oxirs-embed 0.1.0

Knowledge graph embeddings with TransE, ComplEx, and custom models
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# OxiRS Embed - Feature Documentation

*Last Updated: 2026-01-06*

## Overview

OxiRS Embed provides comprehensive tools for knowledge graph embeddings with state-of-the-art models, advanced analysis capabilities, and production-ready optimizations.

## Table of Contents

1. [Embedding Models]#embedding-models
2. [Link Prediction]#link-prediction
3. [Clustering]#clustering
4. [Community Detection]#community-detection
5. [Visualization]#visualization
6. [Interpretability]#interpretability
7. [Performance Optimization]#performance-optimization
8. [Integration Examples]#integration-examples

---

## Embedding Models

### TransE (Translational Embeddings)
Translation-based model where `h + r ≈ t` for triple `(h, r, t)`.

```rust
use oxirs_embed::{TransE, TransEConfig, ModelConfig, Triple};

let config = TransEConfig {
    base: ModelConfig {
        dimensions: 128,
        learning_rate: 0.01,
        epochs: 100,
        ..Default::default()
    },
    margin: 1.0,
    norm: 2,
    ..Default::default()
};

let mut model = TransE::new(config);
model.add_triple(Triple {
    head: "alice".to_string(),
    relation: "knows".to_string(),
    tail: "bob".to_string(),
}).unwrap();

model.train(Some(100)).await.unwrap();
```

### HolE (Holographic Embeddings)
Uses circular correlation for entity-relation combinations.

```rust
use oxirs_embed::{HoLE, HoLEConfig};

let config = HoLEConfig {
    base: ModelConfig {
        dimensions: 100,
        ..Default::default()
    },
    use_sigmoid: true,
    ..Default::default()
};

let mut model = HoLE::new(config);
// Train model...
```

### ConvE (Convolutional Embeddings)
2D convolutional neural networks for knowledge graph completion.

```rust
use oxirs_embed::{ConvE, ConvEConfig};

let config = ConvEConfig {
    base: ModelConfig {
        dimensions: 200,
        ..Default::default()
    },
    reshape_width: 20,
    num_filters: 32,
    kernel_size: 3,
    dropout_rate: 0.3,
    ..Default::default()
};

let mut model = ConvE::new(config);
// Train model...
```

---

## Link Prediction

Predict missing links in knowledge graphs with comprehensive evaluation metrics.

```rust
use oxirs_embed::{LinkPredictor, LinkPredictionConfig};

let pred_config = LinkPredictionConfig {
    top_k: 10,
    min_confidence: 0.5,
    filter_known_triples: true,
    parallel: true,
    ..Default::default()
};

let predictor = LinkPredictor::new(pred_config, trained_model);

// Predict tail entities
let candidates = vec!["bob".to_string(), "charlie".to_string()];
let predictions = predictor.predict_tail("alice", "knows", &candidates)?;

for pred in predictions {
    println!("{}: score={:.4}, confidence={:.4}, rank={}",
        pred.predicted_id, pred.score, pred.confidence, pred.rank);
}

// Evaluate on test set
let test_triples = vec![/* ... */];
let metrics = predictor.evaluate(&test_triples, &candidates)?;

println!("MRR: {:.4}", metrics.mrr);
println!("Hits@1: {:.4}", metrics.hits_at_1);
println!("Hits@10: {:.4}", metrics.hits_at_10);
```

### Metrics

- **MRR (Mean Reciprocal Rank)**: Average of 1/rank for correct predictions
- **Hits@K**: Percentage of correct entities in top-K predictions
- **Mean Rank**: Average rank of correct entities

---

## Clustering

Group similar entities based on their embeddings.

```rust
use oxirs_embed::{EntityClustering, ClusteringConfig, ClusteringAlgorithm};

let config = ClusteringConfig {
    algorithm: ClusteringAlgorithm::KMeans,
    num_clusters: 10,
    max_iterations: 100,
    tolerance: 1e-4,
    ..Default::default()
};

let mut clustering = EntityClustering::new(config);
let result = clustering.cluster(&entity_embeddings)?;

println!("Found {} clusters", result.num_clusters);
println!("Silhouette score: {:.4}", result.silhouette_score);
println!("Inertia: {:.4}", result.inertia);

// Get cluster assignments
for (entity, cluster_id) in &result.assignments {
    println!("{} -> cluster {}", entity, cluster_id);
}
```

### Supported Algorithms

1. **K-Means**: Partitions entities into K clusters
2. **Hierarchical**: Agglomerative clustering with average linkage
3. **DBSCAN**: Density-based spatial clustering
4. **Spectral**: Graph-based clustering using normalized embeddings

---

## Community Detection

Discover communities in knowledge graph structure.

```rust
use oxirs_embed::{CommunityDetector, CommunityConfig, CommunityAlgorithm};

let config = CommunityConfig {
    algorithm: CommunityAlgorithm::Louvain,
    max_iterations: 100,
    resolution: 1.0,
    ..Default::default()
};

let mut detector = CommunityDetector::new(config);

// From graph triples
let result = detector.detect_from_triples(&triples)?;

// Or from embeddings
let result = detector.detect_from_embeddings(&embeddings)?;

println!("Communities: {}", result.num_communities);
println!("Modularity: {:.4}", result.modularity);
println!("Coverage: {:.4}", result.coverage);

// Access community members
for (community_id, members) in &result.communities {
    println!("Community {}: {:?}", community_id, members);
}
```

### Algorithms

1. **Louvain**: Modularity optimization
2. **Label Propagation**: Fast, scalable community detection
3. **Girvan-Newman**: Edge betweenness-based
4. **Embedding-Based**: Similarity-based community formation

---

## Visualization

Reduce high-dimensional embeddings to 2D/3D for visualization.

```rust
use oxirs_embed::{EmbeddingVisualizer, VisualizationConfig, ReductionMethod};

let config = VisualizationConfig {
    method: ReductionMethod::PCA,
    target_dims: 2,
    random_seed: Some(42),
    ..Default::default()
};

let mut visualizer = EmbeddingVisualizer::new(config);
let result = visualizer.visualize(&entity_embeddings)?;

// Export to JSON
let json = visualizer.export_json(&result)?;
std::fs::write("embeddings_2d.json", json)?;

// Export to CSV
let csv = visualizer.export_csv(&result)?;
std::fs::write("embeddings_2d.csv", csv)?;

// Access coordinates
for (entity, coords) in &result.coordinates {
    println!("{}: ({:.4}, {:.4})", entity, coords[0], coords[1]);
}
```

### Reduction Methods

1. **PCA**: Fast, preserves global structure
2. **t-SNE**: Preserves local structure, good for clusters
3. **UMAP**: Balanced global/local structure (approximate)
4. **Random Projection**: Fastest, good for quick visualization

---

## Interpretability

Understand and explain embedding models.

```rust
use oxirs_embed::{InterpretabilityAnalyzer, InterpretabilityConfig, InterpretationMethod};

let config = InterpretabilityConfig {
    method: InterpretationMethod::SimilarityAnalysis,
    top_k: 10,
    detailed: true,
    ..Default::default()
};

let analyzer = InterpretabilityAnalyzer::new(config);

// Similarity analysis
let analysis = analyzer.similarity_analysis("alice", &embeddings)?;
println!("Most similar: {:?}", analysis.similar_entities);
println!("Least similar: {:?}", analysis.dissimilar_entities);

// Feature importance
let importance = analyzer.feature_importance("alice", &embeddings)?;
for (dim, score) in &importance.important_features {
    println!("Dimension {}: importance = {:.4}", dim, score);
}

// Counterfactual explanation
let cf = analyzer.counterfactual_explanation("alice", "bob", &embeddings)?;
println!("Required changes: {} dimensions", cf.required_changes.len());
println!("Difficulty: {:.4}", cf.difficulty);

// Generate comprehensive report
let report = analyzer.generate_report("alice", &embeddings)?;
println!("{}", report);
```

### Analysis Types

1. **Similarity Analysis**: Find most/least similar entities
2. **Feature Importance**: Identify important embedding dimensions
3. **Counterfactual**: Explain differences between entities
4. **Nearest Neighbors**: Analyze local structure

---

## Performance Optimization

### Mixed Precision Training

Accelerate training with FP16/FP32 mixed precision.

```rust
use oxirs_embed::{MixedPrecisionTrainer, MixedPrecisionConfig};

let config = MixedPrecisionConfig {
    enabled: true,
    init_scale: 65536.0,
    dynamic_loss_scale: true,
    grad_clip_threshold: 1.0,
    gradient_accumulation: true,
    accumulation_steps: 4,
    ..Default::default()
};

let mut trainer = MixedPrecisionTrainer::new(config);

// During training
let scaled_loss = trainer.scale_loss(loss);
// ... backward pass ...
let unscaled_grads = trainer.unscale_gradients(&gradients)?;
trainer.update_parameters(&mut params, &unscaled_grads, learning_rate)?;

// Check training stability
if !trainer.is_stable() {
    println!("Warning: Training instability detected");
}

let stats = trainer.get_stats();
println!("Overflows: {}", stats.num_overflows);
println!("Current scale: {}", stats.current_scale);
```

### Quantization

Compress models with 8-bit, 4-bit, or binary quantization.

```rust
use oxirs_embed::{ModelQuantizer, QuantizationConfig, BitWidth, QuantizationScheme};

let config = QuantizationConfig {
    scheme: QuantizationScheme::Symmetric,
    bit_width: BitWidth::Int8,
    calibration: true,
    calibration_samples: 1000,
    ..Default::default()
};

let mut quantizer = ModelQuantizer::new(config);

// Calibrate (optional but recommended)
quantizer.calibrate(&embeddings)?;

// Quantize embeddings
let quantized = quantizer.quantize_embeddings(&embeddings)?;

// Check compression
let stats = quantizer.get_stats();
println!("Compression ratio: {:.2}x", stats.compression_ratio);
println!("Avg quantization error: {:.6}", stats.avg_quantization_error);
println!("Model size: {} bytes -> {} bytes",
    stats.original_size_bytes, stats.quantized_size_bytes);

// Dequantize for inference
let dequantized = quantizer.dequantize_embeddings(&quantized);

// Estimate speedup
let speedup = quantizer.estimate_speedup();
println!("Estimated inference speedup: {:.1}x", speedup);
```

---

## Integration Examples

### Complete Pipeline

```rust
use oxirs_embed::*;

async fn complete_pipeline() -> Result<()> {
    // 1. Train model
    let mut model = TransE::new(TransEConfig::default());
    // ... add triples and train ...

    // 2. Extract embeddings
    let entity_embeddings = get_entity_embeddings(&model)?;

    // 3. Cluster entities
    let clustering = EntityClustering::new(ClusteringConfig::default());
    let clusters = clustering.cluster(&entity_embeddings)?;

    // 4. Detect communities
    let detector = CommunityDetector::new(CommunityConfig::default());
    let communities = detector.detect_from_embeddings(&entity_embeddings)?;

    // 5. Visualize
    let mut visualizer = EmbeddingVisualizer::new(VisualizationConfig::default());
    let vis_result = visualizer.visualize(&entity_embeddings)?;

    // 6. Interpret
    let analyzer = InterpretabilityAnalyzer::new(InterpretabilityConfig::default());
    let report = analyzer.generate_report("entity1", &entity_embeddings)?;

    // 7. Quantize for deployment
    let mut quantizer = ModelQuantizer::new(QuantizationConfig::default());
    let quantized = quantizer.quantize_embeddings(&entity_embeddings)?;

    println!("Pipeline complete!");
    println!("Compression: {:.2}x", quantizer.get_stats().compression_ratio);

    Ok(())
}
```

### Knowledge Graph Analytics

```rust
// Analyze entity relationships
let predictor = LinkPredictor::new(config, model);
let predictions = predictor.predict_tail("alice", "knows", &candidates)?;

// Find entity clusters
let clustering = EntityClustering::new(config);
let result = clustering.cluster(&embeddings)?;

// Interpret predictions
let analyzer = InterpretabilityAnalyzer::new(config);
let analysis = analyzer.similarity_analysis("alice", &embeddings)?;

// Visualize in 2D
let mut visualizer = EmbeddingVisualizer::new(config);
let vis = visualizer.visualize(&embeddings)?;
```

---

## Performance Considerations

### Memory Optimization

- Use quantization for large models (3-4x reduction)
- Enable gradient accumulation for batch training
- Use memory-efficient data structures from SciRS2

### Speed Optimization

- Enable parallel processing (default in most modules)
- Use mixed precision training (2-3x speedup)
- Choose appropriate algorithms:
  - Fast: Random Projection, K-Means, Label Propagation
  - Balanced: PCA, Hierarchical, Louvain
  - Accurate: t-SNE, DBSCAN, Girvan-Newman

### Scalability

- Batch operations for large-scale predictions
- Distributed training (planned feature)
- Incremental clustering and community detection

---

## Error Handling

All modules return `Result<T, Error>` for robust error handling:

```rust
match predictor.predict_tail("alice", "knows", &candidates) {
    Ok(predictions) => {
        // Handle predictions
    }
    Err(e) => {
        eprintln!("Prediction failed: {}", e);
        // Handle error
    }
}
```

---

## References

- **TransE**: Bordes et al. "Translating Embeddings for Modeling Multi-relational Data" (2013)
- **HolE**: Nickel et al. "Holographic Embeddings of Knowledge Graphs" (2016)
- **ConvE**: Dettmers et al. "Convolutional 2D Knowledge Graph Embeddings" (2018)
- **Link Prediction**: Standard benchmarks (FB15k, WN18)
- **Clustering**: Scikit-learn algorithms
- **Community Detection**: Newman, Blondel et al. (Louvain)
- **Visualization**: van der Maaten & Hinton (t-SNE), McInnes et al. (UMAP)

---

## Support

For issues, questions, or contributions:
- GitHub: https://github.com/cool-japan/oxirs
- Documentation: https://docs.rs/oxirs-embed