oxirs_vec/
tensorflow.rs

1//! TensorFlow integration for embedding generation and model serving
2
3use crate::real_time_embedding_pipeline::traits::{
4    ContentItem, EmbeddingGenerator, GeneratorStatistics, ProcessingResult, ProcessingStatus,
5};
6use crate::Vector;
7use anyhow::{anyhow, Result};
8use scirs2_core::random::Random;
9use serde::{Deserialize, Serialize};
10use std::collections::HashMap;
11use std::path::PathBuf;
12use std::time::{Duration, Instant};
13
14/// TensorFlow model configuration
15#[derive(Debug, Clone, Serialize, Deserialize)]
16pub struct TensorFlowConfig {
17    pub model_path: PathBuf,
18    pub input_name: String,
19    pub output_name: String,
20    pub device: TensorFlowDevice,
21    pub batch_size: usize,
22    pub max_sequence_length: usize,
23    pub optimization_level: OptimizationLevel,
24    pub use_mixed_precision: bool,
25    pub session_config: SessionConfig,
26}
27
28/// TensorFlow device configuration
29#[derive(Debug, Clone, Serialize, Deserialize)]
30pub enum TensorFlowDevice {
31    Cpu { num_threads: Option<usize> },
32    Gpu { device_id: i32, memory_growth: bool },
33    Tpu { worker: String },
34}
35
36/// TensorFlow optimization levels
37#[derive(Debug, Clone, Serialize, Deserialize)]
38pub enum OptimizationLevel {
39    None,
40    Basic,
41    Extended,
42    Aggressive,
43}
44
45/// TensorFlow session configuration
46#[derive(Debug, Clone, Serialize, Deserialize)]
47pub struct SessionConfig {
48    pub inter_op_parallelism_threads: Option<usize>,
49    pub intra_op_parallelism_threads: Option<usize>,
50    pub allow_soft_placement: bool,
51    pub log_device_placement: bool,
52}
53
54impl Default for TensorFlowConfig {
55    fn default() -> Self {
56        Self {
57            model_path: PathBuf::from("./models/universal-sentence-encoder"),
58            input_name: "inputs".to_string(),
59            output_name: "outputs".to_string(),
60            device: TensorFlowDevice::Cpu { num_threads: None },
61            batch_size: 32,
62            max_sequence_length: 512,
63            optimization_level: OptimizationLevel::Basic,
64            use_mixed_precision: false,
65            session_config: SessionConfig::default(),
66        }
67    }
68}
69
70impl Default for SessionConfig {
71    fn default() -> Self {
72        Self {
73            inter_op_parallelism_threads: None,
74            intra_op_parallelism_threads: None,
75            allow_soft_placement: true,
76            log_device_placement: false,
77        }
78    }
79}
80
81/// TensorFlow model metadata
82#[derive(Debug, Clone)]
83pub struct TensorFlowModelInfo {
84    pub model_path: PathBuf,
85    pub input_signature: Vec<TensorSpec>,
86    pub output_signature: Vec<TensorSpec>,
87    pub model_version: String,
88    pub dimensions: usize,
89    pub preprocessing_required: bool,
90}
91
92/// TensorFlow tensor specification
93#[derive(Debug, Clone)]
94pub struct TensorSpec {
95    pub name: String,
96    pub dtype: TensorDataType,
97    pub shape: Vec<Option<i64>>,
98}
99
100/// TensorFlow data types
101#[derive(Debug, Clone)]
102pub enum TensorDataType {
103    Float32,
104    Float64,
105    Int32,
106    Int64,
107    String,
108    Bool,
109}
110
111/// TensorFlow embedder for generating embeddings
112#[derive(Debug)]
113pub struct TensorFlowEmbedder {
114    config: TensorFlowConfig,
115    model_info: Option<TensorFlowModelInfo>,
116    session_initialized: bool,
117    preprocessing_pipeline: PreprocessingPipeline,
118}
119
120/// Text preprocessing pipeline for TensorFlow models
121#[derive(Debug)]
122pub struct PreprocessingPipeline {
123    pub lowercase: bool,
124    pub remove_punctuation: bool,
125    pub tokenizer: Option<String>,
126    pub vocabulary: Option<HashMap<String, i32>>,
127}
128
129impl Default for PreprocessingPipeline {
130    fn default() -> Self {
131        Self {
132            lowercase: true,
133            remove_punctuation: false,
134            tokenizer: None,
135            vocabulary: None,
136        }
137    }
138}
139
140impl TensorFlowEmbedder {
141    /// Create a new TensorFlow embedder
142    pub fn new(config: TensorFlowConfig) -> Result<Self> {
143        Ok(Self {
144            config,
145            model_info: None,
146            session_initialized: false,
147            preprocessing_pipeline: PreprocessingPipeline::default(),
148        })
149    }
150
151    /// Load and initialize the TensorFlow model
152    pub fn load_model(&mut self) -> Result<()> {
153        if !self.config.model_path.exists() {
154            return Err(anyhow!(
155                "Model path does not exist: {:?}",
156                self.config.model_path
157            ));
158        }
159
160        // Mock model loading - in a real implementation, this would use tensorflow-rust
161        let model_info = TensorFlowModelInfo {
162            model_path: self.config.model_path.clone(),
163            input_signature: vec![TensorSpec {
164                name: self.config.input_name.clone(),
165                dtype: TensorDataType::String,
166                shape: vec![None, None], // batch_size, sequence_length
167            }],
168            output_signature: vec![TensorSpec {
169                name: self.config.output_name.clone(),
170                dtype: TensorDataType::Float32,
171                shape: vec![None, Some(512)], // batch_size, embedding_dim
172            }],
173            model_version: "1.0.0".to_string(),
174            dimensions: 512,
175            preprocessing_required: true,
176        };
177
178        self.model_info = Some(model_info);
179        self.session_initialized = true;
180        Ok(())
181    }
182
183    /// Generate embeddings for text content
184    pub fn embed_text(&self, text: &str) -> Result<Vector> {
185        if !self.session_initialized {
186            return Err(anyhow!("Model not loaded. Call load_model() first."));
187        }
188
189        let preprocessed_text = self.preprocess_text(text)?;
190        let embedding = self.run_inference(&preprocessed_text)?;
191        Ok(Vector::new(embedding))
192    }
193
194    /// Generate embeddings for multiple texts
195    pub fn embed_batch(&self, texts: &[String]) -> Result<Vec<Vector>> {
196        if !self.session_initialized {
197            return Err(anyhow!("Model not loaded. Call load_model() first."));
198        }
199
200        let mut results = Vec::new();
201        for text in texts {
202            let embedding = self.embed_text(text)?;
203            results.push(embedding);
204        }
205        Ok(results)
206    }
207
208    /// Preprocess text according to model requirements
209    fn preprocess_text(&self, text: &str) -> Result<String> {
210        let mut processed = text.to_string();
211
212        if self.preprocessing_pipeline.lowercase {
213            processed = processed.to_lowercase();
214        }
215
216        if self.preprocessing_pipeline.remove_punctuation {
217            processed = processed
218                .chars()
219                .filter(|c| c.is_alphanumeric() || c.is_whitespace())
220                .collect();
221        }
222
223        // Truncate to max sequence length
224        if processed.len() > self.config.max_sequence_length {
225            processed.truncate(self.config.max_sequence_length);
226        }
227
228        Ok(processed)
229    }
230
231    /// Run TensorFlow inference (mock implementation)
232    fn run_inference(&self, text: &str) -> Result<Vec<f32>> {
233        let model_info = self
234            .model_info
235            .as_ref()
236            .ok_or_else(|| anyhow!("Model info not available"))?;
237
238        // Mock inference - generate random embeddings
239        let mut rng = Random::seed(text.len() as u64);
240
241        let mut embedding = vec![0.0f32; model_info.dimensions];
242        for value in &mut embedding {
243            *value = rng.gen_range(-1.0..1.0);
244        }
245
246        // Normalize embedding
247        let norm = embedding.iter().map(|x| x * x).sum::<f32>().sqrt();
248        if norm > 0.0 {
249            for x in &mut embedding {
250                *x /= norm;
251            }
252        }
253
254        Ok(embedding)
255    }
256
257    /// Get model information
258    pub fn get_model_info(&self) -> Option<&TensorFlowModelInfo> {
259        self.model_info.as_ref()
260    }
261
262    /// Get output dimensions
263    pub fn get_dimensions(&self) -> Option<usize> {
264        self.model_info.as_ref().map(|info| info.dimensions)
265    }
266
267    /// Update preprocessing pipeline
268    pub fn set_preprocessing_pipeline(&mut self, pipeline: PreprocessingPipeline) {
269        self.preprocessing_pipeline = pipeline;
270    }
271}
272
273/// TensorFlow model server for serving multiple models
274#[derive(Debug)]
275pub struct TensorFlowModelServer {
276    models: HashMap<String, TensorFlowEmbedder>,
277    default_model: String,
278    server_config: ServerConfig,
279}
280
281/// Server configuration for TensorFlow model serving
282#[derive(Debug, Clone)]
283pub struct ServerConfig {
284    pub model_warming: bool,
285    pub request_batching: bool,
286    pub max_batch_size: usize,
287    pub batch_timeout_ms: u64,
288    pub model_versions: HashMap<String, String>,
289}
290
291impl Default for ServerConfig {
292    fn default() -> Self {
293        Self {
294            model_warming: true,
295            request_batching: true,
296            max_batch_size: 64,
297            batch_timeout_ms: 10,
298            model_versions: HashMap::new(),
299        }
300    }
301}
302
303impl TensorFlowModelServer {
304    /// Create a new TensorFlow model server
305    pub fn new(default_model: String, config: ServerConfig) -> Self {
306        Self {
307            models: HashMap::new(),
308            default_model,
309            server_config: config,
310        }
311    }
312
313    /// Register a model with the server
314    pub fn register_model(&mut self, name: String, embedder: TensorFlowEmbedder) -> Result<()> {
315        self.models.insert(name.clone(), embedder);
316
317        if self.server_config.model_warming {
318            if let Some(model) = self.models.get(&name) {
319                // Warm up the model with a test embedding
320                let _ = model.embed_text("warmup text");
321            }
322        }
323
324        Ok(())
325    }
326
327    /// Get available models
328    pub fn list_models(&self) -> Vec<String> {
329        self.models.keys().cloned().collect()
330    }
331
332    /// Generate embeddings using a specific model
333    pub fn embed_with_model(&self, model_name: &str, texts: &[String]) -> Result<Vec<Vector>> {
334        let model = self
335            .models
336            .get(model_name)
337            .ok_or_else(|| anyhow!("Model not found: {}", model_name))?;
338
339        if self.server_config.request_batching && texts.len() > 1 {
340            model.embed_batch(texts)
341        } else {
342            let mut results = Vec::new();
343            for text in texts {
344                results.push(model.embed_text(text)?);
345            }
346            Ok(results)
347        }
348    }
349
350    /// Generate embeddings using the default model
351    pub fn embed(&self, texts: &[String]) -> Result<Vec<Vector>> {
352        self.embed_with_model(&self.default_model, texts)
353    }
354
355    /// Get model info for a specific model
356    pub fn get_model_info(&self, model_name: &str) -> Option<&TensorFlowModelInfo> {
357        self.models.get(model_name)?.get_model_info()
358    }
359
360    /// Update server configuration
361    pub fn update_config(&mut self, config: ServerConfig) {
362        self.server_config = config;
363    }
364}
365
366impl EmbeddingGenerator for TensorFlowEmbedder {
367    fn generate_embedding(&self, content: &ContentItem) -> Result<Vector> {
368        self.embed_text(&content.content)
369    }
370
371    fn generate_batch_embeddings(&self, content: &[ContentItem]) -> Result<Vec<ProcessingResult>> {
372        let mut results = Vec::new();
373
374        for item in content {
375            let start_time = Instant::now();
376            let vector_result = self.generate_embedding(item);
377            let duration = start_time.elapsed();
378
379            let result = match vector_result {
380                Ok(vector) => ProcessingResult {
381                    item: item.clone(),
382                    vector: Some(vector),
383                    status: ProcessingStatus::Completed,
384                    duration,
385                    error: None,
386                    metadata: HashMap::new(),
387                },
388                Err(e) => ProcessingResult {
389                    item: item.clone(),
390                    vector: None,
391                    status: ProcessingStatus::Failed {
392                        reason: e.to_string(),
393                    },
394                    duration,
395                    error: Some(e.to_string()),
396                    metadata: HashMap::new(),
397                },
398            };
399
400            results.push(result);
401        }
402
403        Ok(results)
404    }
405
406    fn embedding_dimensions(&self) -> usize {
407        self.get_dimensions().unwrap_or(512)
408    }
409
410    fn get_config(&self) -> serde_json::Value {
411        serde_json::to_value(&self.config).unwrap_or_default()
412    }
413
414    fn is_ready(&self) -> bool {
415        self.session_initialized
416    }
417
418    fn get_statistics(&self) -> GeneratorStatistics {
419        GeneratorStatistics {
420            total_embeddings: 0,
421            total_processing_time: Duration::from_millis(0),
422            average_processing_time: Duration::from_millis(0),
423            error_count: 0,
424            last_error: None,
425        }
426    }
427}
428
429#[cfg(test)]
430#[allow(unused_imports, clippy::useless_vec)]
431mod tests {
432    use super::*;
433    use std::path::PathBuf;
434
435    #[test]
436    fn test_tensorflow_config_creation() {
437        let config = TensorFlowConfig::default();
438        assert_eq!(config.batch_size, 32);
439        assert_eq!(config.max_sequence_length, 512);
440        assert!(matches!(config.device, TensorFlowDevice::Cpu { .. }));
441    }
442
443    #[test]
444    fn test_tensorflow_embedder_creation() {
445        let config = TensorFlowConfig::default();
446        let embedder = TensorFlowEmbedder::new(config);
447        assert!(embedder.is_ok());
448    }
449
450    #[test]
451    fn test_preprocessing_pipeline() {
452        let mut embedder = TensorFlowEmbedder::new(TensorFlowConfig::default()).unwrap();
453        let pipeline = PreprocessingPipeline {
454            lowercase: true,
455            remove_punctuation: true,
456            ..Default::default()
457        };
458        embedder.set_preprocessing_pipeline(pipeline);
459
460        let processed = embedder.preprocess_text("Hello, World!").unwrap();
461        assert_eq!(processed, "hello world");
462    }
463
464    #[test]
465    fn test_model_server_creation() {
466        let server = TensorFlowModelServer::new("default".to_string(), ServerConfig::default());
467        assert_eq!(server.default_model, "default");
468        assert!(server.list_models().is_empty());
469    }
470
471    #[test]
472    fn test_model_registration() {
473        let mut server =
474            TensorFlowModelServer::new("test_model".to_string(), ServerConfig::default());
475
476        let config = TensorFlowConfig::default();
477        let embedder = TensorFlowEmbedder::new(config).unwrap();
478
479        let result = server.register_model("test_model".to_string(), embedder);
480        assert!(result.is_ok());
481        assert_eq!(server.list_models().len(), 1);
482    }
483
484    #[test]
485    fn test_tensor_spec_creation() {
486        let spec = TensorSpec {
487            name: "input".to_string(),
488            dtype: TensorDataType::Float32,
489            shape: vec![None, Some(512)],
490        };
491        assert_eq!(spec.name, "input");
492        assert!(matches!(spec.dtype, TensorDataType::Float32));
493    }
494
495    #[test]
496    fn test_session_config_default() {
497        let config = SessionConfig::default();
498        assert!(config.allow_soft_placement);
499        assert!(!config.log_device_placement);
500        assert!(config.inter_op_parallelism_threads.is_none());
501    }
502
503    #[test]
504    fn test_device_configuration() {
505        let cpu_device = TensorFlowDevice::Cpu {
506            num_threads: Some(4),
507        };
508        let gpu_device = TensorFlowDevice::Gpu {
509            device_id: 0,
510            memory_growth: true,
511        };
512
513        assert!(matches!(cpu_device, TensorFlowDevice::Cpu { .. }));
514        assert!(matches!(gpu_device, TensorFlowDevice::Gpu { .. }));
515    }
516
517    #[test]
518    fn test_optimization_levels() {
519        let levels = vec![
520            OptimizationLevel::None,
521            OptimizationLevel::Basic,
522            OptimizationLevel::Extended,
523            OptimizationLevel::Aggressive,
524        ];
525        assert_eq!(levels.len(), 4);
526    }
527}