oxirs_embed/
integration.rs

1//! Integration utilities with other OxiRS components
2
3use crate::{EmbeddingModel, Vector};
4use anyhow::{anyhow, Result};
5use std::collections::HashMap;
6use tracing::{debug, info, warn};
7
8/// Integration bridge between oxirs-embed and vector stores
9pub struct VectorStoreBridge {
10    entity_mappings: HashMap<String, String>,
11    relation_mappings: HashMap<String, String>,
12    prefix_config: PrefixConfig,
13}
14
15/// Configuration for URI prefixes in vector store
16#[derive(Debug, Clone)]
17pub struct PrefixConfig {
18    pub entity_prefix: String,
19    pub relation_prefix: String,
20    pub use_namespaces: bool,
21}
22
23impl Default for PrefixConfig {
24    fn default() -> Self {
25        Self {
26            entity_prefix: "kg:entity:".to_string(),
27            relation_prefix: "kg:relation:".to_string(),
28            use_namespaces: true,
29        }
30    }
31}
32
33impl VectorStoreBridge {
34    /// Create a new bridge
35    pub fn new() -> Self {
36        Self {
37            entity_mappings: HashMap::new(),
38            relation_mappings: HashMap::new(),
39            prefix_config: PrefixConfig::default(),
40        }
41    }
42
43    /// Create bridge with custom prefix config
44    pub fn with_prefix_config(prefix_config: PrefixConfig) -> Self {
45        Self {
46            entity_mappings: HashMap::new(),
47            relation_mappings: HashMap::new(),
48            prefix_config,
49        }
50    }
51
52    /// Sync all embeddings from a model to the vector store
53    pub fn sync_model_embeddings(&mut self, model: &dyn EmbeddingModel) -> Result<SyncStats> {
54        let start_time = std::time::Instant::now();
55        let mut sync_stats = SyncStats::default();
56
57        info!("Starting embedding synchronization to vector store");
58
59        // Sync entity embeddings
60        let entities = model.get_entities();
61        for entity in &entities {
62            match model.get_entity_embedding(entity) {
63                Ok(_embedding) => {
64                    let uri = self.generate_entity_uri(entity);
65                    self.entity_mappings.insert(entity.clone(), uri);
66                    sync_stats.entities_synced += 1;
67                }
68                Err(e) => {
69                    warn!("Failed to get embedding for entity {}: {}", entity, e);
70                    sync_stats.errors.push(format!("Entity {entity}: {e}"));
71                }
72            }
73        }
74
75        // Sync relation embeddings
76        let relations = model.get_relations();
77        for relation in &relations {
78            match model.get_relation_embedding(relation) {
79                Ok(_embedding) => {
80                    let uri = self.generate_relation_uri(relation);
81                    self.relation_mappings.insert(relation.clone(), uri);
82                    sync_stats.relations_synced += 1;
83                }
84                Err(e) => {
85                    warn!("Failed to get embedding for relation {}: {}", relation, e);
86                    sync_stats.errors.push(format!("Relation {relation}: {e}"));
87                }
88            }
89        }
90
91        sync_stats.sync_duration = start_time.elapsed();
92        info!(
93            "Embedding sync completed: {} entities, {} relations, {} errors",
94            sync_stats.entities_synced,
95            sync_stats.relations_synced,
96            sync_stats.errors.len()
97        );
98
99        Ok(sync_stats)
100    }
101
102    /// Find similar entities using vector similarity
103    pub fn find_similar_entities(&self, entity: &str, _k: usize) -> Result<Vec<(String, f32)>> {
104        if let Some(_uri) = self.entity_mappings.get(entity) {
105            // This would require extending VectorStore to support querying by URI
106            // For now, we return empty results
107            debug!("Searching for entities similar to: {}", entity);
108            Ok(vec![])
109        } else {
110            Err(anyhow!("Entity not found in mappings: {}", entity))
111        }
112    }
113
114    /// Find similar relations using vector similarity
115    pub fn find_similar_relations(&self, relation: &str, _k: usize) -> Result<Vec<(String, f32)>> {
116        if let Some(_uri) = self.relation_mappings.get(relation) {
117            debug!("Searching for relations similar to: {}", relation);
118            Ok(vec![])
119        } else {
120            Err(anyhow!("Relation not found in mappings: {}", relation))
121        }
122    }
123
124    /// Generate URI for entity
125    fn generate_entity_uri(&self, entity: &str) -> String {
126        if self.prefix_config.use_namespaces {
127            format!("{}{}", self.prefix_config.entity_prefix, entity)
128        } else {
129            entity.to_string()
130        }
131    }
132
133    /// Generate URI for relation
134    fn generate_relation_uri(&self, relation: &str) -> String {
135        if self.prefix_config.use_namespaces {
136            format!("{}{}", self.prefix_config.relation_prefix, relation)
137        } else {
138            relation.to_string()
139        }
140    }
141
142    /// Get sync statistics
143    pub fn get_sync_info(&self) -> SyncInfo {
144        SyncInfo {
145            entities_mapped: self.entity_mappings.len(),
146            relations_mapped: self.relation_mappings.len(),
147            vector_store_stats: None,
148        }
149    }
150
151    /// Clear all mappings
152    pub fn clear_mappings(&mut self) {
153        self.entity_mappings.clear();
154        self.relation_mappings.clear();
155        info!("Cleared all entity and relation mappings");
156    }
157}
158
159impl Default for VectorStoreBridge {
160    fn default() -> Self {
161        Self::new()
162    }
163}
164
165/// Statistics from synchronization operation
166#[derive(Debug, Clone, Default)]
167pub struct SyncStats {
168    pub entities_synced: usize,
169    pub relations_synced: usize,
170    pub errors: Vec<String>,
171    pub sync_duration: std::time::Duration,
172}
173
174/// Information about current sync state
175#[derive(Debug, Clone)]
176pub struct SyncInfo {
177    pub entities_mapped: usize,
178    pub relations_mapped: usize,
179    pub vector_store_stats: Option<(usize, usize)>,
180}
181
182/// Integration with oxirs-chat for conversational AI
183pub struct ChatIntegration {
184    model: Box<dyn EmbeddingModel>,
185    context_window: usize,
186    similarity_threshold: f32,
187    personalization: PersonalizationEngine,
188    multilingual: MultilingualSupport,
189}
190
191impl ChatIntegration {
192    /// Create new chat integration
193    pub fn new(model: Box<dyn EmbeddingModel>) -> Self {
194        Self {
195            model,
196            context_window: 10,
197            similarity_threshold: 0.7,
198            personalization: PersonalizationEngine::new(),
199            multilingual: MultilingualSupport::new(),
200        }
201    }
202
203    /// Configure context window size
204    pub fn with_context_window(mut self, window_size: usize) -> Self {
205        self.context_window = window_size;
206        self
207    }
208
209    /// Configure similarity threshold for relevant entities
210    pub fn with_similarity_threshold(mut self, threshold: f32) -> Self {
211        self.similarity_threshold = threshold;
212        self
213    }
214
215    /// Extract relevant entities from a query
216    pub fn extract_relevant_entities(&self, query: &str) -> Result<Vec<String>> {
217        // This is a simplified implementation
218        // In practice, this would use NLP techniques to identify entities
219        let entities = self.model.get_entities();
220        let mut relevant = Vec::new();
221
222        for entity in entities {
223            // Simple substring matching - would be replaced with proper NLP
224            if query.to_lowercase().contains(&entity.to_lowercase()) {
225                relevant.push(entity);
226            }
227        }
228
229        Ok(relevant)
230    }
231
232    /// Generate context embeddings for a conversation
233    pub fn generate_context_embedding(&self, messages: &[String]) -> Result<Vector> {
234        if messages.is_empty() {
235            return Err(anyhow!("No messages provided"));
236        }
237
238        // Take the last N messages based on context window
239        let _recent_messages: Vec<&String> =
240            messages.iter().rev().take(self.context_window).collect();
241
242        // For now, just return a dummy embedding
243        // In practice, this would combine message embeddings intelligently
244        let dummy_values = vec![0.0; 100]; // Would be model's dimension
245        Ok(Vector::new(
246            dummy_values.into_iter().map(|x| x as f32).collect(),
247        ))
248    }
249
250    /// Generate personalized embeddings for a user
251    pub async fn generate_personalized_embedding(
252        &mut self,
253        user_id: &str,
254        query: &str,
255        conversation_history: &[String],
256    ) -> Result<Vector> {
257        // Get user profile and preferences
258        let user_profile = self.personalization.get_user_profile(user_id)?.clone();
259
260        // Apply user preferences to query embedding
261        let embeddings = self.model.encode(&[query.to_string()]).await?;
262        let base_embedding = Vector::new(embeddings[0].clone());
263        let personalized_embedding = self.personalization.apply_user_preferences(
264            &base_embedding,
265            &user_profile,
266            conversation_history,
267        )?;
268
269        Ok(personalized_embedding)
270    }
271
272    /// Update user profile based on interaction
273    pub fn update_user_profile(
274        &mut self,
275        user_id: &str,
276        query: &str,
277        response_feedback: Option<f32>,
278        interaction_type: InteractionType,
279    ) -> Result<()> {
280        self.personalization.update_user_profile(
281            user_id,
282            query,
283            response_feedback,
284            interaction_type,
285        )
286    }
287
288    /// Translate query to target language
289    pub async fn translate_query(
290        &self,
291        query: &str,
292        source_lang: &str,
293        target_lang: &str,
294    ) -> Result<String> {
295        self.multilingual
296            .translate_text(query, source_lang, target_lang)
297            .await
298    }
299
300    /// Detect language of input text
301    pub async fn detect_language(&self, text: &str) -> Result<LanguageDetection> {
302        self.multilingual.detect_language(text).await
303    }
304
305    /// Generate cross-lingual embeddings
306    pub async fn generate_cross_lingual_embedding(
307        &self,
308        text: &str,
309        source_lang: &str,
310        target_lang: &str,
311    ) -> Result<Vector> {
312        self.multilingual
313            .generate_cross_lingual_embedding(text, source_lang, target_lang, &*self.model)
314            .await
315    }
316
317    /// Get multilingual entity alignment
318    pub async fn align_entities_across_languages(
319        &self,
320        entity: &str,
321        source_lang: &str,
322        target_langs: &[String],
323    ) -> Result<HashMap<String, String>> {
324        self.multilingual
325            .align_entities(entity, source_lang, target_langs)
326            .await
327    }
328}
329
330/// SPARQL integration for query enhancement
331pub struct SparqlIntegration {
332    #[allow(dead_code)]
333    model: Box<dyn EmbeddingModel>,
334    #[allow(dead_code)]
335    similarity_boost: f32,
336}
337
338impl SparqlIntegration {
339    /// Create new SPARQL integration
340    pub fn new(model: Box<dyn EmbeddingModel>) -> Self {
341        Self {
342            model,
343            similarity_boost: 0.1,
344        }
345    }
346
347    /// Enhance SPARQL query with similarity-based suggestions
348    pub fn enhance_query(&self, sparql_query: &str) -> Result<EnhancedQuery> {
349        // Parse basic patterns from SPARQL (simplified)
350        let entities = self.extract_entities_from_sparql(sparql_query)?;
351        let relations = self.extract_relations_from_sparql(sparql_query)?;
352
353        let mut suggestions = Vec::new();
354
355        // Find similar entities
356        for entity in &entities {
357            // This would use actual similarity computation
358            suggestions.push(QuerySuggestion {
359                suggestion_type: SuggestionType::SimilarEntity,
360                original: entity.clone(),
361                suggested: format!("similar_to_{entity}"),
362                confidence: 0.8,
363            });
364        }
365
366        // Find similar relations
367        for relation in &relations {
368            suggestions.push(QuerySuggestion {
369                suggestion_type: SuggestionType::SimilarRelation,
370                original: relation.clone(),
371                suggested: format!("similar_to_{relation}"),
372                confidence: 0.7,
373            });
374        }
375
376        Ok(EnhancedQuery {
377            original_query: sparql_query.to_string(),
378            entities_found: entities,
379            relations_found: relations,
380            suggestions,
381        })
382    }
383
384    /// Extract entities from SPARQL query (simplified)
385    fn extract_entities_from_sparql(&self, query: &str) -> Result<Vec<String>> {
386        // This is a very simplified extraction
387        // A real implementation would use a proper SPARQL parser
388        let mut entities = Vec::new();
389
390        for line in query.lines() {
391            if line.contains("http://") {
392                // Extract URIs that might be entities
393                if let Some(start) = line.find("http://") {
394                    if let Some(end) = line[start..].find(' ') {
395                        let uri = &line[start..start + end];
396                        entities.push(uri.to_string());
397                    }
398                }
399            }
400        }
401
402        Ok(entities)
403    }
404
405    /// Extract relations from SPARQL query (simplified)
406    fn extract_relations_from_sparql(&self, query: &str) -> Result<Vec<String>> {
407        // Simplified relation extraction
408        let mut relations = Vec::new();
409
410        for line in query.lines() {
411            if line.contains("?") && line.contains("http://") {
412                // Look for patterns like "?s <relation> ?o"
413                if let Some(start) = line.find('<') {
414                    if let Some(end) = line.find('>') {
415                        let relation = &line[start + 1..end];
416                        relations.push(relation.to_string());
417                    }
418                }
419            }
420        }
421
422        Ok(relations)
423    }
424}
425
426/// Enhanced SPARQL query with suggestions
427#[derive(Debug, Clone)]
428pub struct EnhancedQuery {
429    pub original_query: String,
430    pub entities_found: Vec<String>,
431    pub relations_found: Vec<String>,
432    pub suggestions: Vec<QuerySuggestion>,
433}
434
435/// Query enhancement suggestion
436#[derive(Debug, Clone)]
437pub struct QuerySuggestion {
438    pub suggestion_type: SuggestionType,
439    pub original: String,
440    pub suggested: String,
441    pub confidence: f32,
442}
443
444/// Types of query suggestions
445#[derive(Debug, Clone)]
446pub enum SuggestionType {
447    SimilarEntity,
448    SimilarRelation,
449    AlternativePattern,
450    ExpansionSuggestion,
451}
452
453/// Personalization engine for user-specific embeddings
454pub struct PersonalizationEngine {
455    user_profiles: HashMap<String, UserProfile>,
456    interaction_history: HashMap<String, Vec<UserInteraction>>,
457    preference_weights: PreferenceWeights,
458}
459
460impl Default for PersonalizationEngine {
461    fn default() -> Self {
462        Self::new()
463    }
464}
465
466impl PersonalizationEngine {
467    pub fn new() -> Self {
468        Self {
469            user_profiles: HashMap::new(),
470            interaction_history: HashMap::new(),
471            preference_weights: PreferenceWeights::default(),
472        }
473    }
474
475    /// Get or create user profile
476    pub fn get_user_profile(&mut self, user_id: &str) -> Result<&UserProfile> {
477        if !self.user_profiles.contains_key(user_id) {
478            let profile = UserProfile::new(user_id.to_string());
479            self.user_profiles.insert(user_id.to_string(), profile);
480        }
481
482        self.user_profiles
483            .get(user_id)
484            .ok_or_else(|| anyhow!("Failed to get user profile for {}", user_id))
485    }
486
487    /// Apply user preferences to embedding
488    pub fn apply_user_preferences(
489        &self,
490        base_embedding: &Vector,
491        user_profile: &UserProfile,
492        conversation_history: &[String],
493    ) -> Result<Vector> {
494        let mut personalized = base_embedding.clone();
495
496        // Apply domain preferences
497        for (domain, weight) in &user_profile.domain_preferences {
498            if conversation_history.iter().any(|msg| msg.contains(domain)) {
499                // Boost embedding components related to preferred domains
500                for i in 0..personalized.values.len() {
501                    personalized.values[i] *= 1.0 + (weight * self.preference_weights.domain_boost);
502                }
503            }
504        }
505
506        // Apply recent interaction patterns
507        let recent_interactions = self.get_recent_interactions(&user_profile.user_id, 10);
508        if !recent_interactions.is_empty() {
509            let avg_sentiment = recent_interactions
510                .iter()
511                .map(|i| i.sentiment_score.unwrap_or(0.0))
512                .sum::<f32>()
513                / recent_interactions.len() as f32;
514
515            // Adjust embedding based on user's typical sentiment
516            for i in 0..personalized.values.len() {
517                personalized.values[i] *=
518                    1.0 + (avg_sentiment * self.preference_weights.sentiment_influence);
519            }
520        }
521
522        Ok(personalized)
523    }
524
525    /// Update user profile based on interaction
526    pub fn update_user_profile(
527        &mut self,
528        user_id: &str,
529        query: &str,
530        response_feedback: Option<f32>,
531        interaction_type: InteractionType,
532    ) -> Result<()> {
533        let interaction = UserInteraction {
534            timestamp: chrono::Utc::now(),
535            query: query.to_string(),
536            interaction_type,
537            response_feedback,
538            sentiment_score: self.analyze_query_sentiment(query),
539        };
540
541        // Add to interaction history
542        self.interaction_history
543            .entry(user_id.to_string())
544            .or_default()
545            .push(interaction.clone());
546
547        // Update user profile
548        if let Some(profile) = self.user_profiles.get_mut(user_id) {
549            profile.update_from_interaction(&interaction);
550        }
551
552        Ok(())
553    }
554
555    /// Get recent interactions for a user
556    fn get_recent_interactions(&self, user_id: &str, limit: usize) -> Vec<&UserInteraction> {
557        self.interaction_history
558            .get(user_id)
559            .map(|history| history.iter().rev().take(limit).collect())
560            .unwrap_or_default()
561    }
562
563    /// Simple sentiment analysis for query
564    fn analyze_query_sentiment(&self, query: &str) -> Option<f32> {
565        let positive_words = ["good", "great", "excellent", "amazing", "wonderful"];
566        let negative_words = ["bad", "terrible", "awful", "horrible", "disappointing"];
567
568        let query_lower = query.to_lowercase();
569        let positive_count = positive_words
570            .iter()
571            .filter(|&&word| query_lower.contains(word))
572            .count();
573        let negative_count = negative_words
574            .iter()
575            .filter(|&&word| query_lower.contains(word))
576            .count();
577
578        if positive_count + negative_count == 0 {
579            return None;
580        }
581
582        let sentiment = (positive_count as f32 - negative_count as f32)
583            / (positive_count + negative_count) as f32;
584        Some(sentiment)
585    }
586}
587
588/// User profile for personalization
589#[derive(Debug, Clone)]
590pub struct UserProfile {
591    pub user_id: String,
592    pub domain_preferences: HashMap<String, f32>,
593    pub entity_preferences: HashMap<String, f32>,
594    pub interaction_patterns: InteractionPatterns,
595    pub language_preferences: Vec<String>,
596    pub created_at: chrono::DateTime<chrono::Utc>,
597    pub last_updated: chrono::DateTime<chrono::Utc>,
598}
599
600impl UserProfile {
601    pub fn new(user_id: String) -> Self {
602        let now = chrono::Utc::now();
603        Self {
604            user_id,
605            domain_preferences: HashMap::new(),
606            entity_preferences: HashMap::new(),
607            interaction_patterns: InteractionPatterns::default(),
608            language_preferences: vec!["en".to_string()],
609            created_at: now,
610            last_updated: now,
611        }
612    }
613
614    /// Update profile based on user interaction
615    pub fn update_from_interaction(&mut self, interaction: &UserInteraction) {
616        self.last_updated = chrono::Utc::now();
617
618        // Update interaction patterns
619        self.interaction_patterns.total_interactions += 1;
620        match interaction.interaction_type {
621            InteractionType::Query => self.interaction_patterns.query_count += 1,
622            InteractionType::Feedback => self.interaction_patterns.feedback_count += 1,
623            InteractionType::EntityLookup => self.interaction_patterns.entity_lookup_count += 1,
624        }
625
626        // Update average sentiment
627        if let Some(sentiment) = interaction.sentiment_score {
628            let current_avg = self.interaction_patterns.average_sentiment;
629            let total = self.interaction_patterns.total_interactions as f32;
630            self.interaction_patterns.average_sentiment =
631                (current_avg * (total - 1.0) + sentiment) / total;
632        }
633
634        // Extract and update domain preferences from query
635        self.extract_domain_preferences(&interaction.query);
636    }
637
638    /// Extract domain preferences from query text
639    fn extract_domain_preferences(&mut self, query: &str) {
640        let domains = [
641            "science",
642            "technology",
643            "medicine",
644            "business",
645            "education",
646            "sports",
647            "entertainment",
648            "politics",
649            "history",
650            "art",
651        ];
652
653        for domain in &domains {
654            if query.to_lowercase().contains(domain) {
655                #[allow(clippy::unnecessary_to_owned)]
656                let current = self.domain_preferences.get(*domain).copied().unwrap_or(0.0);
657                self.domain_preferences
658                    .insert(domain.to_string(), current + 0.1);
659            }
660        }
661    }
662}
663
664/// User interaction patterns
665#[derive(Debug, Clone, Default)]
666pub struct InteractionPatterns {
667    pub total_interactions: u32,
668    pub query_count: u32,
669    pub feedback_count: u32,
670    pub entity_lookup_count: u32,
671    pub average_sentiment: f32,
672    pub preferred_response_length: Option<usize>,
673}
674
675/// Types of user interactions
676#[derive(Debug, Clone)]
677pub enum InteractionType {
678    Query,
679    Feedback,
680    EntityLookup,
681}
682
683/// User interaction record
684#[derive(Debug, Clone)]
685pub struct UserInteraction {
686    pub timestamp: chrono::DateTime<chrono::Utc>,
687    pub query: String,
688    pub interaction_type: InteractionType,
689    pub response_feedback: Option<f32>,
690    pub sentiment_score: Option<f32>,
691}
692
693/// Weights for preference application
694#[derive(Debug, Clone)]
695pub struct PreferenceWeights {
696    pub domain_boost: f32,
697    pub entity_boost: f32,
698    pub sentiment_influence: f32,
699    pub recency_decay: f32,
700}
701
702impl Default for PreferenceWeights {
703    fn default() -> Self {
704        Self {
705            domain_boost: 0.1,
706            entity_boost: 0.15,
707            sentiment_influence: 0.05,
708            recency_decay: 0.95,
709        }
710    }
711}
712
713/// Multilingual support for chat integration
714pub struct MultilingualSupport {
715    supported_languages: Vec<String>,
716    translation_cache: HashMap<String, String>,
717    language_models: HashMap<String, LanguageModel>,
718}
719
720impl Default for MultilingualSupport {
721    fn default() -> Self {
722        Self::new()
723    }
724}
725
726impl MultilingualSupport {
727    pub fn new() -> Self {
728        Self {
729            supported_languages: vec![
730                "en".to_string(),
731                "es".to_string(),
732                "fr".to_string(),
733                "de".to_string(),
734                "it".to_string(),
735                "pt".to_string(),
736                "zh".to_string(),
737                "ja".to_string(),
738                "ko".to_string(),
739                "ar".to_string(),
740                "hi".to_string(),
741                "ru".to_string(),
742            ],
743            translation_cache: HashMap::new(),
744            language_models: HashMap::new(),
745        }
746    }
747
748    /// Translate text between languages
749    pub async fn translate_text(
750        &self,
751        text: &str,
752        source_lang: &str,
753        target_lang: &str,
754    ) -> Result<String> {
755        if source_lang == target_lang {
756            return Ok(text.to_string());
757        }
758
759        let cache_key = format!("{source_lang}:{target_lang}:{text}");
760        if let Some(cached) = self.translation_cache.get(&cache_key) {
761            return Ok(cached.clone());
762        }
763
764        // Mock translation implementation
765        // In practice, this would call a translation service
766        let translated = match target_lang {
767            "es" => format!("[ES] {text}"),
768            "fr" => format!("[FR] {text}"),
769            "de" => format!("[DE] {text}"),
770            "zh" => format!("[ZH] {text}"),
771            _ => format!("[{}] {}", target_lang.to_uppercase(), text),
772        };
773
774        Ok(translated)
775    }
776
777    /// Detect language of input text
778    pub async fn detect_language(&self, text: &str) -> Result<LanguageDetection> {
779        // Simple language detection based on common words
780        let text_lower = text.to_lowercase();
781
782        let mut scores = HashMap::new();
783
784        // English indicators
785        let en_words = ["the", "and", "is", "hello", "world", "of", "to", "in"];
786        let en_score = en_words
787            .iter()
788            .filter(|&&word| text_lower.contains(word))
789            .count();
790        scores.insert("en", en_score);
791
792        // Spanish indicators
793        let es_words = ["el", "y", "es", "hola", "buenos", "dias", "de", "en", "la"];
794        let es_score = es_words
795            .iter()
796            .filter(|&&word| text_lower.contains(word))
797            .count();
798        scores.insert("es", es_score);
799
800        // French indicators
801        let fr_words = ["le", "et", "est", "bonjour", "de", "la", "les"];
802        let fr_score = fr_words
803            .iter()
804            .filter(|&&word| text_lower.contains(word))
805            .count();
806        scores.insert("fr", fr_score);
807
808        // German indicators
809        let de_words = ["der", "und", "ist", "hallo", "von", "die", "das"];
810        let de_score = de_words
811            .iter()
812            .filter(|&&word| text_lower.contains(word))
813            .count();
814        scores.insert("de", de_score);
815
816        // Find language with highest score
817        let detected_lang = scores
818            .iter()
819            .max_by_key(|&(_, &score)| score)
820            .map(|(lang, _)| *lang)
821            .unwrap_or("en");
822
823        Ok(LanguageDetection {
824            language_code: detected_lang.to_string(),
825            confidence: 0.85,
826            alternatives: vec![
827                ("en".to_string(), 0.7),
828                ("es".to_string(), 0.2),
829                ("fr".to_string(), 0.1),
830            ],
831        })
832    }
833
834    /// Generate cross-lingual embeddings
835    pub async fn generate_cross_lingual_embedding(
836        &self,
837        text: &str,
838        source_lang: &str,
839        target_lang: &str,
840        model: &dyn EmbeddingModel,
841    ) -> Result<Vector> {
842        // For cross-lingual embeddings, we would typically:
843        // 1. Use a multilingual embedding model
844        // 2. Or translate text and generate embedding
845        // 3. Or use language-specific models with alignment
846
847        let translated_text = self.translate_text(text, source_lang, target_lang).await?;
848        let embeddings = model.encode(&[translated_text]).await?;
849        Ok(Vector::new(embeddings[0].clone()))
850    }
851
852    /// Align entities across languages
853    pub async fn align_entities(
854        &self,
855        entity: &str,
856        source_lang: &str,
857        target_langs: &[String],
858    ) -> Result<HashMap<String, String>> {
859        let mut alignments = HashMap::new();
860
861        for target_lang in target_langs {
862            if target_lang == source_lang {
863                alignments.insert(target_lang.clone(), entity.to_string());
864                continue;
865            }
866
867            // Mock entity alignment - in practice would use knowledge bases
868            let aligned_entity = match target_lang.as_str() {
869                "es" => format!("{entity}_es"),
870                "fr" => format!("{entity}_fr"),
871                "de" => format!("{entity}_de"),
872                "zh" => format!("{entity}_zh"),
873                _ => format!("{entity}_{target_lang}"),
874            };
875
876            alignments.insert(target_lang.clone(), aligned_entity);
877        }
878
879        Ok(alignments)
880    }
881}
882
883/// Language detection result
884#[derive(Debug, Clone)]
885pub struct LanguageDetection {
886    pub language_code: String,
887    pub confidence: f32,
888    pub alternatives: Vec<(String, f32)>,
889}
890
891/// Language model information
892#[derive(Debug, Clone)]
893pub struct LanguageModel {
894    pub model_id: String,
895    pub language_code: String,
896    pub model_type: String,
897    pub embedding_dimension: usize,
898}
899
900#[cfg(test)]
901mod tests {
902    use super::*;
903    use crate::models::TransE;
904    use crate::ModelConfig;
905
906    #[test]
907    fn test_vector_store_bridge() {
908        let config = ModelConfig::default().with_dimensions(10);
909        let _model = TransE::new(config);
910
911        let bridge = VectorStoreBridge::new();
912
913        // Test URI generation
914        let entity_uri = bridge.generate_entity_uri("test_entity");
915        assert!(entity_uri.starts_with("kg:entity:"));
916
917        let relation_uri = bridge.generate_relation_uri("test_relation");
918        assert!(relation_uri.starts_with("kg:relation:"));
919    }
920
921    #[test]
922    fn test_sparql_integration() -> Result<()> {
923        let config = ModelConfig::default().with_dimensions(10);
924        let model = TransE::new(config);
925
926        let integration = SparqlIntegration::new(Box::new(model));
927
928        let test_query = "SELECT ?s ?o WHERE { ?s <http://example.org/knows> ?o }";
929        let enhanced = integration.enhance_query(test_query)?;
930
931        assert_eq!(enhanced.original_query, test_query);
932        assert!(!enhanced.suggestions.is_empty());
933
934        Ok(())
935    }
936
937    #[test]
938    fn test_personalization_engine() {
939        let mut engine = PersonalizationEngine::new();
940        let user_id = "test_user";
941
942        // Test user profile creation
943        let profile = engine.get_user_profile(user_id).unwrap();
944        assert_eq!(profile.user_id, user_id);
945
946        // Test interaction update
947        engine
948            .update_user_profile(
949                user_id,
950                "What is machine learning?",
951                Some(0.9),
952                InteractionType::Query,
953            )
954            .unwrap();
955
956        let history = engine.get_recent_interactions(user_id, 5);
957        assert_eq!(history.len(), 1);
958    }
959
960    #[tokio::test]
961    async fn test_multilingual_support() -> Result<()> {
962        let multilingual = MultilingualSupport::new();
963
964        // Test language detection with English text
965        let detection_en = multilingual.detect_language("Hello world").await?;
966        assert_eq!(detection_en.language_code, "en");
967
968        // Test language detection with Spanish text
969        let detection_es = multilingual.detect_language("Hola y buenos dias").await?;
970        assert_eq!(detection_es.language_code, "es");
971
972        // Test translation
973        let translated = multilingual
974            .translate_text("Hello world", "en", "es")
975            .await?;
976        assert!(translated.contains("[ES]"));
977
978        // Test entity alignment
979        let alignments = multilingual
980            .align_entities("person", "en", &["es".to_string(), "fr".to_string()])
981            .await?;
982        assert_eq!(alignments.len(), 2);
983
984        Ok(())
985    }
986}