p3_field/field.rs
1use alloc::vec;
2use alloc::vec::Vec;
3use core::fmt::{Debug, Display};
4use core::hash::Hash;
5use core::iter::{Product, Sum};
6use core::ops::{Add, AddAssign, Div, Mul, MulAssign, Neg, Sub, SubAssign};
7use core::{array, slice};
8
9use num_bigint::BigUint;
10use p3_maybe_rayon::prelude::{ParallelIterator, ParallelSlice};
11use p3_util::iter_array_chunks_padded;
12use serde::Serialize;
13use serde::de::DeserializeOwned;
14
15use crate::exponentiation::bits_u64;
16use crate::integers::{QuotientMap, from_integer_types};
17use crate::packed::PackedField;
18use crate::{Packable, PackedFieldExtension, PackedValue};
19
20/// A commutative ring, `R`, with prime characteristic, `p`.
21///
22/// This permits elements like:
23/// - A single finite field element.
24/// - A symbolic expression which would evaluate to a field element.
25/// - An array of finite field elements.
26/// - A polynomial with coefficients in a finite field.
27///
28/// ### Mathematical Description
29///
30/// Mathematically, a commutative ring is a set of objects which supports an addition-like
31/// like operation, `+`, and a multiplication-like operation `*`.
32///
33/// Let `x, y, z` denote arbitrary elements of the set.
34///
35/// Then, an operation is addition-like if it satisfies the following properties:
36/// - Commutativity => `x + y = y + x`
37/// - Associativity => `x + (y + z) = (x + y) + z`
38/// - Unit => There exists an identity element `ZERO` satisfying `x + ZERO = x`.
39/// - Inverses => For every `x` there exists a unique inverse `(-x)` satisfying `x + (-x) = ZERO`
40///
41/// Similarly, an operation is multiplication-like if it satisfies the following properties:
42/// - Commutativity => `x * y = y * x`
43/// - Associativity => `x * (y * z) = (x * y) * z`
44/// - Unit => There exists an identity element `ONE` satisfying `x * ONE = x`.
45/// - Distributivity => The two operations `+` and `*` must together satisfy `x * (y + z) = (x * y) + (x * z)`
46///
47/// Unlike in the addition case, we do not require inverses to exist with respect to `*`.
48///
49/// The simplest examples of commutative rings are the integers (`ℤ`), and the integers mod `N` (`ℤ/N`).
50///
51/// The characteristic of a ring is the smallest positive integer `r` such that `0 = r . 1 = 1 + 1 + ... + 1 (r times)`.
52/// For example, the characteristic of the modulo ring `ℤ/N` is `N`.
53///
54/// Rings with prime characteristic are particularly special due to their close relationship with finite fields.
55pub trait PrimeCharacteristicRing:
56 Sized
57 + Default
58 + Clone
59 + Add<Output = Self>
60 + AddAssign
61 + Sub<Output = Self>
62 + SubAssign
63 + Neg<Output = Self>
64 + Mul<Output = Self>
65 + MulAssign
66 + Sum
67 + Product
68 + Debug
69{
70 /// The field `ℤ/p` where the characteristic of this ring is p.
71 type PrimeSubfield: PrimeField;
72
73 /// The additive identity of the ring.
74 ///
75 /// For every element `a` in the ring we require the following properties:
76 ///
77 /// `a + ZERO = ZERO + a = a,`
78 ///
79 /// `a + (-a) = (-a) + a = ZERO.`
80 const ZERO: Self;
81
82 /// The multiplicative identity of the ring.
83 ///
84 /// For every element `a` in the ring we require the following property:
85 ///
86 /// `a*ONE = ONE*a = a.`
87 const ONE: Self;
88
89 /// The element in the ring given by `ONE + ONE`.
90 ///
91 /// This is provided as a convenience as `TWO` occurs regularly in
92 /// the proving system. This also is slightly faster than computing
93 /// it via addition. Note that multiplication by `TWO` is discouraged.
94 /// Instead of `a * TWO` use `a.double()` which will be faster.
95 ///
96 /// If the field has characteristic 2 this is equal to ZERO.
97 const TWO: Self;
98
99 /// The element in the ring given by `-ONE`.
100 ///
101 /// This is provided as a convenience as `NEG_ONE` occurs regularly in
102 /// the proving system. This also is slightly faster than computing
103 /// it via negation. Note that where possible `NEG_ONE` should be absorbed
104 /// into mathematical operations. For example `a - b` will be faster
105 /// than `a + NEG_ONE * b` and similarly `(-b)` is faster than `NEG_ONE * b`.
106 ///
107 /// If the field has characteristic 2 this is equal to ONE.
108 const NEG_ONE: Self;
109
110 /// Embed an element of the prime field `ℤ/p` into the ring `R`.
111 ///
112 /// Given any element `[r] ∈ ℤ/p`, represented by an integer `r` between `0` and `p - 1`
113 /// `from_prime_subfield([r])` will be equal to:
114 ///
115 /// `Self::ONE + ... + Self::ONE (r times)`
116 fn from_prime_subfield(f: Self::PrimeSubfield) -> Self;
117
118 /// Return `Self::ONE` if `b` is `true` and `Self::ZERO` if `b` is `false`.
119 #[must_use]
120 #[inline(always)]
121 fn from_bool(b: bool) -> Self {
122 // Some rings might reimplement this to avoid the branch.
123 if b { Self::ONE } else { Self::ZERO }
124 }
125
126 from_integer_types!(
127 u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize
128 );
129
130 /// The elementary function `double(a) = 2*a`.
131 ///
132 /// This function should be preferred over calling `a + a` or `TWO * a` as a faster implementation may be available for some rings.
133 /// If the field has characteristic 2 then this returns 0.
134 #[must_use]
135 #[inline(always)]
136 fn double(&self) -> Self {
137 self.clone() + self.clone()
138 }
139
140 /// The elementary function `square(a) = a^2`.
141 ///
142 /// This function should be preferred over calling `a * a`, as a faster implementation may be available for some rings.
143 #[must_use]
144 #[inline(always)]
145 fn square(&self) -> Self {
146 self.clone() * self.clone()
147 }
148
149 /// The elementary function `cube(a) = a^3`.
150 ///
151 /// This function should be preferred over calling `a * a * a`, as a faster implementation may be available for some rings.
152 #[must_use]
153 #[inline(always)]
154 fn cube(&self) -> Self {
155 self.square() * self.clone()
156 }
157
158 /// Computes the arithmetic generalization of boolean `xor`.
159 ///
160 /// For boolean inputs, `x ^ y = x + y - 2 xy`.
161 #[must_use]
162 #[inline(always)]
163 fn xor(&self, y: &Self) -> Self {
164 self.clone() + y.clone() - self.clone() * y.clone().double()
165 }
166
167 /// Computes the arithmetic generalization of a triple `xor`.
168 ///
169 /// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
170 #[must_use]
171 #[inline(always)]
172 fn xor3(&self, y: &Self, z: &Self) -> Self {
173 self.xor(y).xor(z)
174 }
175
176 /// Computes the arithmetic generalization of `andnot`.
177 ///
178 /// For boolean inputs `(!x) & y = (1 - x)y`.
179 #[must_use]
180 #[inline(always)]
181 fn andn(&self, y: &Self) -> Self {
182 (Self::ONE - self.clone()) * y.clone()
183 }
184
185 /// The vanishing polynomial for boolean values: `x * (1 - x)`.
186 ///
187 /// This is a polynomial of degree `2` that evaluates to `0` if the input is `0` or `1`.
188 /// If our space is a field, then this will be nonzero on all other inputs.
189 #[must_use]
190 #[inline(always)]
191 fn bool_check(&self) -> Self {
192 // We use `x * (1 - x)` instead of `x * (x - 1)` as this lets us delegate to the `andn` function.
193 self.andn(self)
194 }
195
196 /// Exponentiation by a `u64` power.
197 ///
198 /// This uses the standard square and multiply approach.
199 /// For specific powers regularly used and known in advance,
200 /// this will be slower than custom addition chain exponentiation.
201 #[must_use]
202 #[inline]
203 fn exp_u64(&self, power: u64) -> Self {
204 let mut current = self.clone();
205 let mut product = Self::ONE;
206
207 for j in 0..bits_u64(power) {
208 if (power >> j) & 1 != 0 {
209 product *= current.clone();
210 }
211 current = current.square();
212 }
213 product
214 }
215
216 /// Exponentiation by a small constant power.
217 ///
218 /// For a collection of small values we implement custom multiplication chain circuits which can be faster than the
219 /// simpler square and multiply approach.
220 ///
221 /// For large values this defaults back to `self.exp_u64`.
222 #[must_use]
223 #[inline(always)]
224 fn exp_const_u64<const POWER: u64>(&self) -> Self {
225 match POWER {
226 0 => Self::ONE,
227 1 => self.clone(),
228 2 => self.square(),
229 3 => self.cube(),
230 4 => self.square().square(),
231 5 => self.square().square() * self.clone(),
232 6 => self.square().cube(),
233 7 => {
234 let x2 = self.square();
235 let x3 = x2.clone() * self.clone();
236 let x4 = x2.square();
237 x3 * x4
238 }
239 _ => self.exp_u64(POWER),
240 }
241 }
242
243 /// The elementary function `exp_power_of_2(a, power_log) = a^{2^power_log}`.
244 ///
245 /// Computed via repeated squaring.
246 #[must_use]
247 #[inline]
248 fn exp_power_of_2(&self, power_log: usize) -> Self {
249 let mut res = self.clone();
250 for _ in 0..power_log {
251 res = res.square();
252 }
253 res
254 }
255
256 /// The elementary function `mul_2exp_u64(a, exp) = a * 2^{exp}`.
257 ///
258 /// Here `2^{exp}` is computed using the square and multiply approach.
259 #[must_use]
260 #[inline]
261 fn mul_2exp_u64(&self, exp: u64) -> Self {
262 self.clone() * Self::TWO.exp_u64(exp)
263 }
264
265 /// Construct an iterator which returns powers of `self`: `self^0, self^1, self^2, ...`.
266 #[must_use]
267 #[inline]
268 fn powers(&self) -> Powers<Self> {
269 self.shifted_powers(Self::ONE)
270 }
271
272 /// Construct an iterator which returns powers of `self` shifted by `start`: `start, start*self^1, start*self^2, ...`.
273 #[must_use]
274 #[inline]
275 fn shifted_powers(&self, start: Self) -> Powers<Self> {
276 Powers {
277 base: self.clone(),
278 current: start,
279 }
280 }
281
282 /// Compute the dot product of two vectors.
283 #[must_use]
284 #[inline]
285 fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self {
286 u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum()
287 }
288
289 /// Compute the sum of a slice of elements whose length is a compile time constant.
290 ///
291 /// The rust compiler doesn't realize that add is associative
292 /// so we help it out and minimize the dependency chains by hand.
293 /// Thus while this function has the same throughput as `input.iter().sum()`,
294 /// it will usually have much lower latency.
295 ///
296 /// # Panics
297 ///
298 /// May panic if the length of the input slice is not equal to `N`.
299 #[must_use]
300 #[inline]
301 fn sum_array<const N: usize>(input: &[Self]) -> Self {
302 // It looks a little strange but using a const parameter and an assert_eq! instead of
303 // using input.len() leads to a significant performance improvement.
304 // We could make this input &[Self; N] but that would require sticking .try_into().unwrap() everywhere.
305 // Checking godbolt, the compiler seems to unroll everything anyway.
306 assert_eq!(N, input.len());
307
308 // For `N <= 8` we implement a tree sum structure and for `N > 8` we break the input into
309 // chunks of `8`, perform a tree sum on each chunk and sum the results. The parameter `8`
310 // was determined experimentally by testing the speed of the poseidon2 internal layer computations.
311 // This is a useful benchmark as we have a mix of summations of size 15, 23 with other work in between.
312 // I only tested this on `AVX2` though so there might be a better value for other architectures.
313 match N {
314 0 => Self::ZERO,
315 1 => input[0].clone(),
316 2 => input[0].clone() + input[1].clone(),
317 3 => input[0].clone() + input[1].clone() + input[2].clone(),
318 4 => (input[0].clone() + input[1].clone()) + (input[2].clone() + input[3].clone()),
319 5 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<1>(&input[4..]),
320 6 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<2>(&input[4..]),
321 7 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<3>(&input[4..]),
322 8 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<4>(&input[4..]),
323 _ => {
324 // We know that N > 8 here so this saves an add over the usual
325 // initialisation of acc to Self::ZERO.
326 let mut acc = Self::sum_array::<8>(&input[..8]);
327 for i in (16..=N).step_by(8) {
328 acc += Self::sum_array::<8>(&input[(i - 8)..i])
329 }
330 // This would be much cleaner if we could use const generic expressions but
331 // this will do for now.
332 match N & 7 {
333 0 => acc,
334 1 => acc + Self::sum_array::<1>(&input[(8 * (N / 8))..]),
335 2 => acc + Self::sum_array::<2>(&input[(8 * (N / 8))..]),
336 3 => acc + Self::sum_array::<3>(&input[(8 * (N / 8))..]),
337 4 => acc + Self::sum_array::<4>(&input[(8 * (N / 8))..]),
338 5 => acc + Self::sum_array::<5>(&input[(8 * (N / 8))..]),
339 6 => acc + Self::sum_array::<6>(&input[(8 * (N / 8))..]),
340 7 => acc + Self::sum_array::<7>(&input[(8 * (N / 8))..]),
341 _ => unreachable!(),
342 }
343 }
344 }
345 }
346
347 /// Allocates a vector of zero elements of length `len`. Many operating systems zero pages
348 /// before assigning them to a userspace process. In that case, our process should not need to
349 /// write zeros, which would be redundant. However, the compiler may not always recognize this.
350 ///
351 /// In particular, `vec![Self::ZERO; len]` appears to result in redundant userspace zeroing.
352 /// This is the default implementation, but implementors may wish to provide their own
353 /// implementation which transmutes something like `vec![0u32; len]`.
354 #[must_use]
355 #[inline]
356 fn zero_vec(len: usize) -> Vec<Self> {
357 vec![Self::ZERO; len]
358 }
359}
360
361/// A vector space `V` over `F` with a fixed basis. Fixing the basis allows elements of `V` to be
362/// converted to and from `DIMENSION` many elements of `F` which are interpreted as basis coefficients.
363///
364/// We usually expect `F` to be a field but do not enforce this and so allow it to be just a ring.
365/// This lets every ring implement `BasedVectorSpace<Self>` and is useful in a couple of other cases.
366///
367/// ## Safety
368/// We make no guarantees about consistency of the choice of basis across different versions of Plonky3.
369/// If this choice of basis changes, the behaviour of `BasedVectorSpace` will also change. Due to this,
370/// we recommend avoiding using this trait unless absolutely necessary.
371///
372/// ### Mathematical Description
373/// Given a vector space, `A` over `F`, a basis is a set of elements `B = {b_0, ..., b_{n-1}}`
374/// in `A` such that, given any element `a`, we can find a unique set of `n` elements of `F`,
375/// `f_0, ..., f_{n - 1}` satisfying `a = f_0 b_0 + ... + f_{n - 1} b_{n - 1}`. Thus the choice
376/// of `B` gives rise to a natural linear map between the vector space `A` and the canonical
377/// `n` dimensional vector space `F^n`.
378///
379/// This allows us to map between elements of `A` and arrays of `n` elements of `F`.
380/// Clearly this map depends entirely on the choice of basis `B` which may change
381/// across versions of Plonky3.
382///
383/// The situation is slightly more complicated in cases where `F` is not a field but boils down
384/// to an identical description once we enforce that `A` is a free module over `F`.
385pub trait BasedVectorSpace<F: PrimeCharacteristicRing>: Sized {
386 /// The dimension of the vector space, i.e. the number of elements in
387 /// its basis.
388 const DIMENSION: usize;
389
390 /// Fixes a basis for the algebra `A` and uses this to
391 /// map an element of `A` to a slice of `DIMENSION` `F` elements.
392 ///
393 /// # Safety
394 ///
395 /// The value produced by this function fundamentally depends
396 /// on the choice of basis. Care must be taken
397 /// to ensure portability if these values might ever be passed to
398 /// (or rederived within) another compilation environment where a
399 /// different basis might have been used.
400 #[must_use]
401 fn as_basis_coefficients_slice(&self) -> &[F];
402
403 /// Fixes a basis for the algebra `A` and uses this to
404 /// map `DIMENSION` `F` elements to an element of `A`.
405 ///
406 /// # Safety
407 ///
408 /// The value produced by this function fundamentally depends
409 /// on the choice of basis. Care must be taken
410 /// to ensure portability if these values might ever be passed to
411 /// (or rederived within) another compilation environment where a
412 /// different basis might have been used.
413 ///
414 /// Returns `None` if the length of the slice is different to `DIMENSION`.
415 #[must_use]
416 #[inline]
417 fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self> {
418 Self::from_basis_coefficients_iter(slice.iter().cloned())
419 }
420
421 /// Fixes a basis for the algebra `A` and uses this to
422 /// map `DIMENSION` `F` elements to an element of `A`. Similar
423 /// to `core:array::from_fn`, the `DIMENSION` `F` elements are
424 /// given by `Fn(0), ..., Fn(DIMENSION - 1)` called in that order.
425 ///
426 /// # Safety
427 ///
428 /// The value produced by this function fundamentally depends
429 /// on the choice of basis. Care must be taken
430 /// to ensure portability if these values might ever be passed to
431 /// (or rederived within) another compilation environment where a
432 /// different basis might have been used.
433 #[must_use]
434 fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(f: Fn) -> Self;
435
436 /// Fixes a basis for the algebra `A` and uses this to
437 /// map `DIMENSION` `F` elements to an element of `A`.
438 ///
439 /// # Safety
440 ///
441 /// The value produced by this function fundamentally depends
442 /// on the choice of basis. Care must be taken
443 /// to ensure portability if these values might ever be passed to
444 /// (or rederived within) another compilation environment where a
445 /// different basis might have been used.
446 ///
447 /// Returns `None` if the length of the iterator is different to `DIMENSION`.
448 #[must_use]
449 fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(iter: I) -> Option<Self>;
450
451 /// Given a basis for the Algebra `A`, return the i'th basis element.
452 ///
453 /// # Safety
454 ///
455 /// The value produced by this function fundamentally depends
456 /// on the choice of basis. Care must be taken
457 /// to ensure portability if these values might ever be passed to
458 /// (or rederived within) another compilation environment where a
459 /// different basis might have been used.
460 ///
461 /// Returns `None` if `i` is greater than or equal to `DIMENSION`.
462 #[must_use]
463 #[inline]
464 fn ith_basis_element(i: usize) -> Option<Self> {
465 (i < Self::DIMENSION).then(|| Self::from_basis_coefficients_fn(|j| F::from_bool(i == j)))
466 }
467
468 /// Convert from a vector of `Self` to a vector of `F` by flattening the basis coefficients.
469 ///
470 /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
471 /// be reimplemented in those cases.
472 ///
473 /// # Safety
474 ///
475 /// The value produced by this function fundamentally depends
476 /// on the choice of basis. Care must be taken
477 /// to ensure portability if these values might ever be passed to
478 /// (or rederived within) another compilation environment where a
479 /// different basis might have been used.
480 #[must_use]
481 #[inline]
482 fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
483 vec.into_iter()
484 .flat_map(|x| x.as_basis_coefficients_slice().to_vec())
485 .collect()
486 }
487
488 /// Convert from a vector of `F` to a vector of `Self` by combining the basis coefficients.
489 ///
490 /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
491 /// be reimplemented in those cases.
492 ///
493 /// # Panics
494 /// This will panic if the length of `vec` is not a multiple of `Self::DIMENSION`.
495 ///
496 /// # Safety
497 ///
498 /// The value produced by this function fundamentally depends
499 /// on the choice of basis. Care must be taken
500 /// to ensure portability if these values might ever be passed to
501 /// (or rederived within) another compilation environment where a
502 /// different basis might have been used.
503 #[must_use]
504 #[inline]
505 fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self>
506 where
507 F: Sync,
508 Self: Send,
509 {
510 assert_eq!(vec.len() % Self::DIMENSION, 0);
511
512 vec.par_chunks_exact(Self::DIMENSION)
513 .map(|chunk| {
514 Self::from_basis_coefficients_slice(chunk)
515 .expect("Chunk length not equal to dimension")
516 })
517 .collect()
518 }
519}
520
521impl<F: PrimeCharacteristicRing> BasedVectorSpace<F> for F {
522 const DIMENSION: usize = 1;
523
524 #[inline]
525 fn as_basis_coefficients_slice(&self) -> &[F] {
526 slice::from_ref(self)
527 }
528
529 #[inline]
530 fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(mut f: Fn) -> Self {
531 f(0)
532 }
533
534 #[inline]
535 fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(mut iter: I) -> Option<Self> {
536 (iter.len() == 1).then(|| iter.next().unwrap()) // Unwrap will not panic as we know the length is 1.
537 }
538
539 #[inline]
540 fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
541 vec
542 }
543
544 #[inline]
545 fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self> {
546 vec
547 }
548}
549
550/// A ring implements `InjectiveMonomial<N>` if the algebraic function
551/// `f(x) = x^N` is an injective map on elements of the ring.
552///
553/// We do not enforce that this map be invertible as there are useful
554/// cases such as polynomials or symbolic expressions where no inverse exists.
555///
556/// However, if the ring is a field with order `q` or an array of such field elements,
557/// then `f(x) = x^N` will be injective if and only if it is invertible and so in
558/// such cases this monomial acts as a permutation. Moreover, this will occur
559/// exactly when `N` and `q - 1` are relatively prime i.e. `gcd(N, q - 1) = 1`.
560pub trait InjectiveMonomial<const N: u64>: PrimeCharacteristicRing {
561 /// Compute `x -> x^n` for a given `n > 1` such that this
562 /// map is injective.
563 #[must_use]
564 #[inline]
565 fn injective_exp_n(&self) -> Self {
566 self.exp_const_u64::<N>()
567 }
568}
569
570/// A ring implements `PermutationMonomial<N>` if the algebraic function
571/// `f(x) = x^N` is invertible and thus acts as a permutation on elements of the ring.
572///
573/// In all cases we care about, this means that we can find another integer `K` such
574/// that `x = x^{NK}` for all elements of our ring.
575pub trait PermutationMonomial<const N: u64>: InjectiveMonomial<N> {
576 /// Compute `x -> x^K` for a given `K > 1` such that
577 /// `x^{NK} = x` for all elements `x`.
578 #[must_use]
579 fn injective_exp_root_n(&self) -> Self;
580}
581
582/// A ring `R` implements `Algebra<F>` if there is an injective homomorphism
583/// from `F` into `R`; in particular only `F::ZERO` maps to `R::ZERO`.
584///
585/// For the most part, we will usually expect `F` to be a field but there
586/// are a few cases where it is handy to allow it to just be a ring. In
587/// particular, every ring naturally implements `Algebra<Self>`.
588///
589/// ### Mathematical Description
590///
591/// Let `x` and `y` denote arbitrary elements of `F`. Then
592/// we require that our map `from` has the properties:
593/// - Preserves Identity: `from(F::ONE) = R::ONE`
594/// - Commutes with Addition: `from(x + y) = from(x) + from(y)`
595/// - Commutes with Multiplication: `from(x * y) = from(x) * from(y)`
596///
597/// Such maps are known as ring homomorphisms and are injective if the
598/// only element which maps to `R::ZERO` is `F::ZERO`.
599///
600/// The existence of this map makes `R` into an `F`-module and hence an `F`-algebra.
601/// If, additionally, `R` is a field, then this makes `R` a field extension of `F`.
602pub trait Algebra<F>:
603 PrimeCharacteristicRing
604 + From<F>
605 + Add<F, Output = Self>
606 + AddAssign<F>
607 + Sub<F, Output = Self>
608 + SubAssign<F>
609 + Mul<F, Output = Self>
610 + MulAssign<F>
611{
612}
613
614// Every ring is an algebra over itself.
615impl<R: PrimeCharacteristicRing> Algebra<R> for R {}
616
617/// A collection of methods designed to help hash field elements.
618///
619/// Most fields will want to reimplement many/all of these methods as the default implementations
620/// are slow and involve converting to/from byte representations.
621pub trait RawDataSerializable: Sized {
622 /// The number of bytes which this field element occupies in memory.
623 /// Must be equal to the length of self.into_bytes().
624 const NUM_BYTES: usize;
625
626 /// Convert a field element into a collection of bytes.
627 #[must_use]
628 fn into_bytes(self) -> impl IntoIterator<Item = u8>;
629
630 /// Convert an iterator of field elements into an iterator of bytes.
631 #[must_use]
632 fn into_byte_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u8> {
633 input.into_iter().flat_map(|elem| elem.into_bytes())
634 }
635
636 /// Convert an iterator of field elements into an iterator of u32s.
637 ///
638 /// If `NUM_BYTES` does not divide `4`, multiple `F`s may be packed together to make a single `u32`. Furthermore,
639 /// if `NUM_BYTES * input.len()` does not divide `4`, the final `u32` will involve padding bytes which are set to `0`.
640 #[must_use]
641 fn into_u32_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u32> {
642 let bytes = Self::into_byte_stream(input);
643 iter_array_chunks_padded(bytes, 0).map(u32::from_le_bytes)
644 }
645
646 /// Convert an iterator of field elements into an iterator of u64s.
647 ///
648 /// If `NUM_BYTES` does not divide `8`, multiple `F`s may be packed together to make a single `u64`. Furthermore,
649 /// if `NUM_BYTES * input.len()` does not divide `8`, the final `u64` will involve padding bytes which are set to `0`.
650 #[must_use]
651 fn into_u64_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u64> {
652 let bytes = Self::into_byte_stream(input);
653 iter_array_chunks_padded(bytes, 0).map(u64::from_le_bytes)
654 }
655
656 /// Convert an iterator of field element arrays into an iterator of byte arrays.
657 ///
658 /// Converts an element `[F; N]` into the byte array `[[u8; N]; NUM_BYTES]`. This is
659 /// intended for use with vectorized hash functions which use vector operations
660 /// to compute several hashes in parallel.
661 #[must_use]
662 fn into_parallel_byte_streams<const N: usize>(
663 input: impl IntoIterator<Item = [Self; N]>,
664 ) -> impl IntoIterator<Item = [u8; N]> {
665 input.into_iter().flat_map(|vector| {
666 let bytes = vector.map(|elem| elem.into_bytes().into_iter().collect::<Vec<_>>());
667 (0..Self::NUM_BYTES).map(move |i| array::from_fn(|j| bytes[j][i]))
668 })
669 }
670
671 /// Convert an iterator of field element arrays into an iterator of u32 arrays.
672 ///
673 /// Converts an element `[F; N]` into the u32 array `[[u32; N]; NUM_BYTES/4]`. This is
674 /// intended for use with vectorized hash functions which use vector operations
675 /// to compute several hashes in parallel.
676 ///
677 /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
678 /// operation to get `[Iterator<F>; N]`, calling `into_u32_stream` on each element to get `[Iterator<u32>; N]` and then
679 /// performing another transpose operation to get `Iterator<[u32; N]>`.
680 ///
681 /// If `NUM_BYTES` does not divide `4`, multiple `[F; N]`s may be packed together to make a single `[u32; N]`. Furthermore,
682 /// if `NUM_BYTES * input.len()` does not divide `4`, the final `[u32; N]` will involve padding bytes which are set to `0`.
683 #[must_use]
684 fn into_parallel_u32_streams<const N: usize>(
685 input: impl IntoIterator<Item = [Self; N]>,
686 ) -> impl IntoIterator<Item = [u32; N]> {
687 let bytes = Self::into_parallel_byte_streams(input);
688 iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 4]| {
689 array::from_fn(|i| u32::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
690 })
691 }
692
693 /// Convert an iterator of field element arrays into an iterator of u64 arrays.
694 ///
695 /// Converts an element `[F; N]` into the u64 array `[[u64; N]; NUM_BYTES/8]`. This is
696 /// intended for use with vectorized hash functions which use vector operations
697 /// to compute several hashes in parallel.
698 ///
699 /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
700 /// operation to get `[Iterator<F>; N]`, calling `into_u64_stream` on each element to get `[Iterator<u64>; N]` and then
701 /// performing another transpose operation to get `Iterator<[u64; N]>`.
702 ///
703 /// If `NUM_BYTES` does not divide `8`, multiple `[F; N]`s may be packed together to make a single `[u64; N]`. Furthermore,
704 /// if `NUM_BYTES * input.len()` does not divide `8`, the final `[u64; N]` will involve padding bytes which are set to `0`.
705 #[must_use]
706 fn into_parallel_u64_streams<const N: usize>(
707 input: impl IntoIterator<Item = [Self; N]>,
708 ) -> impl IntoIterator<Item = [u64; N]> {
709 let bytes = Self::into_parallel_byte_streams(input);
710 iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 8]| {
711 array::from_fn(|i| u64::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
712 })
713 }
714}
715
716/// A field `F`. This permits both modular fields `ℤ/p` along with their field extensions.
717///
718/// A ring is a field if every element `x` has a unique multiplicative inverse `x^{-1}`
719/// which satisfies `x * x^{-1} = F::ONE`.
720pub trait Field:
721 Algebra<Self>
722 + RawDataSerializable
723 + Packable
724 + 'static
725 + Copy
726 + Div<Self, Output = Self>
727 + Eq
728 + Hash
729 + Send
730 + Sync
731 + Display
732 + Serialize
733 + DeserializeOwned
734{
735 type Packing: PackedField<Scalar = Self>;
736
737 /// A generator of this field's multiplicative group.
738 const GENERATOR: Self;
739
740 /// Check if the given field element is equal to the unique additive identity (ZERO).
741 #[must_use]
742 #[inline]
743 fn is_zero(&self) -> bool {
744 *self == Self::ZERO
745 }
746
747 /// Check if the given field element is equal to the unique multiplicative identity (ONE).
748 #[must_use]
749 #[inline]
750 fn is_one(&self) -> bool {
751 *self == Self::ONE
752 }
753
754 /// The multiplicative inverse of this field element, if it exists.
755 ///
756 /// NOTE: The inverse of `0` is undefined and will return `None`.
757 #[must_use]
758 fn try_inverse(&self) -> Option<Self>;
759
760 /// The multiplicative inverse of this field element.
761 ///
762 /// # Panics
763 /// The function will panic if the field element is `0`.
764 /// Use try_inverse if you want to handle this case.
765 #[must_use]
766 fn inverse(&self) -> Self {
767 self.try_inverse().expect("Tried to invert zero")
768 }
769
770 /// The elementary function `halve(a) = a/2`.
771 ///
772 /// # Panics
773 /// The function will panic if the field has characteristic 2.
774 #[must_use]
775 fn halve(&self) -> Self {
776 // This should be overwritten by most field implementations.
777 let half = Self::from_prime_subfield(
778 Self::PrimeSubfield::TWO
779 .try_inverse()
780 .expect("Cannot divide by 2 in fields with characteristic 2"),
781 );
782 *self * half
783 }
784
785 /// Divide by a given power of two. `div_2exp_u64(a, exp) = a/2^exp`
786 ///
787 /// # Panics
788 /// The function will panic if the field has characteristic 2.
789 #[must_use]
790 #[inline]
791 fn div_2exp_u64(&self, exp: u64) -> Self {
792 // This should be overwritten by most field implementations.
793 *self
794 * Self::from_prime_subfield(
795 Self::PrimeSubfield::TWO
796 .try_inverse()
797 .expect("Cannot divide by 2 in fields with characteristic 2")
798 .exp_u64(exp),
799 )
800 }
801
802 /// Add two slices of field elements together, returning the result in the first slice.
803 ///
804 /// Makes use of packing to speed up the addition.
805 ///
806 /// This is optimal for cases where the two slices are small to medium length. E.g. between
807 /// `F::Packing::WIDTH` and roughly however many elements fit in a cache line.
808 ///
809 /// For larger slices, it's likely worthwhile to use parallelization before calling this.
810 /// Similarly if you need to add a large number of slices together, it's best to
811 /// break them into small chunks and call this on the smaller chunks.
812 ///
813 /// # Panics
814 /// The function will panic if the lengths of the two slices are not equal.
815 #[inline]
816 fn add_slices(slice_1: &mut [Self], slice_2: &[Self]) {
817 let (shorts_1, suffix_1) = Self::Packing::pack_slice_with_suffix_mut(slice_1);
818 let (shorts_2, suffix_2) = Self::Packing::pack_slice_with_suffix(slice_2);
819 debug_assert_eq!(shorts_1.len(), shorts_2.len());
820 debug_assert_eq!(suffix_1.len(), suffix_2.len());
821 for (x_1, &x_2) in shorts_1.iter_mut().zip(shorts_2) {
822 *x_1 += x_2;
823 }
824 for (x_1, &x_2) in suffix_1.iter_mut().zip(suffix_2) {
825 *x_1 += x_2;
826 }
827 }
828
829 /// The number of elements in the field.
830 ///
831 /// This will either be prime if the field is a PrimeField or a power of a
832 /// prime if the field is an extension field.
833 #[must_use]
834 fn order() -> BigUint;
835
836 /// The number of bits required to define an element of this field.
837 ///
838 /// Usually due to storage and practical reasons the memory size of
839 /// a field element will be a little larger than bits().
840 #[must_use]
841 #[inline]
842 fn bits() -> usize {
843 Self::order().bits() as usize
844 }
845}
846
847/// A field isomorphic to `ℤ/p` for some prime `p`.
848///
849/// There is a natural map from `ℤ` to `ℤ/p` which sends an integer `r` to its conjugacy class `[r]`.
850/// Canonically, each conjugacy class `[r]` can be represented by the unique integer `s` in `[0, p - 1)`
851/// satisfying `s = r mod p`. This however is often not the most convenient computational representation
852/// and so internal representations of field elements might differ from this and may change over time.
853pub trait PrimeField:
854 Field
855 + Ord
856 + QuotientMap<u8>
857 + QuotientMap<u16>
858 + QuotientMap<u32>
859 + QuotientMap<u64>
860 + QuotientMap<u128>
861 + QuotientMap<usize>
862 + QuotientMap<i8>
863 + QuotientMap<i16>
864 + QuotientMap<i32>
865 + QuotientMap<i64>
866 + QuotientMap<i128>
867 + QuotientMap<isize>
868{
869 /// Return the representative of `value` in canonical form
870 /// which lies in the range `0 <= x < self.order()`.
871 #[must_use]
872 fn as_canonical_biguint(&self) -> BigUint;
873}
874
875/// A prime field `ℤ/p` with order, `p < 2^64`.
876pub trait PrimeField64: PrimeField {
877 const ORDER_U64: u64;
878
879 /// Return the representative of `value` in canonical form
880 /// which lies in the range `0 <= x < ORDER_U64`.
881 #[must_use]
882 fn as_canonical_u64(&self) -> u64;
883
884 /// Convert a field element to a `u64` such that any two field elements
885 /// are converted to the same `u64` if and only if they represent the same value.
886 ///
887 /// This will be the fastest way to convert a field element to a `u64` and
888 /// is intended for use in hashing. It will also be consistent across different targets.
889 #[must_use]
890 #[inline(always)]
891 fn to_unique_u64(&self) -> u64 {
892 // A simple default which is optimal for some fields.
893 self.as_canonical_u64()
894 }
895}
896
897/// A prime field `ℤ/p` with order `p < 2^32`.
898pub trait PrimeField32: PrimeField64 {
899 const ORDER_U32: u32;
900
901 /// Return the representative of `value` in canonical form
902 /// which lies in the range `0 <= x < ORDER_U64`.
903 #[must_use]
904 fn as_canonical_u32(&self) -> u32;
905
906 /// Convert a field element to a `u32` such that any two field elements
907 /// are converted to the same `u32` if and only if they represent the same value.
908 ///
909 /// This will be the fastest way to convert a field element to a `u32` and
910 /// is intended for use in hashing. It will also be consistent across different targets.
911 #[must_use]
912 #[inline(always)]
913 fn to_unique_u32(&self) -> u32 {
914 // A simple default which is optimal for some fields.
915 self.as_canonical_u32()
916 }
917}
918
919/// A field `EF` which is also an algebra over a field `F`.
920///
921/// This provides a couple of convenience methods on top of the
922/// standard methods provided by `Field`, `Algebra<F>` and `BasedVectorSpace<F>`.
923///
924/// It also provides a type which handles packed vectors of extension field elements.
925pub trait ExtensionField<Base: Field>: Field + Algebra<Base> + BasedVectorSpace<Base> {
926 type ExtensionPacking: PackedFieldExtension<Base, Self> + 'static + Copy + Send + Sync;
927
928 /// Determine if the given element lies in the base field.
929 #[must_use]
930 fn is_in_basefield(&self) -> bool;
931
932 /// If the element lies in the base field project it down.
933 /// Otherwise return None.
934 #[must_use]
935 fn as_base(&self) -> Option<Base>;
936}
937
938// Every field is trivially a one dimensional extension over itself.
939impl<F: Field> ExtensionField<F> for F {
940 type ExtensionPacking = F::Packing;
941
942 #[inline]
943 fn is_in_basefield(&self) -> bool {
944 true
945 }
946
947 #[inline]
948 fn as_base(&self) -> Option<F> {
949 Some(*self)
950 }
951}
952
953/// A field which supplies information like the two-adicity of its multiplicative group, and methods
954/// for obtaining two-adic generators.
955pub trait TwoAdicField: Field {
956 /// The number of factors of two in this field's multiplicative group.
957 const TWO_ADICITY: usize;
958
959 /// Returns a generator of the multiplicative group of order `2^bits`.
960 /// Assumes `bits <= TWO_ADICITY`, otherwise the result is undefined.
961 #[must_use]
962 fn two_adic_generator(bits: usize) -> Self;
963}
964
965/// An iterator which returns the powers of a base element `b` shifted by current `c`: `c, c * b, c * b^2, ...`.
966#[derive(Clone, Debug)]
967pub struct Powers<F> {
968 pub base: F,
969 pub current: F,
970}
971
972impl<R: PrimeCharacteristicRing> Iterator for Powers<R> {
973 type Item = R;
974
975 fn next(&mut self) -> Option<R> {
976 let result = self.current.clone();
977 self.current *= self.base.clone();
978 Some(result)
979 }
980}