1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//! Defines the [PdfMatrix] struct, a container for six floating-point values that represent
//! the six configurable elements of a nine-element 3x3 PDF transformation matrix.
use crate::bindgen::FS_MATRIX;
use crate::error::PdfiumError;
use crate::points::PdfPoints;
use crate::{create_transform_getters, create_transform_setters};
use std::hash::{Hash, Hasher};
use std::ops::{Add, Mul, Sub};
use vecmath::{mat3_add, mat3_det, mat3_inv, mat3_sub, mat3_transposed, row_mat3_mul, Matrix3};
pub type PdfMatrixValue = f32;
/// Six floating-point values, labelled `a`, `b`, `c`, `d`, `e`, and `f`, that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
///
/// Applying the matrix to any transformable object containing a `set_matrix()` function - such as
/// a page, clip path, individual page object, or page object group - will result in a
/// transformation of that object. Depending on the values specified in the matrix, the object
/// can be moved, scaled, rotated, or skewed.
///
/// **It is rare that a matrix needs to be used directly.** All transformable objects provide
/// convenient and expressive access to the most commonly used transformation operations without
/// requiring a matrix.
///
/// However, a matrix can be convenient when the same transformation values need to be applied
/// to a large set of transformable objects.
///
/// An overview of PDF transformation matrices can be found in the PDF Reference Manual
/// version 1.7 on page 204; a detailed description can be founded in section 4.2.3 on page 207.
#[derive(Debug, Copy, Clone)]
pub struct PdfMatrix {
matrix: Matrix3<PdfMatrixValue>,
}
impl PdfMatrix {
/// A [PdfMatrix] object with all matrix values set to 0.0.
pub const ZERO: PdfMatrix = Self::zero();
/// A [PdfMatrix] object with matrix values a and d set to 1.0
/// and all other values set to 0.0.
pub const IDENTITY: PdfMatrix = Self::identity();
#[inline]
pub(crate) fn from_pdfium(matrix: FS_MATRIX) -> Self {
Self::new(matrix.a, matrix.b, matrix.c, matrix.d, matrix.e, matrix.f)
}
/// Creates a new [PdfMatrix] with the given matrix values.
#[inline]
pub const fn new(
a: PdfMatrixValue,
b: PdfMatrixValue,
c: PdfMatrixValue,
d: PdfMatrixValue,
e: PdfMatrixValue,
f: PdfMatrixValue,
) -> Self {
Self {
matrix: [[a, b, 0.0], [c, d, 0.0], [e, f, 1.0]],
}
}
/// Creates a new [PdfMatrix] object with all matrix values set to 0.0.
///
/// The return value of this function is identical to the constant [PdfMatrix::ZERO].
#[inline]
pub const fn zero() -> Self {
Self::new(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
}
/// Creates a new [PdfMatrix] object with matrix values a and d set to 1.0
/// and all other values set to 0.0.
///
/// The return value of this function is identical to the constant [PdfMatrix::IDENTITY].
#[inline]
pub const fn identity() -> Self {
Self::new(1.0, 0.0, 0.0, 1.0, 0.0, 0.0)
}
/// Returns the value of `a`, the first of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn a(&self) -> PdfMatrixValue {
self.matrix[0][0]
}
/// Sets the value of `a`, the first of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_a(&mut self, a: PdfMatrixValue) {
self.matrix[0][0] = a;
}
/// Returns the value of `b`, the second of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn b(&self) -> PdfMatrixValue {
self.matrix[0][1]
}
/// Sets the value of `b`, the second of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_b(&mut self, b: PdfMatrixValue) {
self.matrix[0][1] = b;
}
/// Returns the value of `c`, the third of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn c(&self) -> PdfMatrixValue {
self.matrix[1][0]
}
/// Sets the value of `c`, the third of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_c(&mut self, c: PdfMatrixValue) {
self.matrix[1][0] = c;
}
/// Returns the value of `d`, the fourth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn d(&self) -> PdfMatrixValue {
self.matrix[1][1]
}
/// Sets the value of `d`, the fourth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_d(&mut self, d: PdfMatrixValue) {
self.matrix[1][1] = d;
}
/// Returns the value of `e`, the fifth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn e(&self) -> PdfMatrixValue {
self.matrix[2][0]
}
/// Sets the value of `e`, the fifth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_e(&mut self, e: PdfMatrixValue) {
self.matrix[2][0] = e;
}
/// Returns the value of `f`, the sixth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn f(&self) -> PdfMatrixValue {
self.matrix[2][1]
}
/// Sets the value of `f`, the sixth of six floating-point values that represent
/// the six configurable elements of a nine-element 3x3 PDF transformation matrix.
#[inline]
pub fn set_f(&mut self, f: PdfMatrixValue) {
self.matrix[2][1] = f;
}
#[inline]
pub(crate) fn as_pdfium(&self) -> FS_MATRIX {
FS_MATRIX {
a: self.a(),
b: self.b(),
c: self.c(),
d: self.d(),
e: self.e(),
f: self.f(),
}
}
/// Returns the inverse of this [PdfMatrix].
#[inline]
pub fn invert(&self) -> PdfMatrix {
Self {
matrix: mat3_inv(self.matrix),
}
}
/// Returns the transpose of this [PdfMatrix].
#[inline]
pub fn transpose(&self) -> PdfMatrix {
Self {
matrix: mat3_transposed(self.matrix),
}
}
/// Returns the determinant of this [PdfMatrix].
#[inline]
pub fn determinant(&self) -> PdfMatrixValue {
mat3_det(self.matrix)
}
/// Returns the result of adding the given [PdfMatrix] to this [PdfMatrix].
#[inline]
pub fn add(&self, other: PdfMatrix) -> PdfMatrix {
Self {
matrix: mat3_add(self.matrix, other.matrix),
}
}
/// Returns the result of subtracting the given [PdfMatrix] from this [PdfMatrix].
#[inline]
pub fn subtract(&self, other: PdfMatrix) -> PdfMatrix {
Self {
matrix: mat3_sub(self.matrix, other.matrix),
}
}
/// Returns the result of multiplying this [PdfMatrix] by the given [PdfMatrix].
#[inline]
pub fn multiply(&self, other: PdfMatrix) -> PdfMatrix {
Self {
matrix: row_mat3_mul(self.matrix, other.matrix),
}
}
/// Returns the result of applying this [PdfMatrix] to the given coordinate pair expressed
/// as [PdfPoints].
#[inline]
pub fn apply_to_points(&self, x: PdfPoints, y: PdfPoints) -> (PdfPoints, PdfPoints) {
// The formula for applying transform to coordinates is provided in
// The PDF Reference Manual, version 1.7, on page 208.
(
PdfPoints::new(self.a() * x.value + self.c() * y.value + self.e()),
PdfPoints::new(self.b() * x.value + self.d() * y.value + self.f()),
)
}
create_transform_setters!(
Self,
Result<Self, PdfiumError>,
"this [PdfMatrix]",
"this [PdfMatrix].",
"this [PdfMatrix],"
);
// The internal implementation of the transform() function used by the create_transform_setters!() macro.
fn transform_impl(
mut self,
a: PdfMatrixValue,
b: PdfMatrixValue,
c: PdfMatrixValue,
d: PdfMatrixValue,
e: PdfMatrixValue,
f: PdfMatrixValue,
) -> Result<Self, PdfiumError> {
let result = row_mat3_mul(self.matrix, [[a, b, 0.0], [c, d, 0.0], [e, f, 1.0]]);
if mat3_det(result) == 0.0 {
Err(PdfiumError::InvalidTransformationMatrix)
} else {
self.matrix = result;
Ok(self)
}
}
// The internal implementation of the reset_matrix() function used by the create_transform_setters!() macro.
fn reset_matrix_impl(mut self, matrix: PdfMatrix) -> Result<Self, PdfiumError> {
self.set_a(matrix.a());
self.set_b(matrix.b());
self.set_c(matrix.c());
self.set_d(matrix.d());
self.set_e(matrix.e());
self.set_f(matrix.f());
Ok(self)
}
create_transform_getters!("this [PdfMatrix]", "this [PdfMatrix].", "this [PdfMatrix],");
// The internal implementation of the get_matrix_impl() function used by the create_transform_getters!() macro.
#[inline]
fn get_matrix_impl(&self) -> Result<PdfMatrix, PdfiumError> {
Ok(*self)
}
}
// We could derive PartialEq automatically, but it's good practice to implement PartialEq
// by hand when implementing Hash.
impl PartialEq for PdfMatrix {
fn eq(&self, other: &Self) -> bool {
self.a() == other.a()
&& self.b() == other.b()
&& self.c() == other.c()
&& self.d() == other.d()
&& self.e() == other.e()
&& self.f() == other.f()
}
}
// The PdfMatrixValue values inside PdfMatrix will never be NaN or Infinity, so these implementations
// of Eq and Hash are safe.
impl Eq for PdfMatrix {}
impl Hash for PdfMatrix {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write_u32(self.a().to_bits());
state.write_u32(self.b().to_bits());
state.write_u32(self.c().to_bits());
state.write_u32(self.d().to_bits());
state.write_u32(self.e().to_bits());
state.write_u32(self.f().to_bits());
}
}
impl Add for PdfMatrix {
type Output = PdfMatrix;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
// Add::add() shadows Self::add(), so we must be explicit about which function to call.
Self::add(&self, rhs)
}
}
impl Sub for PdfMatrix {
type Output = PdfMatrix;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
self.subtract(rhs)
}
}
impl Mul for PdfMatrix {
type Output = PdfMatrix;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
self.multiply(rhs)
}
}
#[cfg(test)]
mod tests {
use crate::matrix::PdfMatrix;
use crate::points::PdfPoints;
#[test]
fn test_matrix_apply_to_points() {
let delta_x = PdfPoints::new(50.0);
let delta_y = PdfPoints::new(-25.0);
let matrix = PdfMatrix::identity().translate(delta_x, delta_y).unwrap();
let x = PdfPoints::new(300.0);
let y = PdfPoints::new(400.0);
let result = matrix.apply_to_points(x, y);
assert_eq!(result.0, x + delta_x);
assert_eq!(result.1, y + delta_y);
}
}