    {
        for &d in DIRECTIONS.iter() {
            let k = d as usize;
            let node = match self.nodes.get_mut(edge_node[k].index()) {
                Some(r) => r,
                None => {
                    debug_assert!(false, "Edge's endpoint dir={:?} index={:?} not found",
                                  d, edge_node[k]);
                    return
                }
            };
            let fst = node.next[k];
            if fst == e {
                //println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
                node.next[k] = edge_next[k];
            } else {
                for (_i, curedge) in EdgesMut::new(self.edges.as_mut_slice(), fst, d) {
                    if curedge.next[k] == e {
                        curedge.next[k] = edge_next[k];
                        break; // the edge can only be present once in the list.
                    }
                }
            }
        }
    }

    /// Remove an edge and return its edge weight, or **None** if it didn't exist.
    ///
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
    /// the vertices of **e** and the vertices of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>
    {
        // every edge is part of two lists,
        // outgoing and incoming edges.
        // Remove it from both
        let (edge_node, edge_next) = match self.edges.get(e.index()) {
            None => return None,
            Some(x) => (x.node, x.next),
        };
        // Remove the edge from its in and out lists by replacing it with
        // a link to the next in the list.
        self.change_edge_links(edge_node, e, edge_next);
        self.remove_edge_adjust_indices(e)
    }

    fn remove_edge_adjust_indices(&mut self, e: EdgeIndex<Ix>) -> Option<E>
    {
        // swap_remove the edge -- only the removed edge
        // and the edge swapped into place are affected and need updating
        // indices.
        let edge = self.edges.swap_remove(e.index());
        let swap = match self.edges.get(e.index()) {
            // no elment needed to be swapped.
            None => return Some(edge.weight),
            Some(ed) => ed.node,
        };
        let swapped_e = EdgeIndex::new(self.edges.len());

        // Update the edge lists by replacing links to the old index by references to the new
        // edge index.
        self.change_edge_links(swap, swapped_e, [e, e]);
        Some(edge.weight)
    }

    /// Lookup an edge from **a** to **b**.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to the vertices **a** (and **b**).
    pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>>
    {
        if !self.is_directed() {
            self.find_edge_undirected(a, b).map(|(ix, _)| ix)
        } else {
            match self.nodes.get(a.index()) {
                None => None,
                Some(node) => {
                    let mut edix = node.next[0];
                    while let Some(edge) = self.edges.get(edix.index()) {
                        if edge.node[1] == b {
                            return Some(edix)
                        }
                        edix = edge.next[0];
                    }
                    None
                }
            }
        }
    }

    /// Lookup an edge between **a** and **b**, in either direction.
    ///
    /// If the graph is undirected, then this is equivalent to *.find_edge()*.
    pub fn find_edge_undirected(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<(EdgeIndex<Ix>, EdgeDirection)>
    {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => {
                for &d in DIRECTIONS.iter() {
                    let k = d as usize;
                    let mut edix = node.next[k];
                    while let Some(edge) = self.edges.get(edix.index()) {
                        if edge.node[1 - k] == b {
                            return Some((edix, d))
                        }
                        edix = edge.next[k];
                    }
                }
                None
            }
        }
    }

    /// Reverse the direction of all edges
    pub fn reverse(&mut self)
    {
        for edge in self.edges.iter_mut() {
            edge.node.swap(0, 1)
        }
    }

    /* Removed: Easy to implement externally with iterate in reverse
     *
    /// Retain only nodes that return **true** from the predicate.
    pub fn retain_nodes<F>(&mut self, mut visit: F) where
        F: FnMut(&Self, NodeIndex<Ix>, &Node<N>) -> bool
    {
        for index in (0..self.node_count()).rev() {
            let nix = NodeIndex<Ix>(index);
            if !visit(&self, nix, &self.nodes[nix.index()]) {
                let ret = self.remove_node(nix);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }

    /// Retain only edges that return **true** from the predicate.
    pub fn retain_edges<F>(&mut self, mut visit: F) where
        F: FnMut(&Self, EdgeIndex, &Edge<E>) -> bool
    {
        for index in (0..self.edge_count()).rev() {
            let eix = EdgeIndex::new(index);
            if !visit(&self, eix, &self.edges[eix.index()]) {
                let ret = self.remove_edge(EdgeIndex::new(index));
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }
    */

    /// Access the internal node array
    pub fn raw_nodes(&self) -> &[Node<N, Ix>]
    {
        &self.nodes
    }

    /// Access the internal edge array
    pub fn raw_edges(&self) -> &[Edge<E, Ix>]
    {
        &self.edges
    }

    /// Accessor for data structure internals: the first edge in the given direction.
    pub fn first_edge(&self, a: NodeIndex<Ix>, dir: EdgeDirection) -> Option<EdgeIndex<Ix>>
    {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::end() {
                    None
                } else { Some(edix) }
            }
        }
    }

    /// Accessor for data structure internals: the next edge for the given direction.
    pub fn next_edge(&self, e: EdgeIndex<Ix>, dir: EdgeDirection) -> Option<EdgeIndex<Ix>>
    {
        match self.edges.get(e.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::end() {
                    None
                } else { Some(edix) }
            }
        }
    }

    /// Return an iterator over either the nodes without edges to them or from them.
    ///
    /// The nodes in *.without_edges(Incoming)* are the initial nodes and 
    /// *.without_edges(Outgoing)* are the terminals.
    ///
    /// For an undirected graph, the initials/terminals are just the vertices without edges.
    ///
    /// The whole iteration computes in **O(|V|)** time.
    pub fn without_edges(&self, dir: EdgeDirection) -> WithoutEdges<N, Ty, Ix>
    {
        WithoutEdges{iter: self.nodes.iter().enumerate(), dir: dir}
    }
}

/// An iterator over either the nodes without edges to them or from them.
pub struct WithoutEdges<'a, N: 'a, Ty, Ix: IndexType = DefIndex> {
    iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
    dir: EdgeDirection,
}

impl<'a, N: 'a, Ty, Ix> Iterator for WithoutEdges<'a, N, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Item = NodeIndex<Ix>;
    fn next(&mut self) -> Option<NodeIndex<Ix>>
    {
        let k = self.dir as usize;
        loop {
            match self.iter.next() {
                None => return None,
                Some((index, node)) => {
                    if node.next[k] == EdgeIndex::end() &&
                        (<Ty as EdgeType>::is_directed() ||
                         node.next[1-k] == EdgeIndex::end()) {
                        return Some(NodeIndex::new(index))
                    } else {
                        continue
                    }
                },
            }
        }
    }
}

/*
/// Iterator over the neighbors of a node.
///
/// Iterator element type is **NodeIndex**.
pub struct DiNeighbors<'a, E: 'a> {
    edges: &'a [Edge<E>],
    next: EdgeIndex,
    dir: EdgeDirection,
}

impl<'a, E> Iterator for DiNeighbors<'a, E>
{
    type Item = NodeIndex;
    fn next(&mut self) -> Option<NodeIndex>
    {
        let k = self.dir as usize;
        match self.edges.get(self.next.index()) {
            None => None,
            Some(edge) => {
                self.next = edge.next[k];
                Some(edge.node[1-k])
            }
        }
    }
}
*/

/// Iterator over the neighbors of a node.
///
/// Iterator element type is **NodeIndex**.
pub struct Neighbors<'a, E: 'a, Ix: 'a = DefIndex> where
    Ix: IndexType,
{
    edges: &'a [Edge<E, Ix>],
    next: [EdgeIndex<Ix>; 2],
}

impl<'a, E, Ix> Iterator for Neighbors<'a, E, Ix> where
    Ix: IndexType,
{
    type Item = NodeIndex<Ix>;
    fn next(&mut self) -> Option<NodeIndex<Ix>>
    {
        match self.edges.get(self.next[0].index()) {
            None => {}
            Some(edge) => {
                self.next[0] = edge.next[0];
                return Some(edge.node[1])
            }
        }
        match self.edges.get(self.next[1].index()) {
            None => None,
            Some(edge) => {
                self.next[1] = edge.next[1];
                Some(edge.node[0])
            }
        }
    }
}

struct EdgesMut<'a, E: 'a, Ix: IndexType = DefIndex> {
    edges: &'a mut [Edge<E, Ix>],
    next: EdgeIndex<Ix>,
    dir: EdgeDirection,
}

impl<'a, E, Ix> EdgesMut<'a, E, Ix> where
    Ix: IndexType,
{
    fn new(edges: &'a mut [Edge<E, Ix>], next: EdgeIndex<Ix>, dir: EdgeDirection) -> Self
    {
        EdgesMut{
            edges: edges,
            next: next,
            dir: dir
        }
    }
}

impl<'a, E, Ix> Iterator for EdgesMut<'a, E, Ix> where
    Ix: IndexType,
{
    type Item = (EdgeIndex<Ix>, &'a mut Edge<E, Ix>);
    fn next(&mut self) -> Option<(EdgeIndex<Ix>, &'a mut Edge<E, Ix>)>
    {
        let this_index = self.next;
        let k = self.dir as usize;
        match self.edges.get_mut(self.next.index()) {
            None => None,
            Some(edge) => {
                self.next = edge.next[k];
                // We cannot in safe rust, derive a &'a mut from &mut self,
                // when the life of &mut self is shorter than 'a.
                //
                // We guarantee that this will not allow two pointers to the same
                // edge, and use unsafe to extend the life.
                //
                // See http://stackoverflow.com/a/25748645/3616050
                let long_life_edge = unsafe {
                    &mut *(edge as *mut _)
                };
                Some((this_index, long_life_edge))
            }
        }
    }
}

/// Iterator over the edges of a node.
pub struct Edges<'a, E: 'a, Ix: IndexType = DefIndex> {
    edges: &'a [Edge<E, Ix>],
    next: [EdgeIndex<Ix>; 2],
}

impl<'a, E, Ix> Iterator for Edges<'a, E, Ix> where
    Ix: IndexType,
{
    type Item = (NodeIndex<Ix>, &'a E);
    fn next(&mut self) -> Option<(NodeIndex<Ix>, &'a E)>
    {
        // First any outgoing edges
        match self.edges.get(self.next[0].index()) {
            None => {}
            Some(edge) => {
                self.next[0] = edge.next[0];
                return Some((edge.node[1], &edge.weight))
            }
        }
        // Then incoming edges
        match self.edges.get(self.next[1].index()) {
            None => None,
            Some(edge) => {
                self.next[1] = edge.next[1];
                Some((edge.node[0], &edge.weight))
            }
        }
    }
}

impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = N;
    /// Index the **Graph** by **NodeIndex** to access node weights.
    ///
    /// **Panics** if the node doesn't exist.
    fn index(&self, index: &NodeIndex<Ix>) -> &N {
        &self.nodes[index.index()].weight
    }
}

impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = N;
    /// Index the **Graph** by **NodeIndex** to access node weights.
    ///
    /// **Panics** if the node doesn't exist.
    fn index_mut(&mut self, index: &NodeIndex<Ix>) -> &mut N {
        &mut self.nodes[index.index()].weight
    }

}
impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = E;
    /// Index the **Graph** by **EdgeIndex** to access edge weights.
    ///
    /// **Panics** if the edge doesn't exist.
    fn index(&self, index: &EdgeIndex<Ix>) -> &E {
        &self.edges[index.index()].weight
    }
}

impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix> where
    Ty: EdgeType,
    Ix: IndexType,
{
    type Output = E;
    /// Index the **Graph** by **EdgeIndex** to access edge weights.
    ///
    /// **Panics** if the edge doesn't exist.
    fn index_mut(&mut self, index: &EdgeIndex<Ix>) -> &mut E {
        &mut self.edges[index.index()].weight
    }
}