# oxirs-graphrag
**GraphRAG: Hybrid Vector + Graph Retrieval-Augmented Generation for OxiRS**
[](https://crates.io/crates/oxirs-graphrag)
[](https://docs.rs/oxirs-graphrag)
Microsoft-style GraphRAG implementation combining vector similarity search with knowledge graph topology for enhanced retrieval-augmented generation.
## Features
- **RRF (Reciprocal Rank Fusion)**: Combines vector and keyword search results
- **N-hop Graph Expansion**: SPARQL-based graph traversal for context retrieval
- **Community Detection**: Louvain algorithm for hierarchical clustering
- **LLM Context Building**: Converts graph structures to natural language
- **SPARQL Extensions**: Custom functions for hybrid queries
## Architecture
```
Natural Language Query
↓
Query Embedding (via oxirs-embed)
↓
[Vector KNN Search] + [Keyword BM25 Search]
↓
RRF Fusion → Seed Entities
↓
SPARQL N-hop Expansion → Subgraph (max 500 triples)
↓
Community Detection (Louvain) → Hierarchical Clusters
↓
Context Building → Natural Language + Structured Data
↓
LLM Generation → Answer + Citations
```
## Quick Start
```rust
use oxirs_graphrag::{GraphRAGEngine, GraphRAGConfig};
use std::sync::Arc;
let config = GraphRAGConfig {
top_k: 20,
expansion_hops: 2,
enable_communities: true,
..Default::default()
};
let engine = GraphRAGEngine::new(
Arc::new(vec_index),
Arc::new(embedding_model),
Arc::new(sparql_engine),
Arc::new(llm_client),
config,
);
let result = engine.query("What are quantum computing applications?").await?;
println!("Answer: {}", result.generated_text);
```
## Configuration
```rust
pub struct GraphRAGConfig {
pub top_k: usize, // Default: 20
pub expansion_hops: usize, // Default: 2
pub max_subgraph_size: usize, // Default: 500
pub enable_communities: bool, // Default: true
pub vector_weight: f32, // Default: 0.7
pub keyword_weight: f32, // Default: 0.3
}
```
## SPARQL Extensions
```sparql
PREFIX graphrag: <http://oxirs.io/graphrag#>
SELECT ?entity ?similarity WHERE {
?entity graphrag:similarity ("machine learning", 0.8) .
}
SELECT ?related WHERE {
<http://example.org/entity> graphrag:expand(2) ?related .
}
```
## Integration with OxiRS
Requires:
- `oxirs-vec` - Vector index (HNSW)
- `oxirs-embed` - Embedding models (TransE, GNN, Transformers)
- `oxirs-chat` - LLM client integration
- `oxirs-arq` - SPARQL query engine
## License
Licensed under either of Apache License, Version 2.0 or MIT license at your option.