pco 0.4.7

Good compression for numerical sequences
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
use std::cmp::{max, min};
use std::mem;

use crate::compression_intermediates::Bid;
use crate::constants::{Bitlen, MULT_REQUIRED_BITS_SAVED_PER_NUM};
use crate::data_types::SplitLatents;
use crate::data_types::{Float, Latent};
use crate::metadata::{DynLatents, Mode};
use crate::sampling::PrimaryLatentAndSavings;
use crate::{int_mult_utils, sampling};

#[inline(never)]
pub(crate) fn join_latents<F: Float>(
  base: F,
  primary: &mut [F::L],
  secondary: Option<&DynLatents>,
) {
  let secondary = secondary.unwrap().downcast_ref::<F::L>().unwrap();
  for (mult_and_dst, &adj) in primary.iter_mut().zip(secondary.iter()) {
    let unadjusted = F::int_float_from_latent(*mult_and_dst) * base;
    *mult_and_dst = unadjusted
      .to_latent_ordered()
      .wrapping_add(adj)
      .toggle_center();
  }
}

pub(crate) fn split_latents<F: Float>(page_nums: &[F], config: FloatMultConfig<F>) -> SplitLatents {
  let FloatMultConfig { base, inv_base } = config;
  let n = page_nums.len();
  let uninit_vec = || unsafe {
    let mut res = Vec::<F::L>::with_capacity(n);
    res.set_len(n);
    res
  };
  let mut primary = uninit_vec();
  let mut adjustments = uninit_vec();
  for (&num, (primary_dst, adj_dst)) in page_nums
    .iter()
    .zip(primary.iter_mut().zip(adjustments.iter_mut()))
  {
    let mult = (num * inv_base).round();
    *primary_dst = F::int_float_to_latent(mult);
    *adj_dst = num
      .to_latent_ordered()
      .wrapping_sub((mult * base).to_latent_ordered())
      // ULP adjustments are naturally signed quantities, so we toggle them so
      // that 0 is in the middle of the range
      .toggle_center();
  }

  SplitLatents {
    primary: DynLatents::new(primary).unwrap(),
    secondary: Some(DynLatents::new(adjustments).unwrap()),
  }
}

// The rest of this file concerns automatically detecting the float `base`
// such that `x = mult * base + adj * ULP` usefully splits a delta `x` into
// latent variables `mult` and `adj` (if such a `base` exists).
//
// Somewhat different from int mult, we simplistically model that each `x` is
// a multiple of `base` with floating point errors; we would identify `base`
// for the numbers e, 2e, 3e; but if we add 1 to all the numbers, even
// though `base=e` would be just as useful in either case.
// As a result, we can think of the "loss" of an error from a multiple of base
// as O(ln|error|).
//
// I (Martin) thought about using an FFT here, but I'm not sure how to pull it
// off computationally efficiently when the frequency of interest could be in
// such a large range and must be determined so precisely.
// So instead we use an approximate Euclidean algorithm on pairs of floats.

const REQUIRED_PRECISION_BITS: Bitlen = 6;
const SNAP_THRESHOLD_ABSOLUTE: f64 = 0.02;
const SNAP_THRESHOLD_DECIMAL_RELATIVE: f64 = 0.01;
const INTERESTING_TRAILING_ZEROS: u32 = 5;
const REQUIRED_TRAILING_ZEROS_FREQUENCY: f64 = 0.5;
const REQUIRED_GCD_PAIR_FREQUENCY: f64 = 0.001;

fn insignificant_float_to<F: Float>(x: F) -> F {
  let spare_precision_bits = F::PRECISION_BITS.saturating_sub(REQUIRED_PRECISION_BITS) as i32;
  x * F::exp2(-spare_precision_bits)
}

fn is_approx_zero<F: Float>(small: F, big: F) -> bool {
  small <= insignificant_float_to(big)
}

fn is_small_remainder<F: Float>(remainder: F, original: F) -> bool {
  remainder <= original * F::exp2(-16)
}

fn is_imprecise<F: Float>(value: F, err: F) -> bool {
  value <= err * F::exp2(REQUIRED_PRECISION_BITS as i32)
}

fn approx_pair_gcd<F: Float>(greater: F, lesser: F) -> Option<F> {
  if is_approx_zero(lesser, greater) || lesser == greater {
    return None;
  }

  #[derive(Clone, Copy, Debug)]
  struct PairMult<F: Float> {
    value: F,
    err: F,
  }

  let machine_eps = F::exp2(-(F::PRECISION_BITS as i32));
  let rem_assign = |lhs: &mut PairMult<F>, rhs: &PairMult<F>| {
    let ratio = (lhs.value / rhs.value).round();
    lhs.err += ratio * rhs.err + lhs.value * machine_eps;
    lhs.value = (lhs.value - ratio * rhs.value).abs();
  };

  let mut p_greater = PairMult {
    value: greater,
    err: F::ZERO,
  };
  let mut p_lesser = PairMult {
    value: lesser,
    err: F::ZERO,
  };

  loop {
    let prev = p_greater.value;
    rem_assign(&mut p_greater, &p_lesser);
    if is_small_remainder(p_greater.value, prev) || p_greater.value <= p_greater.err {
      return Some(p_lesser.value);
    }

    if is_approx_zero(p_greater.value, greater) || is_imprecise(p_greater.value, p_greater.err) {
      return None;
    }

    mem::swap(&mut p_greater, &mut p_lesser);
  }
}

#[inline(never)]
fn choose_config_by_trailing_zeros<F: Float>(sample: &[F]) -> Option<FloatMultConfig<F>> {
  let precision_bits = F::PRECISION_BITS;
  let calc_power_of_2_divisor =
    |exponent, trailing_zeros| exponent - precision_bits.saturating_sub(trailing_zeros) as i32;

  // the greatest k such that 2^k divides all the floats exactly
  let mut k = i32::MAX;
  let mut count = 0;
  for x in sample {
    let trailing_zeros = x.trailing_zeros();
    if *x != F::ZERO && trailing_zeros >= INTERESTING_TRAILING_ZEROS {
      let k_prime = calc_power_of_2_divisor(x.exponent(), trailing_zeros);
      count += 1;
      k = min(k, k_prime);
    }
  }

  let required_samples = max(
    (sample.len() as f64 * REQUIRED_TRAILING_ZEROS_FREQUENCY).ceil() as usize,
    sampling::MIN_SAMPLE,
  );
  if count < required_samples {
    return None;
  }

  let mut int_sample = Vec::new();
  let lshift = F::L::BITS - precision_bits - 1;
  let explicit_mantissa = F::L::MID;
  for x in sample {
    let exponent = x.exponent();
    // the greatest k' such that 2^k' divides this float exactly
    let k_prime = calc_power_of_2_divisor(x.exponent(), x.trailing_zeros());
    if k_prime >= k && exponent < k + F::L::BITS as i32 {
      let rshift = F::L::BITS - 1 - (exponent - k) as u32;
      let lshifted_w_explicit_mantissa = (x.to_latent_bits() << lshift) | explicit_mantissa;
      let multiple_of_k = lshifted_w_explicit_mantissa >> rshift;
      int_sample.push(multiple_of_k);
    }
  }

  if int_sample.len() >= required_samples {
    let int_base = int_mult_utils::choose_candidate_base(&mut int_sample)
      .map(|(base, _)| base)
      .unwrap_or(F::L::ONE);
    let base = F::from_latent_numerical(int_base) * F::exp2(k);
    Some(FloatMultConfig::from_base(base))
  } else {
    None
  }
}

#[inline(never)]
fn approx_sample_gcd_euclidean<F: Float>(sample: &[F]) -> Option<F> {
  let mut gcds = Vec::new();
  for i in (0..sample.len() - 1).step_by(2) {
    let a = sample[i];
    let b = sample[i + 1];
    if let Some(gcd) = approx_pair_gcd(F::max(a, b), F::min(a, b)) {
      gcds.push(gcd);
    }
  }

  let required_pairs_with_common_gcd =
    1 + (sample.len() as f64 * REQUIRED_GCD_PAIR_FREQUENCY).ceil() as usize;
  if gcds.len() < required_pairs_with_common_gcd {
    return None;
  }

  // safe because we filtered out poorly-behaved floats
  gcds.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
  // we check a few GCDs in the middle and see if they show up frequently enough
  for percentile in [0.1, 0.3, 0.5] {
    let candidate = gcds[(percentile * gcds.len() as f64) as usize];
    let similar_gcd_count = gcds
      .iter()
      .filter(|&&gcd| (gcd - candidate).abs() < F::from_f64(0.01) * candidate)
      .count();

    if similar_gcd_count >= required_pairs_with_common_gcd {
      return Some(candidate);
    }
  }

  None
}

fn choose_config_by_euclidean<F: Float>(sample: &[F]) -> Option<FloatMultConfig<F>> {
  let base = approx_sample_gcd_euclidean(sample)?;
  let base = center_sample_base(base, sample);
  let config = snap_to_int_reciprocal(base);
  Some(config)
}

#[inline(never)]
fn center_sample_base<F: Float>(base: F, sample: &[F]) -> F {
  // Go back through the sample, holding all mults fixed, and adjust the gcd to
  // minimize the average deviation from mult * gcd, weighting by mult.
  // Ideally we would tweak by something between the weighted median and mode
  // of the individual tweaks, since we model loss as proportional to
  // sum[log|error|], but doing so would be computationally harder.
  let inv_base = base.inv();
  let mut tweak_sum = F::ZERO;
  let mut tweak_weight = F::ZERO;
  for &x in sample {
    let mult = (x * inv_base).round();
    let mult_exponent = mult.exponent() as Bitlen;
    if mult_exponent < F::PRECISION_BITS && mult != F::ZERO {
      let overshoot = (mult * base) - x;
      let weight = F::from_f64((F::PRECISION_BITS - mult_exponent) as f64);
      tweak_sum += weight * (overshoot / mult);
      tweak_weight += weight;
    }
  }
  base - tweak_sum / tweak_weight
}

fn snap_to_int_reciprocal<F: Float>(base: F) -> FloatMultConfig<F> {
  let inv_base = base.inv();
  let round_inv_base = inv_base.round();
  let decimal_inv_base = F::from_f64(10.0_f64.powf(inv_base.to_f64().log10().round()));
  // check if relative error is below a threshold
  if (inv_base - round_inv_base).abs() < F::from_f64(SNAP_THRESHOLD_ABSOLUTE) {
    FloatMultConfig::from_inv_base(round_inv_base)
  } else if (inv_base - decimal_inv_base).abs() / inv_base
    < F::from_f64(SNAP_THRESHOLD_DECIMAL_RELATIVE)
  {
    FloatMultConfig::from_inv_base(decimal_inv_base)
  } else {
    FloatMultConfig::from_base(base)
  }
}

fn bits_saved_per_num_over_classic<F: Float>(
  config: FloatMultConfig<F>,
  sample: &[F],
) -> Option<f64> {
  let bits_saved_per_num = sampling::est_bits_saved_per_num(sample, |x| {
    let mult = (x * config.inv_base).round();
    let primary = mult.int_float_to_latent();
    // We treat a mult of 0 as if there are only PRECISION_BITS bits between it and 1,
    // which is not true (there are actually BITS - 2), but this is more useful
    // for estimating bit savings.
    let inter_base_bits = F::PRECISION_BITS.saturating_sub(mult.exponent() as Bitlen);
    let approx_unsigned = (mult * config.base).to_latent_ordered();
    let x_as_unsigned = x.to_latent_ordered();
    let abs_adj = max(x_as_unsigned, approx_unsigned) - min(x_as_unsigned, approx_unsigned);
    // Estimating bit cost of adjustments, we conservatively assume the
    // probability distribution is
    //
    // P(adj) = 1/(2 * (adj^2 + 1)),
    //   -2^k < adj < 2^k where k = inter_base_bits - 1
    //
    // So adj should cost the log_2 of this, or approximately
    //
    // B(adj) = 1 + 2 * log_2|adj|
    //
    // We relax this slightly for 0 and let it slide.
    let adj_bits = 1 + 2 * (F::L::BITS - abs_adj.leading_zeros());
    PrimaryLatentAndSavings {
      primary,
      bits_saved: inter_base_bits as f64 - adj_bits as f64,
    }
  });

  if bits_saved_per_num >= MULT_REQUIRED_BITS_SAVED_PER_NUM {
    Some(bits_saved_per_num)
  } else {
    None
  }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub(crate) struct FloatMultConfig<F: Float> {
  pub base: F,
  pub inv_base: F,
}

impl<F: Float> FloatMultConfig<F> {
  fn from_base(base: F) -> Self {
    Self {
      base,
      inv_base: base.inv(),
    }
  }

  fn from_inv_base(inv_base: F) -> Self {
    Self {
      base: inv_base.inv(),
      inv_base,
    }
  }
}

fn choose_config<F: Float>(sample: &[F]) -> Option<FloatMultConfig<F>> {
  choose_config_by_trailing_zeros(sample).or_else(|| choose_config_by_euclidean(sample))
}

pub(crate) fn compute_bid<F: Float>(sample: &[F]) -> Option<Bid<F>> {
  choose_config(sample).and_then(|config| {
    let bits_saved_per_num = bits_saved_per_num_over_classic(config, sample)?;
    Some(Bid {
      mode: Mode::float_mult(config.base),
      bits_saved_per_num,
      split_fn: Box::new(move |nums| split_latents(nums, config)),
    })
  })
}

#[cfg(test)]
mod test {
  use std::f32::consts::TAU;

  use rand::{Rng, SeedableRng};
  use rand_xoshiro::Xoroshiro128PlusPlus;

  use crate::data_types::Number;

  use super::*;

  fn assert_almost_equal_ulps(a: f32, b: f32, ulps_tolerance: u32, desc: &str) {
    let (a, b) = (a.to_latent_ordered(), b.to_latent_ordered());
    let udiff = max(a, b) - min(a, b);
    assert!(
      udiff <= ulps_tolerance,
      "{} far from {}; {}",
      a,
      b,
      desc,
    );
  }

  fn assert_almost_equal(a: f32, b: f32, abs_tolerance: f32, desc: &str) {
    let diff = (a - b).abs();
    assert!(
      diff <= abs_tolerance,
      "{} far from {}; {}",
      a,
      b,
      desc,
    );
  }

  fn plus_epsilons(a: f32, epsilons: i32) -> f32 {
    f32::from_latent_ordered(a.to_latent_ordered().wrapping_add(epsilons as u32))
  }

  fn better_compression_than_classic<F: Float>(config: FloatMultConfig<F>, sample: &[F]) -> bool {
    bits_saved_per_num_over_classic(config, sample)
      .is_some_and(|bits_saved| bits_saved >= MULT_REQUIRED_BITS_SAVED_PER_NUM)
  }

  #[test]
  fn test_near_zero() {
    assert_eq!(
      insignificant_float_to(1.0_f64),
      1.0 / ((1_u64 << 46) as f64)
    );
    assert_eq!(
      insignificant_float_to(1.0_f32),
      1.0 / ((1_u64 << 17) as f32)
    );
    assert_eq!(
      insignificant_float_to(32.0_f32),
      1.0 / ((1_u64 << 12) as f32)
    );
  }

  #[test]
  fn test_trailing_zeros() {
    assert_eq!(
      choose_config_by_trailing_zeros(&[0.0, 3.0, 6.0, 21.0, f32::exp2(100.0)].repeat(5)).unwrap(),
      FloatMultConfig::from_base(3.0),
    )
  }

  #[test]
  fn test_approx_pair_gcd() {
    assert_eq!(approx_pair_gcd(0.0, 0.0), None);
    assert_eq!(approx_pair_gcd(1.0, 0.0), None);
    assert_eq!(approx_pair_gcd(1.0, 1.0), None);
    assert_eq!(approx_pair_gcd(1.0, 2.0), Some(1.0));
    assert_eq!(approx_pair_gcd(6.0, 3.0), Some(3.0));
    assert_eq!(
      approx_pair_gcd(10.01_f64, 0.009999999999999787_f64),
      Some(0.009999999999999787)
    );
    assert_eq!(approx_pair_gcd(2.0_f32.powi(100), 3.0), None);
    assert_eq!(
      approx_pair_gcd(
        f32::MAX_FOR_SAMPLING,
        f32::MAX_FOR_SAMPLING * 0.6
      ),
      Some(f32::MAX_FOR_SAMPLING * 0.2)
    );
    assert_eq!(
      approx_pair_gcd(f32::MAX_FOR_SAMPLING, 0.0000000000001),
      None
    );
    assert_almost_equal_ulps(
      approx_pair_gcd(1.0 / 3.0, 1.0 / 4.0).unwrap(),
      1.0 / 12.0,
      1,
      "1/3 gcd 1/4",
    );
  }

  #[test]
  fn test_candidate_euclidean() {
    let mut nums = vec![0.0, 2.0_f32.powi(-100), 0.0037, 1.0001].repeat(5);
    nums.push(f32::MAX);
    assert_almost_equal(
      choose_config_by_euclidean(&nums).unwrap().base,
      1.0E-4,
      1.0E-6,
      "10^-4 adverse",
    );
  }

  #[test]
  fn test_gcd_euclidean() {
    let nums = vec![0.0, 2.0_f32.powi(-100), 0.0037, 1.0001, f32::MAX].repeat(5);
    assert_almost_equal(
      approx_sample_gcd_euclidean(&nums).unwrap(),
      1.0E-4,
      1.0E-6,
      "10^-4 adverse",
    );

    let nums = vec![0.0, 2.0_f32.powi(-100), 0.0037, 0.0049, 1.0001, f32::MAX].repeat(5);
    assert_almost_equal(
      approx_sample_gcd_euclidean(&nums).unwrap(),
      1.0E-4,
      1.0E-9,
      "10^-4",
    );

    let mut nums = Vec::new();
    let mut rng = Xoroshiro128PlusPlus::seed_from_u64(0);
    for _ in 0..25 {
      nums.push(rng.gen_range(0.0..1.0_f32));
    }
    assert_eq!(approx_sample_gcd_euclidean(&nums), None);
  }

  #[test]
  fn test_center_gcd() {
    let nums = vec![6.0 / 7.0 - 1E-4, 16.0 / 7.0 + 1E-4, 18.0 / 7.0 - 1E-4];
    assert_almost_equal(
      center_sample_base(0.28, &nums),
      2.0 / 7.0,
      1E-4,
      "center",
    )
  }

  #[test]
  fn test_snap() {
    assert_eq!(
      snap_to_int_reciprocal(0.01000333),
      FloatMultConfig {
        base: 0.01,
        inv_base: 100.0
      }
    );
    assert_eq!(
      snap_to_int_reciprocal(0.009999666),
      FloatMultConfig {
        base: 0.01,
        inv_base: 100.0
      }
    );
    assert_eq!(
      snap_to_int_reciprocal(0.143),
      FloatMultConfig {
        base: 1.0 / 7.0,
        inv_base: 7.0,
      }
    );
    assert_eq!(
      snap_to_int_reciprocal(0.0105),
      FloatMultConfig {
        base: 0.0105,
        inv_base: 1.0 / 0.0105
      }
    );
    assert_eq!(snap_to_int_reciprocal(TAU).base, TAU);
  }

  #[test]
  fn test_float_mult_better_than_classic() {
    let config = FloatMultConfig::from_inv_base(10.0);
    let nums = vec![
      f32::NEG_INFINITY,
      -f32::NAN,
      -999.0,
      -0.3,
      0.0,
      0.1,
      0.2,
      0.3,
      0.3,
      0.4,
      0.5,
      0.6,
      0.7,
      f32::NAN,
      f32::INFINITY,
    ];
    assert!(better_compression_than_classic(
      config, &nums
    ));

    for n in [10, 1000] {
      let nums = (0..n)
        .map(|x| plus_epsilons((x as f32) * 0.1, x % 2))
        .collect::<Vec<_>>();
      assert!(
        better_compression_than_classic(config, &nums),
        "n={}",
        n
      );
    }
  }

  #[test]
  fn test_float_mult_worse_than_classic() {
    let config = FloatMultConfig::from_inv_base(10.0);
    for n in [10, 1000] {
      let nums = vec![0.1; n];
      assert!(
        !better_compression_than_classic(config, &nums),
        "n={}",
        n
      );

      let nums = (0..n).map(|x| (x as f32 + 1.0) * TAU).collect::<Vec<_>>();
      assert!(
        !better_compression_than_classic(config, &nums),
        "n={}",
        n
      );

      let nums = (0..n)
        // at this magnitude, each increment of `base` is only ~2 bits
        .map(|x| (x + 5_000_000) as f32 * 0.1)
        .collect::<Vec<_>>();
      assert!(
        !better_compression_than_classic(config, &nums),
        "n={}",
        n
      );
    }
  }

  #[test]
  fn test_float_mult_worse_than_classic_zeros() {
    let mut nums = vec![0.0_f32; 1000];
    let mut rng = rand_xoshiro::Xoroshiro128PlusPlus::seed_from_u64(0);
    let config = FloatMultConfig::from_inv_base(1E7);
    for _ in 0..1000 {
      nums.push(rng.gen_range(0.0..1.0));
    }
    assert!(!better_compression_than_classic(
      config, &nums
    ));
  }

  #[test]
  fn test_choose_config_and_bid() {
    let mut sevenths = Vec::new();
    let mut ones = Vec::new();
    let mut noisy_decimals = Vec::new();
    let mut junk = Vec::new();
    for i in 0..1000 {
      sevenths.push(((i % 50) - 20) as f32 * (1.0 / 7.0));
      ones.push(1.0);
      noisy_decimals.push(plus_epsilons(
        0.1 * ((i - 100) as f32),
        -7 + i % 15,
      ));
      junk.push((i as f32).sin());
    }

    let sevenths_sample = &sevenths[..50];

    assert_eq!(
      choose_config(&sevenths),
      Some(FloatMultConfig {
        base: 1.0 / 7.0,
        inv_base: 7.0,
      })
    );
    assert_eq!(
      choose_config(&ones),
      Some(FloatMultConfig {
        base: 1.0,
        inv_base: 1.0,
      })
    );
    assert_eq!(
      choose_config(&noisy_decimals),
      Some(FloatMultConfig {
        base: 1.0 / 10.0,
        inv_base: 10.0,
      })
    );
    // just check this last one terminates
    let mut big_nums = vec![f32::MAX; 10];
    big_nums.resize(20, f32::MAX * 0.6);
    choose_config(&big_nums);

    assert!(compute_bid(sevenths_sample).is_some());
    // not enough distinct mults
    assert!(compute_bid(&ones).is_none());
    assert!(compute_bid(&junk).is_none());
  }
}