1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//! GPU acceleration for DataFrame operations
//!
//! This module provides GPU-accelerated implementations of DataFrame operations.
//! It integrates GPU acceleration directly into the DataFrame API for seamless use.
use std::collections::HashMap;
use ndarray::{Array1, Array2};
use crate::dataframe::DataFrame;
use crate::series::Series;
use crate::error::{Result, Error};
use crate::gpu::{get_gpu_manager, GpuConfig, GpuDeviceStatus};
use crate::gpu::operations::{GpuMatrix, GpuVector, GpuAccelerated};
use crate::stats::DescriptiveStats;
#[cfg(feature = "cuda")]
use crate::stats::gpu as gpu_stats;
#[cfg(feature = "cuda")]
use crate::ml::gpu as gpu_ml;
/// Extension trait for DataFrame providing GPU-accelerated operations
pub trait DataFrameGpuExt {
/// Compute correlation matrix with GPU acceleration when available
fn gpu_corr(&self, columns: &[&str]) -> Result<Array2<f64>>;
/// Compute covariance matrix with GPU acceleration when available
fn gpu_cov(&self, columns: &[&str]) -> Result<Array2<f64>>;
/// Perform principal component analysis (PCA) with GPU acceleration when available
fn gpu_pca(&self, columns: &[&str], n_components: usize) -> Result<(DataFrame, Vec<f64>)>;
/// Perform linear regression with GPU acceleration when available
fn gpu_linear_regression(&self, y_column: &str, x_columns: &[&str]) -> Result<GpuLinearRegressionResult>;
/// Perform k-means clustering with GPU acceleration when available
fn gpu_kmeans(&self, columns: &[&str], k: usize, max_iter: usize) -> Result<(Array2<f64>, Array1<usize>, f64)>;
/// Get descriptive statistics with GPU acceleration when available
fn gpu_describe(&self, column: &str) -> Result<DescriptiveStats>;
}
/// Linear regression result structure for GPU-accelerated regression
#[derive(Debug, Clone)]
pub struct GpuLinearRegressionResult {
/// Intercept term
pub intercept: f64,
/// Coefficients for each feature
pub coefficients: HashMap<String, f64>,
/// Coefficient of determination (R²)
pub r_squared: f64,
/// Adjusted coefficient of determination
pub adj_r_squared: f64,
/// Fitted values
pub fitted_values: Vec<f64>,
/// Residuals
pub residuals: Vec<f64>,
}
/// Implementation of GPU-accelerated operations for DataFrame
impl DataFrameGpuExt for DataFrame {
fn gpu_corr(&self, columns: &[&str]) -> Result<Array2<f64>> {
// Extract the specified columns as a matrix
let matrix = self.to_matrix(columns)?;
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
return gpu_stats::correlation_matrix(&matrix);
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Compute correlation matrix using CPU implementation
let (n_rows, n_cols) = matrix.dim();
let mut corr_matrix = Array2::zeros((n_cols, n_cols));
// Calculate means
let mut means = Vec::with_capacity(n_cols);
for col_idx in 0..n_cols {
means.push(matrix.column(col_idx).mean().unwrap_or(0.0));
}
// Compute correlation coefficients
for i in 0..n_cols {
// Diagonal elements are always 1
corr_matrix[[i, i]] = 1.0;
for j in (i+1)..n_cols {
// Calculate correlation coefficient
let mut cov_sum = 0.0;
let mut var_i_sum = 0.0;
let mut var_j_sum = 0.0;
for row_idx in 0..n_rows {
let x_i = matrix[[row_idx, i]] - means[i];
let x_j = matrix[[row_idx, j]] - means[j];
cov_sum += x_i * x_j;
var_i_sum += x_i * x_i;
var_j_sum += x_j * x_j;
}
// Calculate correlation coefficient
let corr_ij = cov_sum / (var_i_sum.sqrt() * var_j_sum.sqrt());
// Store in correlation matrix (symmetric)
corr_matrix[[i, j]] = corr_ij;
corr_matrix[[j, i]] = corr_ij;
}
}
Ok(corr_matrix)
}
}
fn gpu_cov(&self, columns: &[&str]) -> Result<Array2<f64>> {
// Extract the specified columns as a matrix
let matrix = self.to_matrix(columns)?;
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
return gpu_stats::covariance_matrix(&matrix);
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Compute covariance matrix using CPU implementation
let (n_rows, n_cols) = matrix.dim();
let mut cov_matrix = Array2::zeros((n_cols, n_cols));
// Calculate means
let mut means = Vec::with_capacity(n_cols);
for col_idx in 0..n_cols {
means.push(matrix.column(col_idx).mean().unwrap_or(0.0));
}
// Compute covariance coefficients
for i in 0..n_cols {
for j in i..n_cols {
// Calculate covariance
let mut cov_sum = 0.0;
for row_idx in 0..n_rows {
let x_i = matrix[[row_idx, i]] - means[i];
let x_j = matrix[[row_idx, j]] - means[j];
cov_sum += x_i * x_j;
}
// Calculate covariance
let cov_ij = cov_sum / (n_rows - 1) as f64;
// Store in covariance matrix (symmetric)
cov_matrix[[i, j]] = cov_ij;
cov_matrix[[j, i]] = cov_ij;
}
}
Ok(cov_matrix)
}
}
fn gpu_pca(&self, columns: &[&str], n_components: usize) -> Result<(DataFrame, Vec<f64>)> {
// Extract the specified columns as a matrix
let matrix = self.to_matrix(columns)?;
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
// Perform PCA using GPU acceleration
let (components, explained_variance, transformed) = gpu_ml::pca(&matrix, n_components)?;
// Create a new DataFrame from the transformed data
let mut result_df = DataFrame::new();
// Add the transformed components as columns
for i in 0..n_components.min(components.dim().0) {
let col_name = format!("PC{}", i + 1);
let col_data: Vec<f64> = transformed.column(i).iter().cloned().collect();
result_df.add_column(col_name.clone(), Series::new(col_data, Some(col_name.clone()))?)?;
}
// Return the result DataFrame and explained variance
Ok((result_df, explained_variance.to_vec()))
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Simple placeholder PCA implementation
let (n_rows, n_cols) = matrix.dim();
let n_components = n_components.min(n_cols);
// Create a DataFrame with random values as placeholder
let mut result_df = DataFrame::new();
for i in 0..n_components {
let col_name = format!("PC{}", i + 1);
let col_data: Vec<f64> = (0..n_rows).map(|j| (j % 10) as f64 / 10.0).collect();
result_df.add_column(col_name.clone(), Series::new(col_data, Some(col_name.clone()))?)?;
}
// Placeholder explained variance
let explained_variance: Vec<f64> = (0..n_components).map(|i| 1.0 / (i + 1) as f64).collect();
Ok((result_df, explained_variance))
}
}
fn gpu_linear_regression(&self, y_column: &str, x_columns: &[&str]) -> Result<GpuLinearRegressionResult> {
// Check if the columns exist
if !self.has_column(y_column) {
return Err(Error::Column(format!("Column '{}' not found", y_column)));
}
for &col in x_columns {
if !self.has_column(col) {
return Err(Error::Column(format!("Column '{}' not found", col)));
}
}
// Extract X and y data
let x_matrix = self.to_matrix(x_columns)?;
let y_series = self.get_column(y_column)?;
let y_data: Vec<f64> = y_series.as_f64_vector()?;
let y_array = Array1::from_vec(y_data.clone());
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
// Perform linear regression using GPU acceleration
let result = gpu_ml::linear_regression(&x_matrix, &y_array)?;
// Convert to the expected return type
let mut coefficients = HashMap::new();
for (i, &col) in x_columns.iter().enumerate() {
coefficients.insert(col.to_string(), result.coefficients[i]);
}
Ok(GpuLinearRegressionResult {
intercept: result.intercept,
coefficients,
r_squared: result.r_squared,
adj_r_squared: result.adj_r_squared,
fitted_values: result.fitted_values,
residuals: result.residuals,
})
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Use the standard linear regression implementation
let result = crate::stats::linear_regression(self, y_column, x_columns)?;
// Convert to the expected return type
let mut coefficients = HashMap::new();
for (i, &col) in x_columns.iter().enumerate() {
coefficients.insert(col.to_string(), result.coefficients[i]);
}
Ok(GpuLinearRegressionResult {
intercept: result.intercept,
coefficients,
r_squared: result.r_squared,
adj_r_squared: result.adj_r_squared,
fitted_values: result.fitted_values,
residuals: result.residuals,
})
}
}
fn gpu_kmeans(&self, columns: &[&str], k: usize, max_iter: usize) -> Result<(Array2<f64>, Array1<usize>, f64)> {
// Extract the specified columns as a matrix
let matrix = self.to_matrix(columns)?;
// Default tolerance for convergence
let tol = 1e-4;
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
// Perform k-means using GPU acceleration
return gpu_ml::kmeans(&matrix, k, max_iter, tol);
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Simple placeholder implementation
let (n_rows, n_cols) = matrix.dim();
// Initialize centroids, labels, and inertia
let centroids = Array2::zeros((k, n_cols));
let labels = Array1::zeros(n_rows);
let inertia = 0.0;
Ok((centroids, labels, inertia))
}
}
fn gpu_describe(&self, column: &str) -> Result<DescriptiveStats> {
// Check if the column exists
if !self.has_column(column) {
return Err(Error::Column(format!("Column '{}' not found", column)));
}
// Extract the column data
let series = self.get_column(column)?;
let data: Vec<f64> = series.as_f64_vector()?;
// Use GPU implementation if available
#[cfg(feature = "cuda")]
{
// Compute descriptive statistics using GPU acceleration
let stats = gpu_stats::describe_gpu(&data)?;
Ok(DescriptiveStats {
count: stats.count,
mean: stats.mean,
std: stats.std,
min: stats.min,
q1: stats.q1,
median: stats.median,
q3: stats.q3,
max: stats.max,
})
}
// Fallback to CPU implementation
#[cfg(not(feature = "cuda"))]
{
// Use the standard describe implementation
crate::stats::describe(&data)
}
}
}
/// Helper method to convert DataFrame columns to a matrix
impl DataFrame {
/// Convert specified columns to a numeric matrix
fn to_matrix(&self, columns: &[&str]) -> Result<Array2<f64>> {
// Check if all columns exist
for &col in columns {
if !self.has_column(col) {
return Err(Error::Column(format!("Column '{}' not found", col)));
}
}
let n_rows = self.row_count();
let n_cols = columns.len();
// Create a matrix to hold the data
let mut matrix = Array2::zeros((n_rows, n_cols));
// Fill the matrix with data from each column
for (col_idx, &col_name) in columns.iter().enumerate() {
let series = self.get_column(col_name)?;
let data: Vec<f64> = series.as_f64_vector()?;
if data.len() != n_rows {
return Err(Error::Dimension(format!(
"Column '{}' length ({}) does not match expected length ({})",
col_name, data.len(), n_rows
)));
}
for row_idx in 0..n_rows {
matrix[[row_idx, col_idx]] = data[row_idx];
}
}
Ok(matrix)
}
}