parsql-postgres 0.4.0

Parsql için postgresql entegrasyonunu sağlayan küfedir.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# parsql-postgres

PostgreSQL integration crate for parsql. This package provides **synchronous** APIs that enable parsql to work with PostgreSQL databases.

## Features

- Synchronous PostgreSQL operations
- Automatic SQL query generation
- Secure parameter management
- Generic CRUD operations (get, insert, update, delete)
- Extension methods for the Client object
- Transaction support
- Conversion of database rows to structs
- Automatic protection against SQL Injection attacks

## Security Features

### SQL Injection Protection

parsql-postgres is designed to be secure against SQL Injection attacks:

- All user inputs are automatically parameterized
- PostgreSQL's "$1, $2, ..." parameterization structure is used automatically
- Macros process SQL parameters securely, providing protection against injection attacks
- Parameters are automatically managed to ensure correct order and type
- User inputs in `#[where_clause]` and other SQL components are always parameterized

```rust
// SQL injection protection example
#[derive(Queryable, FromRow, SqlParams)]
#[table("users")]
#[where_clause("username = $ AND status = $")]
struct UserQuery {
    username: String,
    status: i32,
}

// User input (potentially harmful) is used safely
let query = UserQuery {
    username: user_input, // This value is not directly inserted into SQL, it's parameterized
    status: 1,
};

// Generated query: "SELECT * FROM users WHERE username = $1 AND status = $2"
// Parameters are safely sent as: [user_input, 1]
let user = get(&conn, query)?;
```

## Installation

Add to your Cargo.toml file as follows:

```toml
[dependencies]
parsql = { version = "0.4.0", features = ["postgres"] }
```

## Usage

You can work with parsql-postgres using two different approaches:

### 1. Function-Based Approach

```rust
use postgres::{Client, NoTls};
use parsql::postgres::{get, insert};
use parsql::macros::{Insertable, SqlParams, Queryable, FromRow};

#[derive(Insertable, SqlParams)]
#[table("users")]
struct InsertUser {
    name: String,
    email: String,
}

#[derive(Queryable, FromRow, SqlParams)]
#[table("users")]
#[where_clause("id = $1")]
struct GetUser {
    id: i32,
    name: String,
    email: String,
}

fn main() -> Result<(), postgres::Error> {
    let mut client = Client::connect("host=localhost user=postgres", NoTls)?;
    
    // Adding a user with the function approach
    let insert_user = InsertUser {
        name: "John".to_string(),
        email: "john@example.com".to_string(),
    };
    let inserted_record_id = client.insert::<InsertUser, i64>(insert_user)?;
    
    // Getting a user with the function approach
    let get_user = GetUser {
        id: 1,
        name: String::new(),
        email: String::new(),
    };
    let user = get(&mut client, &get_user)?;
    
    println!("User: {:?}", user);
    Ok(())
}
```

### 2. Extension Method Approach (CrudOps Trait)

With this approach, you can call CRUD operations directly on the `Client` object thanks to the `CrudOps` trait:

```rust
use postgres::{Client, NoTls};
use parsql::postgres::CrudOps;  // Import the CrudOps trait
use parsql::macros::{Insertable, SqlParams, Queryable, FromRow};

#[derive(Insertable, SqlParams)]
#[table("users")]
struct InsertUser {
    name: String,
    email: String,
}

#[derive(Queryable, FromRow, SqlParams)]
#[table("users")]
#[where_clause("id = $1")]
struct GetUser {
    id: i32,
    name: String,
    email: String,
}

fn main() -> Result<(), postgres::Error> {
    let mut client = Client::connect("host=localhost user=postgres", NoTls)?;
    
    // Adding a user with the extension method approach
    let insert_user = InsertUser {
        name: "John".to_string(),
        email: "john@example.com".to_string(),
    };
    let rows_affected = client.insert::<InsertUser, i64>(insert_user)?;
    
    // Getting a user with the extension method approach
    let get_user = GetUser {
        id: 1,
        name: String::new(),
        email: String::new(),
    };
    let user = client.get(&get_user)?;
    
    println!("User: {:?}", user);
    Ok(())
}
```

The extension method approach makes your code more readable and fluid, especially in situations where multiple CRUD operations are performed at the same time.

## Basic Usage

This package uses **synchronous operations** when working with PostgreSQL databases. This means it doesn't require async/await usage like tokio-postgres.

### Establishing a Connection

```rust
use postgres::{Client, NoTls, Error};

fn main() -> Result<(), Error> {
    // Create PostgreSQL connection
    let mut client = Client::connect(
        "host=localhost user=postgres password=postgres dbname=test",
        NoTls,
    )?;
    
    // Create example table
    client.execute(
        "CREATE TABLE IF NOT EXISTS users (
            id SERIAL PRIMARY KEY,
            name TEXT NOT NULL,
            email TEXT NOT NULL,
            state SMALLINT NOT NULL
        )",
        &[],
    )?;
    
    // ...
    
    Ok(())
}
```

## CRUD Operations

### Reading Data (Get)

```rust
use parsql::{
    core::Queryable,
    macros::{FromRow, Queryable, SqlParams},
    postgres::{FromRow, SqlParams, get},
};
use postgres::{types::ToSql, Row};

#[derive(Queryable, FromRow, SqlParams, Debug)]
#[table("users")]
#[where_clause("id = $")]
pub struct GetUser {
    pub id: i64,
    pub name: String,
    pub email: String,
    pub state: i16,
}

impl GetUser {
    pub fn new(id: i64) -> Self {
        Self {
            id,
            name: Default::default(),
            email: Default::default(),
            state: Default::default(),
        }
    }
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = Client::connect(
        "host=localhost user=postgres password=postgres dbname=test",
        NoTls,
    )?;
    
    // Usage
    let get_user = GetUser::new(1);
    let get_result = client.fetch(get_user)?;
    
    println!("User: {:?}", get_result);
    Ok(())
}
```

### Adding Data (Insert)

```rust
use parsql::{
    core::Insertable,
    macros::{Insertable, SqlParams},
    postgres::{SqlParams, insert},
};
use postgres::types::ToSql;

#[derive(Insertable)]
#[table("users")]
pub struct InsertUser {
    pub name: String,
    pub email: String,
    pub state: i16,
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = Client::connect(
        "host=localhost user=postgres password=postgres dbname=test",
        NoTls,
    )?;
    
    let insert_user = InsertUser {
        name: "Ali".to_string(),
        email: "ali@parsql.com".to_string(),
        state: 1,
    };
    
    let insert_result = client.insert::<InsertUser, i64>(&mut client, insert_user)?;
    println!("Inserted record ID: {}", insert_result);
    
    Ok(())
}
```

### Updating Data (Update)

```rust
use parsql::{
    core::Updateable,
    macros::{UpdateParams, Updateable},
    postgres::{UpdateParams, update},
};
use postgres::types::ToSql;

#[derive(Updateable, UpdateParams)]
#[table("users")]
#[update("name, email")]
#[where_clause("id = $")]
pub struct UpdateUser {
    pub id: i64,
    pub name: String,
    pub email: String,
    pub state: i16,
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = Client::connect(
        "host=localhost user=postgres password=postgres dbname=test",
        NoTls,
    )?;
    
    let update_user = UpdateUser {
        id: 1,
        name: String::from("Ali Updated"),
        email: String::from("ali.updated@gmail.com"),
        state: 2,
    };
    
    let result = client.update(update_user)?;
    println!("Number of records updated: {}", result);
    
    Ok(())
}
```

### Deleting Data (Delete)

```rust
use parsql::{
    core::Deletable,
    macros::{Deletable, SqlParams},
    postgres::{SqlParams, delete},
};
use postgres::types::ToSql;

#[derive(Deletable, SqlParams)]
#[table("users")]
#[where_clause("id = $")]
pub struct DeleteUser {
    pub id: i64,
}

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let mut client = Client::connect(
        "host=localhost user=postgres password=postgres dbname=test",
        NoTls,
    )?;
    
    let delete_user = DeleteUser { id: 1 };
    let result = client.delete(delete_user)?;
    
    println!("Number of records deleted: {}", result);
    Ok(())
}
```

## Using Transactions

parsql-postgres supports transactions in two different ways:

### 1. Using CrudOps Trait with Transaction

With this approach, the `CrudOps` trait is implemented for the `Transaction` struct, allowing you to perform CRUD operations directly on the transaction object:

```rust
use postgres::{Client, NoTls};
use parsql::postgres::CrudOps;  // Import the CrudOps trait
use parsql::macros::{Insertable, SqlParams, Updateable, UpdateParams};

#[derive(Insertable, SqlParams)]
#[table("users")]
struct InsertUser {
    name: String,
    email: String,
}

#[derive(Updateable, UpdateParams)]
#[table("users")]
#[update("email")]
#[where_clause("id = $")]
struct UpdateUser {
    id: i32,
    email: String,
}

fn main() -> Result<(), postgres::Error> {
    let mut client = Client::connect("host=localhost user=postgres", NoTls)?;
    
    // Start a transaction
    let mut tx = client.transaction()?;
    
    // Use CrudOps methods directly on the transaction
    let insert_user = InsertUser {
        name: "John".to_string(),
        email: "john@example.com".to_string(),
    };
    let rows_affected = tx.insert(insert_user)?;
    
    let update_user = UpdateUser {
        id: 1,
        email: "john.updated@example.com".to_string(),
    };
    let rows_updated = tx.update(update_user)?;
    
    // Commit the transaction
    tx.commit()?;
    Ok(())
}
```

### 2. Using Transaction Helper Functions

With this approach, you can use helper functions from the `transactional` module to perform operations with method chaining:

```rust
use postgres::{Client, NoTls};
use parsql::postgres::transactional::{begin, tx_insert, tx_update};
use parsql::macros::{Insertable, SqlParams, Updateable, UpdateParams};

#[derive(Insertable, SqlParams)]
#[table("users")]
struct InsertUser {
    name: String,
    email: String,
}

#[derive(Updateable, UpdateParams)]
#[table("users")]
#[update("email")]
#[where_clause("id = $")]
struct UpdateUser {
    id: i32,
    email: String,
}

fn main() -> Result<(), postgres::Error> {
    let mut client = Client::connect("host=localhost user=postgres", NoTls)?;
    
    // Begin a transaction
    let tx = begin(&mut client)?;
    
    // Chain transaction operations
    let insert_user = InsertUser {
        name: "John".to_string(),
        email: "john@example.com".to_string(),
    };
    
    let (tx, _) = tx_insert(tx, insert_user)?;
    
    let update_user = UpdateUser {
        id: 1,
        email: "john.updated@example.com".to_string(),
    };
    
    let (tx, _) = tx_update(tx, update_user)?;
    
    // Commit the transaction
    tx.commit()?;
    Ok(())
}
```

This approach enhances code readability, especially when performing multiple operations within a transaction, as it ensures the transaction object is continuously available through the chain of operations.

## Complete Example with Transactions

Here's a more comprehensive example demonstrating transaction usage:

```rust
use postgres::{Client, NoTls, Error};
use parsql::postgres::CrudOps;
use parsql::postgres::transactional::{begin, tx_insert, tx_update};
use parsql::macros::{Insertable, SqlParams, Updateable, UpdateParams, Queryable, FromRow};

#[derive(Insertable, SqlParams)]
#[table("users")]
struct InsertUser {
    name: String,
    email: String,
    status: i16,
}

#[derive(Updateable, UpdateParams)]
#[table("users")]
#[update("status")]
#[where_clause("id = $")]
struct UpdateUserStatus {
    id: i32,
    status: i16,
}

#[derive(Queryable, FromRow, SqlParams)]
#[table("users")]
#[where_clause("id = $")]
struct GetUser {
    id: i32,
    name: String,
    email: String,
    status: i16,
}

fn main() -> Result<(), Error> {
    let mut client = Client::connect(
        "host=localhost user=postgres dbname=test",
        NoTls,
    )?;
    
    // Create table if not exists
    client.execute(
        "CREATE TABLE IF NOT EXISTS users (
            id SERIAL PRIMARY KEY,
            name TEXT NOT NULL,
            email TEXT NOT NULL,
            status SMALLINT NOT NULL
        )",
        &[],
    )?;
    
    // Method 1: Using CrudOps trait with Transaction
    {
        let mut tx = client.transaction()?;
        
        let insert_user = InsertUser {
            name: "Alice".to_string(),
            email: "alice@example.com".to_string(),
            status: 1,
        };
        
        tx.insert(insert_user)?;
        
        let update_status = UpdateUserStatus {
            id: 1,
            status: 2,
        };
        
        tx.update(update_status)?;
        
        // Commit the transaction
        tx.commit()?;
    }
    
    // Method 2: Using transactional helper functions
    {
        let tx = begin(&mut client)?;
        
        let insert_user = InsertUser {
            name: "Bob".to_string(),
            email: "bob@example.com".to_string(),
            status: 1,
        };
        
        let (tx, _) = tx_insert(tx, insert_user)?;
        
        let update_status = UpdateUserStatus {
            id: 2,
            status: 3,
        };
        
        let (tx, _) = tx_update(tx, update_status)?;
        
        // Commit the transaction
        tx.commit()?;
    }
    
    // Verify the results
    let get_alice = GetUser {
        id: 1,
        name: String::new(),
        email: String::new(),
        status: 0,
    };
    
    let alice = client.get(&get_alice)?;
    println!("Alice: {:?}", alice);
    
    let get_bob = GetUser {
        id: 2,
        name: String::new(),
        email: String::new(),
        status: 0,
    };
    
    let bob = client.get(&get_bob)?;
    println!("Bob: {:?}", bob);
    
    Ok(())
}
```

This example shows both transaction approaches and how they can be used for complex database operations with multiple steps that need to be atomic.

## Advanced Features

### Using Joins

```rust
#[derive(Queryable, FromRow, SqlParams, Debug)]
#[table("users")]
#[select("users.id, users.name, posts.title as post_title")]
#[join("LEFT JOIN posts ON users.id = posts.user_id")]
#[where_clause("users.id = $")]
pub struct UserWithPosts {
    pub id: i64,
    pub name: String,
    pub post_title: Option<String>,
}
```

### Grouping and Ordering

```rust
#[derive(Queryable, FromRow, SqlParams, Debug)]
#[table("users")]
#[select("state, COUNT(*) as user_count")]
#[group_by("state")]
#[order_by("user_count DESC")]
#[having("COUNT(*) > 5")]
pub struct UserStats {
    pub state: i16,
    pub user_count: i64,
}
```

### Custom Select Statements

```rust
#[derive(Queryable, FromRow, SqlParams, Debug)]
#[table("users")]
#[select("id, name, email, CASE WHEN state = 1 THEN 'Active' ELSE 'Inactive' END as status")]
#[where_clause("id = $")]
pub struct UserWithStatus {
    pub id: i64,
    pub name: String,
    pub email: String,
    pub status: String,
}
```

## SQL Query Tracing

To see the SQL queries being generated, you can set the `PARSQL_TRACE` environment variable:

```sh
PARSQL_TRACE=1 cargo run
```

This will print all queries generated for postgres to the console.

## Differences from Tokio-Postgres

The most important difference in this package is that it uses a **synchronous** API, unlike the tokio-postgres package:

1. **Synchronous Operations**: This package doesn't use async/await and performs synchronous operations.
2. **Client Reference**: You need to pass the client to functions as `&mut client`.
3. **No Tokio Runtime Required**: You can use it without needing a Tokio runtime.

## Performance Tips

1. **Prepared Statements**: postgres runs queries as prepared statements, and parsql uses this feature, which helps protect against SQL injection attacks.

2. **Batch Operations**: Perform multiple operations within a Transaction:

   ```rust
   let mut tx = client.transaction()?;
   // Perform your operations here
   tx.commit()?;
   ```

## Error Handling

Use Rust's `Result` mechanism to catch and handle errors that may occur during operations:

```rust
match get(&mut client, get_user) {
    Ok(user) => println!("User found: {:?}", user),
    Err(e) => eprintln!("Error occurred: {}", e),
}
```

## Complete Example Project

For a complete example project, see the [examples/postgres](../examples/postgres) directory in the main parsql repository.