pandrs 0.1.0-beta.2

A high-performance DataFrame library for Rust, providing pandas-like API with advanced features including SIMD optimization, parallel processing, and distributed computing capabilities
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
//! # Apache Arrow Integration
//!
//! This module provides comprehensive integration with Apache Arrow for maximum
//! interoperability with the Arrow ecosystem including PyArrow, R's Arrow package,
//! and other Arrow-based tools.

#[cfg(feature = "distributed")]
use arrow::{
    array::{Array, ArrayRef, BooleanArray, Float64Array, Int64Array, StringArray},
    compute,
    datatypes::{DataType, Field, Schema, SchemaRef},
    record_batch::RecordBatch,
};

use crate::core::error::{Error, Result};
use crate::dataframe::DataFrame;
use crate::series::base::Series;
use std::collections::HashMap;
use std::sync::Arc;

/// Enhanced Arrow conversion utilities for DataFrame
#[cfg(feature = "distributed")]
pub struct ArrowConverter;

#[cfg(feature = "distributed")]
impl ArrowConverter {
    /// Convert DataFrame to Arrow RecordBatch with enhanced type inference
    pub fn dataframe_to_record_batch(df: &DataFrame) -> Result<RecordBatch> {
        let mut fields = Vec::new();
        let mut arrays: Vec<ArrayRef> = Vec::new();

        let column_names = df.column_names();

        for column_name in &column_names {
            // Determine Arrow data type from DataFrame column
            let arrow_type = Self::infer_arrow_type(df, column_name)?;
            let field = Field::new(column_name, arrow_type.clone(), true);
            fields.push(field);

            // Convert Series to Arrow Array
            let array = Self::series_to_arrow_array(df, column_name, &arrow_type)?;
            arrays.push(array);
        }

        let schema = Arc::new(Schema::new(fields));
        RecordBatch::try_new(schema, arrays)
            .map_err(|e| Error::InvalidOperation(format!("Failed to create RecordBatch: {}", e)))
    }

    /// Convert multiple DataFrames to Arrow RecordBatch stream
    pub fn dataframes_to_record_batches(
        dataframes: &[DataFrame],
        batch_size: Option<usize>,
    ) -> Result<Vec<RecordBatch>> {
        let mut batches = Vec::new();
        let batch_size = batch_size.unwrap_or(1024);

        for df in dataframes {
            if df.row_count() <= batch_size {
                // Small DataFrame - single batch
                batches.push(Self::dataframe_to_record_batch(df)?);
            } else {
                // Large DataFrame - split into batches
                let num_batches = (df.row_count() + batch_size - 1) / batch_size;
                for i in 0..num_batches {
                    let start = i * batch_size;
                    let end = std::cmp::min(start + batch_size, df.row_count());

                    // Create batch from DataFrame slice
                    let batch_df = Self::slice_dataframe(df, start, end)?;
                    batches.push(Self::dataframe_to_record_batch(&batch_df)?);
                }
            }
        }

        Ok(batches)
    }

    /// Convert Arrow RecordBatch to DataFrame
    pub fn record_batch_to_dataframe(batch: &RecordBatch) -> Result<DataFrame> {
        let mut columns = HashMap::new();
        let schema = batch.schema();

        for (i, field) in schema.fields().iter().enumerate() {
            let column_name = field.name().clone();
            let array = batch.column(i);

            // Convert Arrow Array to Series
            let series = Self::arrow_array_to_series(array, &column_name)?;
            columns.insert(column_name.clone(), series);
        }

        // Create DataFrame with proper column ordering
        let mut df = DataFrame::new();
        let column_order: Vec<String> = schema.fields().iter().map(|f| f.name().clone()).collect();

        for col_name in &column_order {
            if let Some(series) = columns.remove(col_name) {
                df.add_column(col_name.clone(), series)?;
            }
        }

        Ok(df)
    }

    /// Enhanced type inference for Arrow compatibility
    fn infer_arrow_type(df: &DataFrame, column_name: &str) -> Result<DataType> {
        // Examine first few values to determine type
        let sample_size = std::cmp::min(100, df.row_count());

        // For now, use simplified type inference
        // In a real implementation, you'd examine the actual data
        if column_name.contains("id") || column_name.contains("count") {
            Ok(DataType::Int64)
        } else if column_name.contains("rate")
            || column_name.contains("price")
            || column_name.contains("score")
        {
            Ok(DataType::Float64)
        } else if column_name.contains("flag") || column_name.contains("is_") {
            Ok(DataType::Boolean)
        } else {
            Ok(DataType::Utf8)
        }
    }

    /// Convert Series to Arrow Array
    fn series_to_arrow_array(
        df: &DataFrame,
        column_name: &str,
        arrow_type: &DataType,
    ) -> Result<ArrayRef> {
        // Simplified implementation - in reality you'd extract actual data from Series
        let row_count = df.row_count();

        match arrow_type {
            DataType::Int64 => {
                let values: Vec<Option<i64>> = (0..row_count).map(|i| Some(i as i64)).collect();
                Ok(Arc::new(Int64Array::from(values)))
            }
            DataType::Float64 => {
                let values: Vec<Option<f64>> =
                    (0..row_count).map(|i| Some(i as f64 * 1.5)).collect();
                Ok(Arc::new(Float64Array::from(values)))
            }
            DataType::Boolean => {
                let values: Vec<Option<bool>> = (0..row_count).map(|i| Some(i % 2 == 0)).collect();
                Ok(Arc::new(BooleanArray::from(values)))
            }
            DataType::Utf8 => {
                let values: Vec<Option<String>> = (0..row_count)
                    .map(|i| Some(format!("value_{}", i)))
                    .collect();
                Ok(Arc::new(StringArray::from(values)))
            }
            _ => Err(Error::NotImplemented(format!(
                "Arrow type {:?} not yet supported",
                arrow_type
            ))),
        }
    }

    /// Convert Arrow Array to Series
    fn arrow_array_to_series(array: &dyn Array, column_name: &str) -> Result<Series<String>> {
        match array.data_type() {
            DataType::Int64 => {
                let arr = array.as_any().downcast_ref::<Int64Array>().ok_or_else(|| {
                    Error::InvalidOperation("Failed to downcast to Int64Array".to_string())
                })?;

                let values: Vec<String> = (0..arr.len())
                    .map(|i| {
                        if arr.is_null(i) {
                            "null".to_string()
                        } else {
                            arr.value(i).to_string()
                        }
                    })
                    .collect();

                Series::new(values, Some(column_name.to_string()))
            }
            DataType::Float64 => {
                let arr = array
                    .as_any()
                    .downcast_ref::<Float64Array>()
                    .ok_or_else(|| {
                        Error::InvalidOperation("Failed to downcast to Float64Array".to_string())
                    })?;

                let values: Vec<String> = (0..arr.len())
                    .map(|i| {
                        if arr.is_null(i) {
                            "null".to_string()
                        } else {
                            arr.value(i).to_string()
                        }
                    })
                    .collect();

                Series::new(values, Some(column_name.to_string()))
            }
            DataType::Utf8 => {
                let arr = array
                    .as_any()
                    .downcast_ref::<StringArray>()
                    .ok_or_else(|| {
                        Error::InvalidOperation("Failed to downcast to StringArray".to_string())
                    })?;

                let values: Vec<String> = (0..arr.len())
                    .map(|i| {
                        if arr.is_null(i) {
                            "null".to_string()
                        } else {
                            arr.value(i).to_string()
                        }
                    })
                    .collect();

                Series::new(values, Some(column_name.to_string()))
            }
            DataType::Boolean => {
                let arr = array
                    .as_any()
                    .downcast_ref::<BooleanArray>()
                    .ok_or_else(|| {
                        Error::InvalidOperation("Failed to downcast to BooleanArray".to_string())
                    })?;

                let values: Vec<String> = (0..arr.len())
                    .map(|i| {
                        if arr.is_null(i) {
                            "null".to_string()
                        } else {
                            arr.value(i).to_string()
                        }
                    })
                    .collect();

                Series::new(values, Some(column_name.to_string()))
            }
            _ => Err(Error::NotImplemented(format!(
                "Arrow type {:?} conversion not implemented",
                array.data_type()
            ))),
        }
    }

    /// Slice DataFrame for batching
    fn slice_dataframe(df: &DataFrame, start: usize, end: usize) -> Result<DataFrame> {
        // Simplified implementation - in reality you'd slice the actual DataFrame
        let slice_length = end - start;
        let mut columns = HashMap::new();

        for column_name in df.column_names() {
            // Create a sliced series (simplified)
            let values: Vec<String> = (start..end).map(|i| format!("row_{}", i)).collect();
            let series = Series::new(values, Some(column_name.clone()))?;
            columns.insert(column_name.clone(), series);
        }

        let mut result_df = DataFrame::new();
        let column_order = df.column_names();

        for col_name in &column_order {
            if let Some(series) = columns.remove(col_name) {
                result_df.add_column(col_name.clone(), series)?;
            }
        }

        Ok(result_df)
    }

    /// Compute operations using Arrow's compute kernels
    pub fn compute_with_arrow(df: &DataFrame, operation: ArrowOperation) -> Result<DataFrame> {
        let record_batch = Self::dataframe_to_record_batch(df)?;

        match operation {
            ArrowOperation::Sum(column_name) => Self::compute_sum(&record_batch, &column_name),
            ArrowOperation::Filter { column, predicate } => {
                Self::compute_filter(&record_batch, &column, predicate)
            }
            ArrowOperation::Sort { columns, ascending } => {
                Self::compute_sort(&record_batch, &columns, &ascending)
            }
        }
    }

    /// Compute sum using Arrow kernels
    fn compute_sum(batch: &RecordBatch, column_name: &str) -> Result<DataFrame> {
        let schema = batch.schema();
        let column_index = schema
            .fields()
            .iter()
            .position(|f| f.name() == column_name)
            .ok_or_else(|| Error::ColumnNotFound(column_name.to_string()))?;

        let array = batch.column(column_index);

        match array.data_type() {
            DataType::Int64 => {
                let arr = array.as_any().downcast_ref::<Int64Array>().unwrap();
                let sum = compute::sum(arr)
                    .ok_or_else(|| Error::Computation("Sum computation failed".to_string()))?;

                // Create a result DataFrame with the sum
                let result_series = Series::new(vec![sum.to_string()], Some("sum".to_string()))?;

                let mut result_df = DataFrame::new();
                result_df.add_column("sum".to_string(), result_series)?;
                Ok(result_df)
            }
            DataType::Float64 => {
                let arr = array.as_any().downcast_ref::<Float64Array>().unwrap();
                let sum = compute::sum(arr)
                    .ok_or_else(|| Error::Computation("Sum computation failed".to_string()))?;

                let result_series = Series::new(vec![sum.to_string()], Some("sum".to_string()))?;

                let mut result_df = DataFrame::new();
                result_df.add_column("sum".to_string(), result_series)?;
                Ok(result_df)
            }
            _ => Err(Error::InvalidOperation(format!(
                "Sum not supported for type {:?}",
                array.data_type()
            ))),
        }
    }

    /// Compute filter using Arrow kernels
    fn compute_filter(
        batch: &RecordBatch,
        column: &str,
        predicate: FilterPredicate,
    ) -> Result<DataFrame> {
        // Simplified filter implementation
        // In reality, you'd build the predicate and apply it using Arrow compute kernels
        Self::record_batch_to_dataframe(batch)
    }

    /// Compute sort using Arrow kernels
    fn compute_sort(
        batch: &RecordBatch,
        columns: &[String],
        ascending: &[bool],
    ) -> Result<DataFrame> {
        // Simplified sort implementation
        // In reality, you'd use Arrow's sort kernels
        Self::record_batch_to_dataframe(batch)
    }
}

/// Arrow operations that can be computed using Arrow kernels
#[cfg(feature = "distributed")]
pub enum ArrowOperation {
    Sum(String),
    Filter {
        column: String,
        predicate: FilterPredicate,
    },
    Sort {
        columns: Vec<String>,
        ascending: Vec<bool>,
    },
}

/// Filter predicates for Arrow operations
#[cfg(feature = "distributed")]
pub enum FilterPredicate {
    GreaterThan(f64),
    LessThan(f64),
    EqualTo(String),
    NotEqualTo(String),
}

/// Convenience methods for DataFrame Arrow integration
pub trait ArrowIntegration {
    /// Convert to Arrow RecordBatch
    #[cfg(feature = "distributed")]
    fn to_arrow(&self) -> Result<RecordBatch>;

    /// Create from Arrow RecordBatch
    #[cfg(feature = "distributed")]
    fn from_arrow(batch: &RecordBatch) -> Result<Self>
    where
        Self: Sized;

    /// Execute computation using Arrow kernels
    #[cfg(feature = "distributed")]
    fn compute_arrow(&self, operation: ArrowOperation) -> Result<Self>
    where
        Self: Sized;
}

impl ArrowIntegration for DataFrame {
    #[cfg(feature = "distributed")]
    fn to_arrow(&self) -> Result<RecordBatch> {
        ArrowConverter::dataframe_to_record_batch(self)
    }

    #[cfg(feature = "distributed")]
    fn from_arrow(batch: &RecordBatch) -> Result<Self> {
        ArrowConverter::record_batch_to_dataframe(batch)
    }

    #[cfg(feature = "distributed")]
    fn compute_arrow(&self, operation: ArrowOperation) -> Result<Self> {
        ArrowConverter::compute_with_arrow(self, operation)
    }
}

/// Arrow Flight integration for distributed data transfer
#[cfg(feature = "distributed")]
pub mod flight {
    use super::*;

    pub struct FlightConnector {
        endpoint: String,
    }

    impl FlightConnector {
        pub fn new(endpoint: String) -> Self {
            Self { endpoint }
        }

        /// Send DataFrame via Arrow Flight
        pub async fn send_dataframe(&self, df: &DataFrame, path: &str) -> Result<()> {
            let record_batch = df.to_arrow()?;

            // In a real implementation, you'd use the Arrow Flight client
            // to send the RecordBatch to a remote server
            println!("Sending DataFrame to {} at path {}", self.endpoint, path);
            println!("RecordBatch schema: {}", record_batch.schema());

            Ok(())
        }

        /// Receive DataFrame via Arrow Flight
        pub async fn receive_dataframe(&self, path: &str) -> Result<DataFrame> {
            // In a real implementation, you'd use the Arrow Flight client
            // to receive RecordBatch from a remote server
            println!(
                "Receiving DataFrame from {} at path {}",
                self.endpoint, path
            );

            // Return a dummy DataFrame for now
            let mut df = DataFrame::new();
            let series =
                Series::new(vec!["remote_data".to_string()], Some("data".to_string())).unwrap();
            df.add_column("data".to_string(), series)?;
            Ok(df)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::collections::HashMap;

    #[test]
    #[cfg(feature = "distributed")]
    fn test_arrow_integration() {
        // Create a test DataFrame
        let series1 = Series::new(
            vec!["1".to_string(), "2".to_string(), "3".to_string()],
            Some("numbers".to_string()),
        )
        .unwrap();
        let series2 = Series::new(
            vec!["a".to_string(), "b".to_string(), "c".to_string()],
            Some("letters".to_string()),
        )
        .unwrap();

        let mut df = DataFrame::new();
        df.add_column("numbers".to_string(), series1).unwrap();
        df.add_column("letters".to_string(), series2).unwrap();

        // Test conversion to Arrow
        let record_batch = df.to_arrow().unwrap();
        assert_eq!(record_batch.num_columns(), 2);
        assert_eq!(record_batch.num_rows(), 3);

        // Test conversion back from Arrow
        let df2 = DataFrame::from_arrow(&record_batch).unwrap();
        assert_eq!(df2.column_names(), df.column_names());
    }

    #[test]
    fn test_arrow_integration_trait() {
        // Test that the trait is implemented
        let series = Series::new(vec!["test".to_string()], Some("col".to_string())).unwrap();

        let mut df = DataFrame::new();
        df.add_column("col".to_string(), series).unwrap();

        // The trait methods should be available
        #[cfg(feature = "distributed")]
        {
            let _batch = df.to_arrow();
        }
    }
}