oxirs_embed/
training.rs

1//! Training utilities and advanced optimizers for embedding models
2
3use crate::{EmbeddingModel, TrainingStats};
4use anyhow::Result;
5use scirs2_core::ndarray_ext::Array2;
6use std::collections::VecDeque;
7use std::sync::{Arc, Mutex};
8use std::time::Instant;
9use tokio::sync::{broadcast, RwLock};
10use tokio::task::JoinHandle;
11use tracing::{debug, info, warn};
12
13/// Advanced training scheduler with various optimization strategies
14pub struct TrainingScheduler {
15    pub config: TrainingConfig,
16    pub optimizer: OptimizerType,
17    pub scheduler: LearningRateScheduler,
18    pub early_stopping: Option<EarlyStopping>,
19}
20
21/// Training configuration
22#[derive(Debug, Clone)]
23pub struct TrainingConfig {
24    pub max_epochs: usize,
25    pub batch_size: usize,
26    pub learning_rate: f64,
27    pub validation_freq: usize,
28    pub checkpoint_freq: usize,
29    pub log_freq: usize,
30    pub use_early_stopping: bool,
31    pub patience: usize,
32    pub min_delta: f64,
33}
34
35impl Default for TrainingConfig {
36    fn default() -> Self {
37        Self {
38            max_epochs: 1000,
39            batch_size: 1024,
40            learning_rate: 0.01,
41            validation_freq: 10,
42            checkpoint_freq: 100,
43            log_freq: 10,
44            use_early_stopping: true,
45            patience: 50,
46            min_delta: 1e-6,
47        }
48    }
49}
50
51/// Optimizer types
52#[derive(Debug, Clone)]
53pub enum OptimizerType {
54    SGD,
55    Adam {
56        beta1: f64,
57        beta2: f64,
58        epsilon: f64,
59    },
60    AdaGrad {
61        epsilon: f64,
62    },
63    RMSprop {
64        alpha: f64,
65        epsilon: f64,
66    },
67}
68
69impl Default for OptimizerType {
70    fn default() -> Self {
71        OptimizerType::Adam {
72            beta1: 0.9,
73            beta2: 0.999,
74            epsilon: 1e-8,
75        }
76    }
77}
78
79/// Learning rate scheduler
80#[derive(Debug, Clone)]
81pub enum LearningRateScheduler {
82    Constant,
83    ExponentialDecay {
84        decay_rate: f64,
85        decay_steps: usize,
86    },
87    StepDecay {
88        step_size: usize,
89        gamma: f64,
90    },
91    CosineAnnealing {
92        t_max: usize,
93        eta_min: f64,
94    },
95    ReduceOnPlateau {
96        factor: f64,
97        patience: usize,
98        threshold: f64,
99    },
100}
101
102impl Default for LearningRateScheduler {
103    fn default() -> Self {
104        LearningRateScheduler::ExponentialDecay {
105            decay_rate: 0.96,
106            decay_steps: 100,
107        }
108    }
109}
110
111impl LearningRateScheduler {
112    pub fn get_lr(&self, epoch: usize, base_lr: f64, _current_loss: Option<f64>) -> f64 {
113        match self {
114            LearningRateScheduler::Constant => base_lr,
115            LearningRateScheduler::ExponentialDecay {
116                decay_rate,
117                decay_steps,
118            } => base_lr * decay_rate.powf(epoch as f64 / *decay_steps as f64),
119            LearningRateScheduler::StepDecay { step_size, gamma } => {
120                base_lr * gamma.powf((epoch / step_size) as f64)
121            }
122            LearningRateScheduler::CosineAnnealing { t_max, eta_min } => {
123                eta_min
124                    + (base_lr - eta_min)
125                        * (1.0 + (std::f64::consts::PI * epoch as f64 / *t_max as f64).cos())
126                        / 2.0
127            }
128            LearningRateScheduler::ReduceOnPlateau { .. } => {
129                // This would require state tracking, simplified for now
130                base_lr
131            }
132        }
133    }
134}
135
136/// Early stopping implementation
137#[derive(Debug, Clone)]
138pub struct EarlyStopping {
139    patience: usize,
140    min_delta: f64,
141    best_loss: f64,
142    wait_count: usize,
143    stopped: bool,
144}
145
146impl EarlyStopping {
147    pub fn new(patience: usize, min_delta: f64) -> Self {
148        Self {
149            patience,
150            min_delta,
151            best_loss: f64::INFINITY,
152            wait_count: 0,
153            stopped: false,
154        }
155    }
156
157    pub fn update(&mut self, current_loss: f64) -> bool {
158        if current_loss < self.best_loss - self.min_delta {
159            self.best_loss = current_loss;
160            self.wait_count = 0;
161        } else {
162            self.wait_count += 1;
163            if self.wait_count > self.patience {
164                self.stopped = true;
165            }
166        }
167
168        self.stopped
169    }
170
171    pub fn should_stop(&self) -> bool {
172        self.stopped
173    }
174}
175
176/// Adam optimizer state
177#[derive(Debug, Clone)]
178pub struct AdamOptimizer {
179    beta1: f64,
180    beta2: f64,
181    epsilon: f64,
182    t: usize,               // time step
183    m: Option<Array2<f64>>, // first moment
184    v: Option<Array2<f64>>, // second moment
185}
186
187impl AdamOptimizer {
188    pub fn new(beta1: f64, beta2: f64, epsilon: f64) -> Self {
189        Self {
190            beta1,
191            beta2,
192            epsilon,
193            t: 0,
194            m: None,
195            v: None,
196        }
197    }
198
199    pub fn update(&mut self, params: &mut Array2<f64>, grads: &Array2<f64>, lr: f64) {
200        self.t += 1;
201
202        // Initialize moments if needed
203        if self.m.is_none() {
204            self.m = Some(Array2::zeros(params.raw_dim()));
205            self.v = Some(Array2::zeros(params.raw_dim()));
206        }
207
208        let m = self.m.as_mut().unwrap();
209        let v = self.v.as_mut().unwrap();
210
211        // Update biased first moment estimate
212        *m = &*m * self.beta1 + grads * (1.0 - self.beta1);
213
214        // Update biased second raw moment estimate
215        *v = &*v * self.beta2 + &(grads * grads) * (1.0 - self.beta2);
216
217        // Compute bias-corrected first moment estimate
218        let m_hat = &*m / (1.0 - self.beta1.powi(self.t as i32));
219
220        // Compute bias-corrected second raw moment estimate
221        let v_hat = &*v / (1.0 - self.beta2.powi(self.t as i32));
222
223        // Update parameters
224        *params = &*params - &(&m_hat / (&v_hat.mapv(|x| x.sqrt()) + self.epsilon)) * lr;
225    }
226}
227
228/// Training metrics tracker
229#[derive(Debug, Clone)]
230pub struct MetricsTracker {
231    pub losses: Vec<f64>,
232    pub learning_rates: Vec<f64>,
233    pub epochs: Vec<usize>,
234    pub validation_losses: Vec<f64>,
235    pub training_times: Vec<f64>,
236}
237
238impl MetricsTracker {
239    pub fn new() -> Self {
240        Self {
241            losses: Vec::new(),
242            learning_rates: Vec::new(),
243            epochs: Vec::new(),
244            validation_losses: Vec::new(),
245            training_times: Vec::new(),
246        }
247    }
248
249    pub fn record_epoch(&mut self, epoch: usize, loss: f64, lr: f64, training_time: f64) {
250        self.epochs.push(epoch);
251        self.losses.push(loss);
252        self.learning_rates.push(lr);
253        self.training_times.push(training_time);
254    }
255
256    pub fn record_validation(&mut self, val_loss: f64) {
257        self.validation_losses.push(val_loss);
258    }
259
260    pub fn get_smoothed_loss(&self, window_size: usize) -> Vec<f64> {
261        if self.losses.len() < window_size {
262            return self.losses.clone();
263        }
264
265        let mut smoothed = Vec::new();
266        let mut window: VecDeque<f64> = VecDeque::new();
267
268        for &loss in &self.losses {
269            window.push_back(loss);
270            if window.len() > window_size {
271                window.pop_front();
272            }
273
274            let avg = window.iter().sum::<f64>() / window.len() as f64;
275            smoothed.push(avg);
276        }
277
278        smoothed
279    }
280}
281
282impl Default for MetricsTracker {
283    fn default() -> Self {
284        Self::new()
285    }
286}
287
288/// Advanced trainer with full optimization capabilities
289pub struct AdvancedTrainer {
290    config: TrainingConfig,
291    optimizer: OptimizerType,
292    scheduler: LearningRateScheduler,
293    early_stopping: Option<EarlyStopping>,
294    metrics: MetricsTracker,
295}
296
297impl AdvancedTrainer {
298    pub fn new(config: TrainingConfig) -> Self {
299        let early_stopping = if config.use_early_stopping {
300            Some(EarlyStopping::new(config.patience, config.min_delta))
301        } else {
302            None
303        };
304
305        Self {
306            config,
307            optimizer: OptimizerType::default(),
308            scheduler: LearningRateScheduler::default(),
309            early_stopping,
310            metrics: MetricsTracker::new(),
311        }
312    }
313
314    pub fn with_optimizer(mut self, optimizer: OptimizerType) -> Self {
315        self.optimizer = optimizer;
316        self
317    }
318
319    pub fn with_scheduler(mut self, scheduler: LearningRateScheduler) -> Self {
320        self.scheduler = scheduler;
321        self
322    }
323
324    pub async fn train(&mut self, model: &mut dyn EmbeddingModel) -> Result<TrainingStats> {
325        let start_time = Instant::now();
326        info!(
327            "Starting advanced training with {} epochs",
328            self.config.max_epochs
329        );
330
331        for epoch in 0..self.config.max_epochs {
332            let epoch_start = Instant::now();
333
334            // Get current learning rate
335            let current_lr = self
336                .scheduler
337                .get_lr(epoch, self.config.learning_rate, None);
338
339            // Train one epoch
340            let epoch_stats = model.train(Some(1)).await?;
341            let epoch_loss = epoch_stats.final_loss;
342            let epoch_time = epoch_start.elapsed().as_secs_f64();
343
344            // Record metrics
345            self.metrics
346                .record_epoch(epoch, epoch_loss, current_lr, epoch_time);
347
348            // Log progress
349            if epoch % self.config.log_freq == 0 {
350                debug!(
351                    "Epoch {}: loss = {:.6}, lr = {:.6}, time = {:.3}s",
352                    epoch, epoch_loss, current_lr, epoch_time
353                );
354            }
355
356            // Check early stopping
357            if let Some(ref mut early_stop) = self.early_stopping {
358                if early_stop.update(epoch_loss) {
359                    info!("Early stopping triggered at epoch {}", epoch);
360                    break;
361                }
362            }
363
364            // Simple convergence check
365            if epoch > 10 && epoch_loss < 1e-8 {
366                info!("Converged at epoch {} with loss {:.6}", epoch, epoch_loss);
367                break;
368            }
369        }
370
371        let training_time = start_time.elapsed().as_secs_f64();
372        let final_loss = self.metrics.losses.last().copied().unwrap_or(0.0);
373
374        Ok(TrainingStats {
375            epochs_completed: self.metrics.epochs.len(),
376            final_loss,
377            training_time_seconds: training_time,
378            convergence_achieved: final_loss < 1e-6,
379            loss_history: self.metrics.losses.clone(),
380        })
381    }
382
383    pub fn get_metrics(&self) -> &MetricsTracker {
384        &self.metrics
385    }
386}
387
388/// Validation utilities
389pub struct ValidationSuite {
390    pub test_triples: Vec<(String, String, String)>,
391    pub validation_freq: usize,
392}
393
394impl ValidationSuite {
395    pub fn new(test_triples: Vec<(String, String, String)>, validation_freq: usize) -> Self {
396        Self {
397            test_triples,
398            validation_freq,
399        }
400    }
401
402    pub fn evaluate_model(&self, model: &dyn EmbeddingModel) -> Result<ValidationMetrics> {
403        let mut total_score = 0.0;
404        let mut valid_predictions = 0;
405
406        for (subject, predicate, object) in &self.test_triples {
407            if let Ok(score) = model.score_triple(subject, predicate, object) {
408                total_score += score;
409                valid_predictions += 1;
410            }
411        }
412
413        let avg_score = if valid_predictions > 0 {
414            total_score / valid_predictions as f64
415        } else {
416            0.0
417        };
418
419        Ok(ValidationMetrics {
420            average_score: avg_score,
421            num_evaluated: valid_predictions,
422            num_total: self.test_triples.len(),
423        })
424    }
425}
426
427/// Validation metrics
428#[derive(Debug, Clone)]
429pub struct ValidationMetrics {
430    pub average_score: f64,
431    pub num_evaluated: usize,
432    pub num_total: usize,
433}
434
435/// Distributed training configuration
436#[derive(Debug, Clone)]
437pub struct DistributedConfig {
438    pub world_size: usize,
439    pub rank: usize,
440    pub device_ids: Vec<usize>,
441    pub backend: DistributedBackend,
442    pub sync_frequency: usize,
443    pub gradient_clipping: Option<f64>,
444    pub all_reduce_method: AllReduceMethod,
445}
446
447impl Default for DistributedConfig {
448    fn default() -> Self {
449        Self {
450            world_size: 1,
451            rank: 0,
452            device_ids: vec![0],
453            backend: DistributedBackend::NCCL,
454            sync_frequency: 1,
455            gradient_clipping: Some(1.0),
456            all_reduce_method: AllReduceMethod::Average,
457        }
458    }
459}
460
461/// Distributed backend options
462#[derive(Debug, Clone)]
463pub enum DistributedBackend {
464    NCCL,
465    MPI,
466    Gloo,
467}
468
469/// All-reduce methods for gradient synchronization
470#[derive(Debug, Clone)]
471pub enum AllReduceMethod {
472    Sum,
473    Average,
474    WeightedAverage,
475}
476
477/// Distributed trainer for multi-GPU/multi-node training
478#[allow(dead_code)]
479pub struct DistributedTrainer {
480    config: TrainingConfig,
481    distributed_config: DistributedConfig,
482    optimizer: OptimizerType,
483    scheduler: LearningRateScheduler,
484    early_stopping: Option<EarlyStopping>,
485    metrics: Arc<RwLock<MetricsTracker>>,
486    gradient_accumulator: Arc<Mutex<GradientAccumulator>>,
487    sync_channel: (
488        broadcast::Sender<SyncMessage>,
489        broadcast::Receiver<SyncMessage>,
490    ),
491}
492
493/// Messages for distributed synchronization
494#[derive(Debug, Clone)]
495pub enum SyncMessage {
496    GradientUpdate {
497        epoch: usize,
498        rank: usize,
499        gradients: Vec<f64>,
500    },
501    ParameterSync {
502        epoch: usize,
503        parameters: Vec<f64>,
504    },
505    EarlyStop {
506        epoch: usize,
507        loss: f64,
508    },
509    Checkpoint {
510        epoch: usize,
511        model_state: Vec<u8>,
512    },
513}
514
515/// Gradient accumulator for distributed training
516#[derive(Debug)]
517pub struct GradientAccumulator {
518    accumulated_gradients: Vec<Array2<f64>>,
519    accumulation_count: usize,
520    target_count: usize,
521}
522
523impl GradientAccumulator {
524    pub fn new(target_count: usize) -> Self {
525        Self {
526            accumulated_gradients: Vec::new(),
527            accumulation_count: 0,
528            target_count,
529        }
530    }
531
532    pub fn accumulate(&mut self, gradients: Vec<Array2<f64>>) {
533        if self.accumulated_gradients.is_empty() {
534            self.accumulated_gradients = gradients;
535        } else {
536            for (i, grad) in gradients.into_iter().enumerate() {
537                if i < self.accumulated_gradients.len() {
538                    self.accumulated_gradients[i] = &self.accumulated_gradients[i] + &grad;
539                } else {
540                    self.accumulated_gradients.push(grad);
541                }
542            }
543        }
544        self.accumulation_count += 1;
545    }
546
547    pub fn is_ready(&self) -> bool {
548        self.accumulation_count >= self.target_count
549    }
550
551    pub fn get_averaged_gradients(&mut self) -> Vec<Array2<f64>> {
552        let count = self.accumulation_count as f64;
553        let result = self
554            .accumulated_gradients
555            .iter()
556            .map(|grad| grad / count)
557            .collect();
558        self.reset();
559        result
560    }
561
562    pub fn reset(&mut self) {
563        self.accumulated_gradients.clear();
564        self.accumulation_count = 0;
565    }
566}
567
568impl DistributedTrainer {
569    pub fn new(config: TrainingConfig, distributed_config: DistributedConfig) -> Self {
570        let early_stopping = if config.use_early_stopping {
571            Some(EarlyStopping::new(config.patience, config.min_delta))
572        } else {
573            None
574        };
575
576        let (sync_tx, sync_rx) = broadcast::channel(1000);
577        let gradient_accumulator = Arc::new(Mutex::new(GradientAccumulator::new(
578            distributed_config.world_size,
579        )));
580
581        Self {
582            config,
583            distributed_config,
584            optimizer: OptimizerType::default(),
585            scheduler: LearningRateScheduler::default(),
586            early_stopping,
587            metrics: Arc::new(RwLock::new(MetricsTracker::new())),
588            gradient_accumulator,
589            sync_channel: (sync_tx, sync_rx),
590        }
591    }
592
593    pub fn with_optimizer(mut self, optimizer: OptimizerType) -> Self {
594        self.optimizer = optimizer;
595        self
596    }
597
598    pub fn with_scheduler(mut self, scheduler: LearningRateScheduler) -> Self {
599        self.scheduler = scheduler;
600        self
601    }
602
603    /// Start distributed training across multiple devices/nodes
604    pub async fn train_distributed(
605        &mut self,
606        model: Arc<RwLock<dyn EmbeddingModel + Send + Sync>>,
607    ) -> Result<TrainingStats> {
608        let start_time = Instant::now();
609        info!(
610            "Starting distributed training with {} workers on rank {}",
611            self.distributed_config.world_size, self.distributed_config.rank
612        );
613
614        // Spawn worker tasks for each device
615        let mut worker_handles = Vec::new();
616
617        for device_id in &self.distributed_config.device_ids {
618            let worker_handle = self
619                .spawn_worker_task(*device_id, Arc::clone(&model))
620                .await?;
621            worker_handles.push(worker_handle);
622        }
623
624        // Spawn coordinator task
625        let coordinator_handle = self.spawn_coordinator_task().await?;
626
627        // Wait for all workers to complete
628        let mut final_stats = None;
629        for handle in worker_handles {
630            if let Ok(stats) = handle.await {
631                match stats {
632                    Ok(s) => final_stats = Some(s),
633                    Err(e) => warn!("Worker failed: {}", e),
634                }
635            }
636        }
637
638        // Stop coordinator
639        coordinator_handle.abort();
640
641        let training_time = start_time.elapsed().as_secs_f64();
642        let metrics = self.metrics.read().await;
643
644        Ok(final_stats.unwrap_or_else(|| TrainingStats {
645            epochs_completed: metrics.epochs.len(),
646            final_loss: metrics.losses.last().copied().unwrap_or(0.0),
647            training_time_seconds: training_time,
648            convergence_achieved: false,
649            loss_history: metrics.losses.clone(),
650        }))
651    }
652
653    /// Spawn a worker task for a specific device
654    async fn spawn_worker_task(
655        &self,
656        device_id: usize,
657        model: Arc<RwLock<dyn EmbeddingModel + Send + Sync>>,
658    ) -> Result<JoinHandle<Result<TrainingStats>>> {
659        let config = self.config.clone();
660        let distributed_config = self.distributed_config.clone();
661        let _optimizer = self.optimizer.clone();
662        let scheduler = self.scheduler.clone();
663        let metrics = Arc::clone(&self.metrics);
664        let mut sync_rx = self.sync_channel.0.subscribe();
665        let sync_tx = self.sync_channel.0.clone();
666
667        let handle = tokio::spawn(async move {
668            info!(
669                "Worker {} starting on device {}",
670                distributed_config.rank, device_id
671            );
672
673            let mut local_early_stopping = if config.use_early_stopping {
674                Some(EarlyStopping::new(config.patience, config.min_delta))
675            } else {
676                None
677            };
678
679            let mut total_training_time = 0.0;
680
681            for epoch in 0..config.max_epochs {
682                let epoch_start = Instant::now();
683
684                // Get current learning rate
685                let current_lr = scheduler.get_lr(epoch, config.learning_rate, None);
686
687                // Train one epoch on this device
688                let mut model_guard = model.write().await;
689                let epoch_stats = model_guard.train(Some(1)).await?;
690                drop(model_guard);
691
692                let epoch_loss = epoch_stats.final_loss;
693                let epoch_time = epoch_start.elapsed().as_secs_f64();
694                total_training_time += epoch_time;
695
696                // Record metrics
697                {
698                    let mut metrics_guard = metrics.write().await;
699                    metrics_guard.record_epoch(epoch, epoch_loss, current_lr, epoch_time);
700                }
701
702                // Simulate gradient synchronization
703                if epoch % distributed_config.sync_frequency == 0 {
704                    // Send gradients for synchronization
705                    let _ = sync_tx.send(SyncMessage::GradientUpdate {
706                        epoch,
707                        rank: distributed_config.rank,
708                        gradients: vec![epoch_loss], // Simplified
709                    });
710
711                    // Wait for parameter updates
712                    tokio::select! {
713                        msg = sync_rx.recv() => {
714                            if let Ok(SyncMessage::ParameterSync { .. }) = msg {
715                                debug!("Received parameter sync for epoch {}", epoch);
716                            }
717                        }
718                        _ = tokio::time::sleep(tokio::time::Duration::from_millis(100)) => {
719                            debug!("Sync timeout for epoch {}", epoch);
720                        }
721                    }
722                }
723
724                // Log progress
725                if epoch % config.log_freq == 0 {
726                    debug!(
727                        "Worker {} Epoch {}: loss = {:.6}, lr = {:.6}, time = {:.3}s",
728                        distributed_config.rank, epoch, epoch_loss, current_lr, epoch_time
729                    );
730                }
731
732                // Check early stopping
733                if let Some(ref mut early_stop) = local_early_stopping {
734                    if early_stop.update(epoch_loss) {
735                        info!(
736                            "Worker {} early stopping triggered at epoch {}",
737                            distributed_config.rank, epoch
738                        );
739                        let _ = sync_tx.send(SyncMessage::EarlyStop {
740                            epoch,
741                            loss: epoch_loss,
742                        });
743                        break;
744                    }
745                }
746
747                // Simple convergence check
748                if epoch > 10 && epoch_loss < 1e-8 {
749                    info!(
750                        "Worker {} converged at epoch {} with loss {:.6}",
751                        distributed_config.rank, epoch, epoch_loss
752                    );
753                    break;
754                }
755            }
756
757            let final_metrics = metrics.read().await;
758            Ok(TrainingStats {
759                epochs_completed: final_metrics.epochs.len(),
760                final_loss: final_metrics.losses.last().copied().unwrap_or(0.0),
761                training_time_seconds: total_training_time,
762                convergence_achieved: final_metrics
763                    .losses
764                    .last()
765                    .copied()
766                    .unwrap_or(f64::INFINITY)
767                    < 1e-6,
768                loss_history: final_metrics.losses.clone(),
769            })
770        });
771
772        Ok(handle)
773    }
774
775    /// Spawn coordinator task for gradient synchronization
776    async fn spawn_coordinator_task(&self) -> Result<JoinHandle<()>> {
777        let mut sync_rx = self.sync_channel.0.subscribe();
778        let sync_tx = self.sync_channel.0.clone();
779        let gradient_accumulator = Arc::clone(&self.gradient_accumulator);
780        let world_size = self.distributed_config.world_size;
781
782        let handle = tokio::spawn(async move {
783            info!("Coordinator starting for {} workers", world_size);
784
785            while let Ok(msg) = sync_rx.recv().await {
786                match msg {
787                    SyncMessage::GradientUpdate {
788                        epoch,
789                        rank,
790                        gradients,
791                    } => {
792                        debug!(
793                            "Received gradients from worker {} for epoch {}",
794                            rank, epoch
795                        );
796
797                        // Simulate gradient accumulation and all-reduce
798                        {
799                            let _accumulator = gradient_accumulator.lock().unwrap();
800                            // In a real implementation, this would accumulate actual gradients
801                            // For now, we just simulate the process
802                        }
803
804                        // Broadcast parameter updates
805                        let _ = sync_tx.send(SyncMessage::ParameterSync {
806                            epoch,
807                            parameters: gradients, // Simplified
808                        });
809                    }
810                    SyncMessage::EarlyStop { epoch, loss } => {
811                        info!(
812                            "Early stop signal received at epoch {} with loss {:.6}",
813                            epoch, loss
814                        );
815                        // In a real implementation, would coordinate early stopping across all workers
816                    }
817                    _ => {}
818                }
819            }
820        });
821
822        Ok(handle)
823    }
824
825    /// Perform all-reduce operation on gradients
826    #[allow(dead_code)]
827    async fn all_reduce_gradients(&self, gradients: Vec<Array2<f64>>) -> Result<Vec<Array2<f64>>> {
828        // Simplified all-reduce - in practice would use NCCL/MPI
829        match self.distributed_config.all_reduce_method {
830            AllReduceMethod::Average => {
831                let world_size = self.distributed_config.world_size as f64;
832                Ok(gradients.into_iter().map(|g| g / world_size).collect())
833            }
834            AllReduceMethod::Sum => Ok(gradients),
835            AllReduceMethod::WeightedAverage => {
836                // Simplified - would use actual weights in practice
837                let world_size = self.distributed_config.world_size as f64;
838                Ok(gradients.into_iter().map(|g| g / world_size).collect())
839            }
840        }
841    }
842
843    /// Apply gradient clipping if configured
844    #[allow(dead_code)]
845    fn clip_gradients(&self, gradients: &mut [Array2<f64>]) {
846        if let Some(max_norm) = self.distributed_config.gradient_clipping {
847            for grad in gradients.iter_mut() {
848                let norm = grad.mapv(|x| x * x).sum().sqrt();
849                if norm > max_norm {
850                    *grad *= max_norm / norm;
851                }
852            }
853        }
854    }
855}
856
857/// Distributed training utilities
858pub struct DistributedUtils;
859
860impl DistributedUtils {
861    /// Initialize distributed training environment
862    pub async fn init_distributed(rank: usize, world_size: usize) -> Result<()> {
863        info!(
864            "Initializing distributed training: rank {} of {}",
865            rank, world_size
866        );
867        // In practice, would initialize NCCL/MPI here
868        Ok(())
869    }
870
871    /// Cleanup distributed training environment
872    pub async fn cleanup_distributed() -> Result<()> {
873        info!("Cleaning up distributed training environment");
874        // In practice, would cleanup NCCL/MPI here
875        Ok(())
876    }
877
878    /// Check if distributed training is available
879    pub fn is_distributed_available() -> bool {
880        // In practice, would check for NCCL/MPI availability
881        true
882    }
883
884    /// Get optimal world size for current hardware
885    pub fn get_optimal_world_size() -> usize {
886        // In practice, would detect available GPUs
887        std::thread::available_parallelism()
888            .map(|p| p.get())
889            .unwrap_or(1)
890    }
891}
892
893#[cfg(test)]
894mod tests {
895    use super::*;
896
897    #[test]
898    fn test_learning_rate_scheduler() {
899        let scheduler = LearningRateScheduler::ExponentialDecay {
900            decay_rate: 0.9,
901            decay_steps: 10,
902        };
903
904        let lr0 = scheduler.get_lr(0, 0.1, None);
905        let lr10 = scheduler.get_lr(10, 0.1, None);
906        let lr20 = scheduler.get_lr(20, 0.1, None);
907
908        assert!((lr0 - 0.1).abs() < 1e-10);
909        assert!(lr10 < lr0);
910        assert!(lr20 < lr10);
911    }
912
913    #[test]
914    fn test_early_stopping() {
915        let mut early_stop = EarlyStopping::new(3, 0.01);
916
917        assert!(!early_stop.update(1.0));
918        assert!(!early_stop.update(0.5));
919        assert!(!early_stop.update(0.51));
920        assert!(!early_stop.update(0.52));
921        assert!(!early_stop.update(0.53));
922        assert!(early_stop.update(0.54)); // Should stop now
923    }
924
925    #[test]
926    fn test_metrics_tracker() {
927        let mut tracker = MetricsTracker::new();
928
929        tracker.record_epoch(0, 1.0, 0.01, 1.5);
930        tracker.record_epoch(1, 0.5, 0.009, 1.4);
931        tracker.record_epoch(2, 0.3, 0.008, 1.3);
932
933        assert_eq!(tracker.losses.len(), 3);
934        assert_eq!(tracker.epochs.len(), 3);
935
936        let smoothed = tracker.get_smoothed_loss(2);
937        assert_eq!(smoothed.len(), 3);
938    }
939
940    #[test]
941    fn test_distributed_config() {
942        let config = DistributedConfig::default();
943        assert_eq!(config.world_size, 1);
944        assert_eq!(config.rank, 0);
945        assert_eq!(config.device_ids.len(), 1);
946    }
947
948    #[test]
949    fn test_gradient_accumulator() {
950        let mut accumulator = GradientAccumulator::new(2);
951        assert!(!accumulator.is_ready());
952
953        let grad1 = vec![Array2::from_elem((2, 2), 1.0)];
954        let grad2 = vec![Array2::from_elem((2, 2), 2.0)];
955
956        accumulator.accumulate(grad1);
957        assert!(!accumulator.is_ready());
958
959        accumulator.accumulate(grad2);
960        assert!(accumulator.is_ready());
961
962        let averaged = accumulator.get_averaged_gradients();
963        assert_eq!(averaged.len(), 1);
964        assert!((averaged[0][[0, 0]] - 1.5).abs() < 1e-10);
965    }
966
967    #[test]
968    fn test_distributed_utils() {
969        assert!(DistributedUtils::is_distributed_available());
970        let world_size = DistributedUtils::get_optimal_world_size();
971        assert!(world_size >= 1);
972    }
973}