1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
use num_traits::Zero; use std::collections::{BinaryHeap, HashMap}; use std::collections::hash_map::Entry::{Occupied, Vacant}; use std::hash::Hash; use super::{InvCmpHolder, reverse_path}; /// Compute a shortest path using the [A* search /// algorithm](https://en.wikipedia.org/wiki/A*_search_algorithm). /// /// The shortest path starting from `start` up to a node for which `success` returns `true` is /// computed and returned along with its total cost, in a `Some`. If no path can be found, `None` /// is returned instead. /// /// - `start` is the starting node. /// - `neighbours` returns a list of neighbours for a given node, along with the cost for moving /// from the node to the neighbour. /// - `heuristic` returns an approximation of the cost from a given node to the goal. The /// approximation must not be greater than the real cost, or a wrong shortest path may be returned. /// - `success` checks whether the goal has been reached. It is not a node as some problems require /// a dynamic solution instead of a fixed node. /// /// A node will never be included twice in the path as determined by the `Eq` relationship. /// /// The returned path comprises both the start and end node. /// /// # Example /// /// We will search the shortest path on a chess board to go from (1, 1) to (4, 6) doing only knight /// moves. /// /// The first version uses an explicit type `Pos` on which the required traits are derived. /// /// ``` /// use pathfinding::astar; /// /// #[derive(Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)] /// struct Pos(i32, i32); /// /// impl Pos { /// fn distance(&self, other: &Pos) -> usize { /// ((self.0 - other.0).abs() + (self.1 - other.1).abs()) as usize /// } /// /// fn neighbours(&self) -> Vec<(Pos, usize)> { /// let &Pos(x, y) = self; /// vec![Pos(x+1,y+2), Pos(x+1,y-2), Pos(x-1,y+2), Pos(x-1,y-2), /// Pos(x+2,y+1), Pos(x+2,y-1), Pos(x-2,y+1), Pos(x-2,y-1)] /// .into_iter().map(|p| (p, 1)).collect() /// } /// } /// /// static GOAL: Pos = Pos(4, 6); /// let result = astar(&Pos(1, 1), |p| p.neighbours(), |p| p.distance(&GOAL) / 3, /// |p| *p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` /// /// The second version does not declare a `Pos` type, makes use of more closures, /// and is thus shorter. /// /// ``` /// use pathfinding::astar; /// /// static GOAL: (i32, i32) = (4, 6); /// let result = astar(&(1, 1), /// |&(x, y)| vec![(x+1,y+2), (x+1,y-2), (x-1,y+2), (x-1,y-2), /// (x+2,y+1), (x+2,y-1), (x-2,y+1), (x-2,y-1)] /// .into_iter().map(|p| (p, 1)), /// |&(x, y)| ((x-GOAL.0).abs() + (y-GOAL.0).abs()) / 3, /// |&p| p == GOAL); /// assert_eq!(result.expect("no path found").1, 4); /// ``` pub fn astar<N, C, FN, IN, FH, FS>(start: &N, neighbours: FN, heuristic: FH, success: FS) -> Option<(Vec<N>, C)> where N: Eq + Hash + Clone, C: Zero + Ord + Copy, FN: Fn(&N) -> IN, IN: IntoIterator<Item = (N, C)>, FH: Fn(&N) -> C, FS: Fn(&N) -> bool { let mut to_see = BinaryHeap::new(); to_see.push(InvCmpHolder { key: heuristic(start), payload: (Zero::zero(), start.clone()), }); let mut parents: HashMap<N, (N, C)> = HashMap::new(); while let Some(InvCmpHolder { payload: (cost, node), .. }) = to_see.pop() { if success(&node) { let parents = parents.into_iter().map(|(n, (p, _))| (n, p)).collect(); return Some((reverse_path(parents, node), cost)); } // We may have inserted a node several time into the binary heap if we found // a better way to access it. Ensure that we are currently dealing with the // best path and discard the others. if let Some(&(_, c)) = parents.get(&node) { if cost > c { continue; } } for (neighbour, move_cost) in neighbours(&node) { let new_cost = cost + move_cost; if neighbour != *start { let mut inserted = true; match parents.entry(neighbour.clone()) { Vacant(e) => { e.insert((node.clone(), new_cost)); } Occupied(mut e) => { if e.get().1 > new_cost { e.insert((node.clone(), new_cost)); } else { inserted = false; } } }; if inserted { let new_predicted_cost = new_cost + heuristic(&neighbour); to_see.push(InvCmpHolder { key: new_predicted_cost, payload: (new_cost, neighbour), }); } } } } None }