1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! To optimize parametric model (non-linear regression)
//! 
//! ## `Optimizer` structure
//! 
//! ### Declaration
//! 
//! ```rust
//! extern crate peroxide;
//! use peroxide::{Number, OptMethod, OptOption};
//! use std::collections::HashMap;
//! 
//! pub struct Optimizer {
//!     domain: Vec<f64>,
//!     observed: Vec<f64>,
//!     func: fn(&Vec<f64>, Vec<Number>) -> Vec<Number>,
//!     param: Vec<Number>,
//!     max_iter: usize,
//!     error: f64,
//!     method: OptMethod,
//!     option: HashMap<OptOption, bool>,
//! }
//! ```
//! 
//! ### Method (Should fill)
//! 
//! * `new` : Declare new Optimizer. **Should be mutable**
//! * `set_init_param` : Input initial parameter
//! * `set_max_iter` : Set maximum number of iterations
//! * `set_method` : Set method to optimization
//! 
//! ### Method (Optional)
//! 
//! * `get_domain` : Get domain
//! * `get_error` : Root mean square error
//! 
//! ### Method (Generate result)
//! 
//! * `optimize` : Optimize
//! 
//! ## Example
//! 
//! * Optimize $y = x^n$ model with $y = x^2$ with gaussian noise.
//! 
//! ```rust
//! extern crate peroxide;
//! use peroxide::*;
//! 
//! fn main() {
//!     // To prepare noise
//!     let normal = Normal(0f64, 0.1f64);
//!     let normal2 = Normal(0f64, 100f64);
//! 
//!     // Noise to domain
//!     let mut x = seq(0., 99., 1f64);
//!     x = zip_with(|a, b| (a + b).abs(), &x, &normal.sample(x.len()));
//! 
//!     // Noise to image
//!     let mut y = x.fmap(|t| t.powi(2));
//!     y = zip_with(|a, b| a + b, &y, &normal2.sample(y.len()));
//! 
//!     // Initial paramter
//!     let n_init = vec![1f64];
//!     let data = hstack!(x.clone(), y.clone());
//! 
//!     // Optimizer setting
//!     let mut opt = Optimizer::new(data, quad);
//!     let p = opt.set_init_param(n_init)
//!         .set_max_iter(50)
//!         .set_method(LevenbergMarquardt)
//!         .optimize();
//!     p.print();                  // Optimized parameter
//!     opt.get_error().print();    // Optimized RMSE
//! 
//!     // To prepare plotting
//!     let z = quad(&x, NumberVector::from_f64_vec(p)).to_f64_vec();
//! 
//!     // Plot
//!     let mut plt = Plot2D::new();
//!     plt.set_domain(x)
//!         .insert_image(y)    // plot data
//!         .insert_image(z)    // plot fit
//!         .set_legend(vec!["Data", "Fit"])
//!         .set_title("Test ($y=x^2$ with noise)")
//!         .set_path("example_data/lm_test.png")
//!         .set_marker(vec![Point, Line])
//!         .savefig().expect("Can't draw a plot");
//! }
//! 
//! fn quad(x: &Vec<f64>, n: Vec<Number>) -> Vec<Number> {
//!     x.clone().into_iter()
//!         .map(|t| Number::from_f64(t))
//!         .map(|t| t.powf(n[0]))
//!         .collect()
//! }
//! ```
//! 
//! ![LM test](https://raw.githubusercontent.com/Axect/Peroxide/master/example_data/lm_test.png)


use std::collections::HashMap;
use ::{Matrix, Number, NumberVector, LinearAlgebra, LinearOps};
use ::{max, jacobian};
use ::OptOption::{InitParam, MaxIter};
pub use ::OptMethod::{GradientDescent, GaussNewton, LevenbergMarquardt};

#[derive(Debug, Clone, Copy)]
pub enum OptMethod {
    GradientDescent(f64),
    GaussNewton,
    LevenbergMarquardt,
}

#[derive(Debug, Clone, Copy, PartialOrd, PartialEq, Eq, Hash)]
pub enum OptOption {
    InitParam,
    MaxIter,
}

/// Optimizer for optimization (non-linear regression)
/// 
/// # Methods
/// * Gradient Descent
/// * Gauss Newton
/// * Levenberg Marquardt
pub struct Optimizer {
    domain: Vec<f64>,
    observed: Vec<f64>,
    func: fn(&Vec<f64>, Vec<Number>) -> Vec<Number>,
    param: Vec<Number>,
    max_iter: usize,
    error: f64,
    method: OptMethod,
    option: HashMap<OptOption, bool>,
}

impl Optimizer {
    pub fn new(data: Matrix, func: fn(&Vec<f64>, Vec<Number>) -> Vec<Number>) -> Self {
        let mut default_option: HashMap<OptOption, bool> = HashMap::new();
        default_option.insert(InitParam, false);
        default_option.insert(MaxIter, false);

        Optimizer {
            domain: data.col(0),
            observed: data.col(1),
            func,
            param: vec![],
            max_iter: 0,
            error: 0f64,
            method: LevenbergMarquardt,
            option: default_option,
        }
    }

    pub fn get_domain(&self) -> Vec<f64> {
        self.domain.clone()
    }

    pub fn get_error(&self) -> f64 {
        self.error
    }

    pub fn set_init_param(&mut self, p: Vec<f64>) -> &mut Self {
        if let Some(x) = self.option.get_mut(&InitParam) {
            *x = true
        }

        self.param = NumberVector::from_f64_vec(p);
        self
    }

    pub fn set_max_iter(&mut self, n: usize) -> &mut Self {
        if let Some(x) = self.option.get_mut(&MaxIter) {
            *x = true
        }

        self.max_iter = n;
        self
    }

    pub fn set_method(&mut self, method: OptMethod) -> &mut Self {
        self.method = method;
        self
    }

    pub fn optimize(&mut self) -> Vec<f64> {
        // Receive initial data
        let (x_vec, y_vec) = (self.domain.clone(), self.observed.clone());
        let (p_init, max_iter) = (self.param.clone(), self.max_iter);
        let f = |p: Vec<Number>| (self.func)(&x_vec, p);

        // Take various form of initial data
        let p_init_vec = p_init.to_f64_vec();
        let y = y_vec.to_matrix();

        // Declare mutable values
        let mut p = p_init_vec.to_matrix();
        let mut j = jacobian(f, p_init_vec.clone());
        let mut y_hat = f(p_init.clone()).to_f64_vec().to_matrix();
        let mut jtj = &j.t() * &j;

        match self.method {
            GradientDescent(alpha) => {
                for _i in 0 .. max_iter {
                    let h = alpha * j.t() * (&y - &y_hat);
                    p = &p + &h;
                    j = jacobian(f, p.data.clone());
                    y_hat = f(NumberVector::from_f64_vec(p.data.clone())).to_f64_vec().to_matrix();
                }
            }

            GaussNewton => {
                unimplemented!()
            }

            LevenbergMarquardt => {
                let mut chi2 = ((&y - &y_hat).t() * (&y - &y_hat))[(0,0)];
                let mut nu = 2f64;
                let lambda_0 = 1e-3;
                let mut lambda = lambda_0 * max(jtj.diag());

                for _i in 0 .. max_iter {
                    let h: Matrix;

                    match (jtj.clone() + lambda * jtj.to_diag()).inv() {
                        Some(b) => h = b * j.t() * (&y - &y_hat),
                        None => break,
                    }

                    let p_temp = &p + &h;
                    let j_temp = jacobian(f, p.data.clone());
                    let y_hat_temp = f(NumberVector::from_f64_vec(p_temp.data.clone())).to_f64_vec().to_matrix();
                    let chi2_temp = ((&y - &y_hat_temp).t() * (&y - &y_hat_temp))[(0,0)];

                    let rho = (chi2 - chi2_temp) / (h.t() * (lambda * jtj.to_diag() * h.clone() + j.t() * (&y - &y_hat)))[(0,0)];

                    if rho > 0f64 {
                        p = p_temp;
                        j = j_temp;
                        jtj = &j.t() * &j;
                        y_hat = y_hat_temp;
                        chi2 = chi2_temp;
                        lambda *= max(vec![1f64/3f64, 1f64 - (2f64*rho - 1f64).powi(3)]);
                        nu = 2f64;
                    } else {
                        lambda *= nu;
                        nu *= 2f64;
                    }
                }
            }
        }
        let error_temp = &y - &y_hat;
        self.error = ((error_temp.t() * error_temp)[(0,0)] / y.row as f64).sqrt();
        p.data
    }
}