1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
//! Remote operation traits.
//!
//! This module defines the core traits that enable users to define the
//! semantics of their system. Operations define the signature and semantics of
//! a computation. Akin to a function that maps an input to an output.
//!
//! Key components of this module include:
//! ## [`Operation`]
//! Represents a generic operation that can be executed by a remote machine.
//! It defines the signature and semantics of a computation.
//!
//! ## [`Monoid`]
//! Represents a binary [`Operation`] whose elements can be  combined in an
//! associative manner. It's a specialized form of an [`Operation`] that has an
//! identity element and an associative binary operation. This makes it
//! _foldable_.
//!
//! ## [`Operation`] implementation of [`Monoid`]
//! An automatic implementation of the [`Operation`] trait for [`Monoid`]s trait
//! is provided. An [`Operation`] is strictly more general than a [`Monoid`], so
//! we can trivially derive an [`Operation`] for every [`Monoid`].
//!
//! ## [`OpKind`]
//! A trait used to create a registry of all available operations.It's used to
//! facilitate serialization, deserialization, and remote dynamic execution of
//! operations.
//!
//! # Notes
//!
//! - Operations are monomorphic over their implementing type. This is
//!   illustrated by the fact that the `Input` and `Output` types are
//!   _associated_ types of the [`Operation`] trait. This obviates the need to
//!   make [`OpKind`] enums generic and thus simplifies downstream code by
//!   removing the need for threading generic parameters through the system. It
//!   is, however, possible to implement [`Operation`]s for generic types. see
//!   the [example](#defining-a-polymorphic-monoid). They just must be
//!   monomorphized in the enum definition. It is not yet clear that
//!   polymorphism at the level of [`OpKind`] needed. This may change as the
//!   system sees more use, in which case we can revisit this design decision.
//!
//! # Usage:
//! Operations are the semantic building blocks of the system. They define what
//! computations can be performed by the system. By implementing the
//! [`Operation`] trait for a type, it can be remotely executed. Operations are
//! not necessarily meant to be executed directly, but rather embedded into
//! [`Task`](crate::task::Task)s, which contain operation arguments, additional
//! metadata, and routing information to facilitate remote execution.
//!
//! ## Example
//! ### Defining an [`Operation`]:
//!
//! ```
//! use paladin::{operation::{Operation, Result}, opkind_derive::OpKind};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct StringLength;
//!
//! impl Operation for StringLength {
//!     type Input = String;
//!     type Output = usize;
//!     type Kind = MyOps;
//!     
//!     fn execute(&self, input: Self::Input) -> Result<Self::Output> {
//!         Ok(input.len())
//!     }
//! }
//!
//! #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! enum MyOps {
//!    StringLength(StringLength),
//! }
//! ```
//!
//! ### Defining a [`Monoid`]:
//!
//! ```
//! use paladin::{operation::{Monoid, Operation, Result}, opkind_derive::OpKind};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct StringConcat;
//!
//! impl Monoid for StringConcat {
//!     type Elem = String;
//!     type Kind = MyOps;
//!     
//!     fn combine(&self, a: Self::Elem, b: Self::Elem) -> Result<Self::Elem> {
//!         Ok(a + &b)
//!     }
//!     
//!     fn empty(&self) -> Self::Elem {
//!         String::new()
//!     }
//! }
//!
//! #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! enum MyOps {
//!    StringConcat(StringConcat),
//! }
//! ```
//!
//! ### An [`Operation`] with constructor arguments:
//!
//! ```
//! use paladin::{operation::{Monoid, Operation, Result}, opkind_derive::OpKind};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy)]
//! struct MultiplyBy(i32);
//!
//! impl Operation for MultiplyBy {
//!     type Input = i32;
//!     type Output = i32;
//!     type Kind = MyOps;
//!     
//!     fn execute(&self, input: Self::Input) -> Result<Self::Output> {
//!         Ok(self.0 * input)
//!     }
//! }
//!
//! #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! enum MyOps {
//!     MultiplyBy(MultiplyBy),
//! }
//! ```
//!
//! ### Defining a polymorphic [`Monoid`]:
//!
//! ```
//! use paladin::{
//!     operation::{Monoid, Operation, Result},
//!     opkind_derive::OpKind,
//!     serializer::Serializable,
//! };
//! use serde::{Deserialize, Serialize};
//! use std::{ops::Mul, fmt::Debug};
//! use num_traits::One;
//!
//! #[derive(Serialize, Deserialize, Debug, Clone, Copy, Default)]
//! struct GenericMultiplication<T>(std::marker::PhantomData<T>);
//!
//! impl<T: Mul<Output = T> + One + Serializable + Debug + Clone> Monoid for GenericMultiplication<T>
//! where
//!     MyOps: From<GenericMultiplication<T>>,
//! {
//!     type Elem = T;
//!     type Kind = MyOps;
//!
//!     fn empty(&self) -> Self::Elem {
//!         T::one()
//!     }
//!
//!     fn combine(&self, a: Self::Elem, b: Self::Elem) -> Result<Self::Elem> {
//!         Ok(a * b)
//!     }
//! }
//!
//! #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! enum MyOps {
//!     // Monomorphize
//!     GenericMultiplicationI32(GenericMultiplication<i32>),
//!     GenericMultiplicationI64(GenericMultiplication<i64>),
//! }
//! ```
//!
//! Later on ...
//! ```
//! # use paladin::{
//! #    operation::{Monoid, Operation, Result},
//! #    opkind_derive::OpKind,
//! #    serializer::Serializable,
//! # };
//! # use serde::{Deserialize, Serialize};
//! # use std::{ops::Mul, fmt::Debug};
//! # use num_traits::One;
//! #
//! # #[derive(Serialize, Deserialize, Debug, Clone, Copy, Default)]
//! # struct GenericMultiplication<T>(std::marker::PhantomData<T>);
//! #
//! # impl<T: Mul<Output = T> + One + Serializable + Debug + Clone> Monoid for GenericMultiplication<T>
//! # where
//! #    MyOps: From<GenericMultiplication<T>>,
//! # {
//! #    type Elem = T;
//! #    type Kind = MyOps;
//! #
//! #    fn empty(&self) -> Self::Elem {
//! #        T::one()
//! #    }
//! #
//! #    fn combine(&self, a: Self::Elem, b: Self::Elem) -> Result<Self::Elem> {
//! #        Ok(a * b)
//! #    }
//! # }
//! #
//! # #[derive(OpKind, Serialize, Deserialize, Debug, Clone, Copy)]
//! # enum MyOps {
//! #    // Monomorphize
//! #    GenericMultiplicationI32(GenericMultiplication<i32>),
//! #    GenericMultiplicationI64(GenericMultiplication<i64>),
//! # }
//! #
//! use paladin::{
//!     directive::{IndexedStream, Directive},
//! };
//!
//! #[tokio::main]
//! async fn main() {
//!     let computation = IndexedStream::from([1, 2, 3, 4, 5, 6])
//!         .fold(GenericMultiplication::<i32>::default());
//! }
//! ```
use std::fmt::Debug;
use crate::serializer::{Serializable, Serializer};
/// An operation that can be performed by a worker.
///
/// Akin to a function that maps an input to an output, it defines the signature
/// and semantics of a computation.
pub trait Operation: Serializable + Clone + Debug + Into<Self::Kind> {
    /// The input type of the operation.
    type Input: Serializable + Debug;
    /// The output type of the operation.
    type Output: Serializable + Debug;
    /// The operation registry type.
    type Kind: OpKind;
    /// Execute the operation on the given input.
    fn execute(&self, input: Self::Input) -> Result<Self::Output>;
    /// Get the input from a byte representation.
    fn input_from_bytes(&self, serializer: Serializer, input: &[u8]) -> Result<Self::Input> {
        Ok(serializer
            .from_bytes(input)
            .map_err(|err| FatalError::from_anyhow(err, Default::default()))?)
    }
    /// Get a byte representation of the output.
    fn output_to_bytes(&self, serializer: Serializer, output: Self::Output) -> Result<Vec<u8>> {
        Ok(serializer
            .to_bytes(&output)
            .map_err(|err| FatalError::from_anyhow(err, Default::default()))?)
    }
    /// Execute the operation on the given input as bytes.
    fn execute_as_bytes(&self, serializer: Serializer, input: &[u8]) -> Result<Vec<u8>> {
        self.input_from_bytes(serializer, input)
            .and_then(|input| self.execute(input))
            .and_then(|output| self.output_to_bytes(serializer, output))
    }
    /// Get a byte representation of the operation.
    fn as_bytes(&self, serializer: Serializer) -> Result<Vec<u8>> {
        let output = serializer
            .to_bytes(self)
            .map_err(|err| FatalError::from_anyhow(err, Default::default()))?;
        Ok(output)
    }
}
/// A registry of all available operations.
///
/// Implementations MUST be an enum. The implementation should group all
/// available [`Operation`]s into a single registry. This enables operations to
/// be serialized and executed by a remote service in an opaque manner. In
/// particular, the remote service need not know the exact type of operation,
/// but rather, only the _kind_ of possible operations.
///
/// Note that a [`Runtime`](crate::runtime::Runtime) instance expects to be
/// specialized with an [`OpKind`] type -- this is what enables dynamic
/// execution behavior across all available operations.
///
/// # Design rationale
/// In a world where operations are all executed in the same process, `Box<dyn
/// Operation>` would theoretically suffice. However, in a distributed system,
/// we need to serialize operations and send them back and forth between remote
/// machines. Generic trait object serialization / deserialization is
/// non-trivial and is not supported by [`serde`] out of the box. Solutions
/// like <https://docs.rs/typetag> were explored, but, unfortunately, they do
/// not support generic types.
///
/// A `proc_macro_derive` is provided to simplify the process of facilitating
/// opaque execution of operations, [`crate::opkind_derive`]. It is highly
/// recommended to use this derive macro to implement [`OpKind`] for your
/// operation registry, as there are a lot of boilerplate details that need to
/// be taken care of.
pub trait OpKind: Serializable + Clone + Debug {}
/// An associative binary [`Operation`].
pub trait Monoid: Serializable + Clone + Debug + Into<Self::Kind> {
    /// The type of the elements that can be combined by the operation.
    /// Note that unlike an [`Operation`], a [`Monoid`] is a binary operation on
    /// elements of the same type. As such, it does not have distinct
    /// `Input` and `Output` types, but rather, a single `Elem` type.
    type Elem: Serializable + Debug;
    /// The operation registry type.
    type Kind: OpKind;
    /// Get the identity element of the operation. Practically, this will be
    /// used when attempting to fold over a collection of elements, and that
    /// collection is empty.
    fn empty(&self) -> Self::Elem;
    /// Combine two elements using the operation.
    fn combine(&self, a: Self::Elem, b: Self::Elem) -> Result<Self::Elem>;
}
/// Implement the [`Operation`] trait for types that support the binary
/// operation
impl<T> Operation for T
where
    T: Monoid,
{
    /// The input type is a tuple of two elements of the same type.
    type Input = (T::Elem, T::Elem);
    /// The output type is a single, combined, element of the same type.
    type Output = T::Elem;
    type Kind = T::Kind;
    /// Execute the operation on the given input.
    fn execute(&self, (a, b): Self::Input) -> Result<Self::Output> {
        self.combine(a, b)
    }
}
mod error;
pub use error::*;