oxirs_embed/
quantum_circuits.rs

1//! Advanced Quantum Circuit Implementations for Quantum-Inspired Embeddings
2//!
3//! This module provides comprehensive quantum circuit implementations including:
4//! - Variational Quantum Circuits (VQC)
5//! - Quantum Approximate Optimization Algorithm (QAOA)
6//! - Variational Quantum Eigensolver (VQE)
7//! - Quantum Neural Networks (QNN)
8//! - Quantum Feature Maps and Kernels
9
10use anyhow::{anyhow, Result};
11use scirs2_core::ndarray_ext::Array2;
12use scirs2_core::random::{Random, Rng};
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::f64::consts::PI;
16
17/// Complex number representation for quantum amplitudes
18#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
19pub struct Complex {
20    pub real: f64,
21    pub imag: f64,
22}
23
24impl Complex {
25    pub fn new(real: f64, imag: f64) -> Self {
26        Self { real, imag }
27    }
28
29    pub fn magnitude_squared(&self) -> f64 {
30        self.real * self.real + self.imag * self.imag
31    }
32
33    pub fn conjugate(&self) -> Self {
34        Self {
35            real: self.real,
36            imag: -self.imag,
37        }
38    }
39}
40
41impl std::ops::Add for Complex {
42    type Output = Self;
43    fn add(self, other: Self) -> Self {
44        Self {
45            real: self.real + other.real,
46            imag: self.imag + other.imag,
47        }
48    }
49}
50
51impl std::ops::Mul for Complex {
52    type Output = Self;
53    fn mul(self, other: Self) -> Self {
54        Self {
55            real: self.real * other.real - self.imag * other.imag,
56            imag: self.real * other.imag + self.imag * other.real,
57        }
58    }
59}
60
61impl std::ops::Mul<f64> for Complex {
62    type Output = Self;
63    fn mul(self, scalar: f64) -> Self {
64        Self {
65            real: self.real * scalar,
66            imag: self.imag * scalar,
67        }
68    }
69}
70
71/// Quantum gate types
72#[derive(Debug, Clone, Serialize, Deserialize)]
73pub enum QuantumGate {
74    /// Identity gate
75    I,
76    /// Pauli-X gate (bit flip)
77    X,
78    /// Pauli-Y gate
79    Y,
80    /// Pauli-Z gate (phase flip)
81    Z,
82    /// Hadamard gate
83    H,
84    /// Phase gate
85    S,
86    /// T gate
87    T,
88    /// Rotation around X-axis
89    RX(f64),
90    /// Rotation around Y-axis
91    RY(f64),
92    /// Rotation around Z-axis
93    RZ(f64),
94    /// CNOT gate (controlled-X)
95    CNOT(usize, usize), // (control, target)
96    /// Controlled-Z gate
97    CZ(usize, usize),
98    /// Toffoli gate (CCX)
99    Toffoli(usize, usize, usize), // (control1, control2, target)
100    /// Arbitrary unitary gate
101    Unitary(Array2<Complex>),
102}
103
104/// Quantum circuit representation
105#[derive(Debug, Clone, Serialize, Deserialize)]
106pub struct QuantumCircuit {
107    /// Number of qubits
108    pub num_qubits: usize,
109    /// Sequence of gates
110    pub gates: Vec<QuantumGate>,
111    /// Circuit parameters (for variational circuits)
112    pub parameters: Vec<f64>,
113    /// Parameter mapping to gates
114    pub parameter_mapping: HashMap<usize, Vec<usize>>, // gate_index -> parameter_indices
115}
116
117impl QuantumCircuit {
118    /// Create new quantum circuit
119    pub fn new(num_qubits: usize) -> Self {
120        Self {
121            num_qubits,
122            gates: Vec::new(),
123            parameters: Vec::new(),
124            parameter_mapping: HashMap::new(),
125        }
126    }
127
128    /// Add gate to circuit
129    pub fn add_gate(&mut self, gate: QuantumGate) {
130        self.gates.push(gate);
131    }
132
133    /// Add parameterized gate
134    pub fn add_parameterized_gate(&mut self, gate: QuantumGate, param_indices: Vec<usize>) {
135        let gate_index = self.gates.len();
136        self.gates.push(gate);
137        self.parameter_mapping.insert(gate_index, param_indices);
138    }
139
140    /// Update circuit parameters
141    pub fn set_parameters(&mut self, parameters: Vec<f64>) {
142        self.parameters = parameters;
143    }
144
145    /// Get gate matrix for single-qubit gates
146    pub fn get_single_qubit_matrix(&self, gate: &QuantumGate) -> Array2<Complex> {
147        match gate {
148            QuantumGate::I => Array2::from_shape_vec(
149                (2, 2),
150                vec![
151                    Complex::new(1.0, 0.0),
152                    Complex::new(0.0, 0.0),
153                    Complex::new(0.0, 0.0),
154                    Complex::new(1.0, 0.0),
155                ],
156            )
157            .expect("2x2 matrix shape should match 4-element vector"),
158            QuantumGate::X => Array2::from_shape_vec(
159                (2, 2),
160                vec![
161                    Complex::new(0.0, 0.0),
162                    Complex::new(1.0, 0.0),
163                    Complex::new(1.0, 0.0),
164                    Complex::new(0.0, 0.0),
165                ],
166            )
167            .expect("2x2 matrix shape should match 4-element vector"),
168            QuantumGate::Y => Array2::from_shape_vec(
169                (2, 2),
170                vec![
171                    Complex::new(0.0, 0.0),
172                    Complex::new(0.0, -1.0),
173                    Complex::new(0.0, 1.0),
174                    Complex::new(0.0, 0.0),
175                ],
176            )
177            .expect("2x2 matrix shape should match 4-element vector"),
178            QuantumGate::Z => Array2::from_shape_vec(
179                (2, 2),
180                vec![
181                    Complex::new(1.0, 0.0),
182                    Complex::new(0.0, 0.0),
183                    Complex::new(0.0, 0.0),
184                    Complex::new(-1.0, 0.0),
185                ],
186            )
187            .expect("2x2 matrix shape should match 4-element vector"),
188            QuantumGate::H => {
189                let inv_sqrt2 = 1.0 / (2.0_f64).sqrt();
190                Array2::from_shape_vec(
191                    (2, 2),
192                    vec![
193                        Complex::new(inv_sqrt2, 0.0),
194                        Complex::new(inv_sqrt2, 0.0),
195                        Complex::new(inv_sqrt2, 0.0),
196                        Complex::new(-inv_sqrt2, 0.0),
197                    ],
198                )
199                .expect("2x2 matrix shape should match 4-element vector")
200            }
201            QuantumGate::S => Array2::from_shape_vec(
202                (2, 2),
203                vec![
204                    Complex::new(1.0, 0.0),
205                    Complex::new(0.0, 0.0),
206                    Complex::new(0.0, 0.0),
207                    Complex::new(0.0, 1.0),
208                ],
209            )
210            .expect("2x2 matrix shape should match 4-element vector"),
211            QuantumGate::T => {
212                let phase = Complex::new((PI / 4.0).cos(), (PI / 4.0).sin());
213                Array2::from_shape_vec(
214                    (2, 2),
215                    vec![
216                        Complex::new(1.0, 0.0),
217                        Complex::new(0.0, 0.0),
218                        Complex::new(0.0, 0.0),
219                        phase,
220                    ],
221                )
222                .expect("2x2 matrix shape should match 4-element vector")
223            }
224            QuantumGate::RX(theta) => {
225                let cos_half = (theta / 2.0).cos();
226                let sin_half = (theta / 2.0).sin();
227                Array2::from_shape_vec(
228                    (2, 2),
229                    vec![
230                        Complex::new(cos_half, 0.0),
231                        Complex::new(0.0, -sin_half),
232                        Complex::new(0.0, -sin_half),
233                        Complex::new(cos_half, 0.0),
234                    ],
235                )
236                .expect("2x2 matrix shape should match 4-element vector")
237            }
238            QuantumGate::RY(theta) => {
239                let cos_half = (theta / 2.0).cos();
240                let sin_half = (theta / 2.0).sin();
241                Array2::from_shape_vec(
242                    (2, 2),
243                    vec![
244                        Complex::new(cos_half, 0.0),
245                        Complex::new(-sin_half, 0.0),
246                        Complex::new(sin_half, 0.0),
247                        Complex::new(cos_half, 0.0),
248                    ],
249                )
250                .expect("2x2 matrix shape should match 4-element vector")
251            }
252            QuantumGate::RZ(theta) => {
253                let exp_neg = Complex::new((theta / 2.0).cos(), -(theta / 2.0).sin());
254                let exp_pos = Complex::new((theta / 2.0).cos(), (theta / 2.0).sin());
255                Array2::from_shape_vec(
256                    (2, 2),
257                    vec![
258                        exp_neg,
259                        Complex::new(0.0, 0.0),
260                        Complex::new(0.0, 0.0),
261                        exp_pos,
262                    ],
263                )
264                .expect("2x2 matrix shape should match 4-element vector")
265            }
266            QuantumGate::Unitary(matrix) => matrix.clone(),
267            _ => panic!("Not a single-qubit gate"),
268        }
269    }
270}
271
272/// Quantum state vector simulator
273#[derive(Debug, Clone)]
274pub struct QuantumSimulator {
275    /// Number of qubits
276    pub num_qubits: usize,
277    /// State vector
278    pub state_vector: Vec<Complex>,
279}
280
281impl QuantumSimulator {
282    /// Create new quantum simulator with |0...0⟩ state
283    pub fn new(num_qubits: usize) -> Self {
284        let state_size = 2_usize.pow(num_qubits as u32);
285        let mut state_vector = vec![Complex::new(0.0, 0.0); state_size];
286        state_vector[0] = Complex::new(1.0, 0.0); // |0...0⟩ state
287
288        Self {
289            num_qubits,
290            state_vector,
291        }
292    }
293
294    /// Apply single-qubit gate
295    pub fn apply_single_qubit_gate(&mut self, gate_matrix: &Array2<Complex>, qubit: usize) {
296        let state_size = self.state_vector.len();
297        let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
298
299        // Convert qubit index to bit position (reverse for big-endian convention)
300        let num_qubits = (state_size as f64).log2() as usize;
301        let bit_pos = num_qubits - 1 - qubit;
302
303        for i in 0..state_size {
304            let bit = (i >> bit_pos) & 1;
305            let i_complement = i ^ (1 << bit_pos);
306
307            // Apply the gate matrix correctly
308            if bit == 0 {
309                // This state has qubit in |0⟩
310                new_state[i] = new_state[i] + gate_matrix[(0, 0)] * self.state_vector[i];
311                new_state[i_complement] =
312                    new_state[i_complement] + gate_matrix[(1, 0)] * self.state_vector[i];
313            } else {
314                // This state has qubit in |1⟩
315                new_state[i] = new_state[i] + gate_matrix[(1, 1)] * self.state_vector[i];
316                new_state[i_complement] =
317                    new_state[i_complement] + gate_matrix[(0, 1)] * self.state_vector[i];
318            }
319        }
320
321        self.state_vector = new_state;
322    }
323
324    /// Apply CNOT gate
325    pub fn apply_cnot(&mut self, control: usize, target: usize) {
326        let state_size = self.state_vector.len();
327        let mut new_state = vec![Complex::new(0.0, 0.0); state_size];
328
329        // Convert qubit indices to bit positions (reverse for big-endian convention)
330        let num_qubits = (state_size as f64).log2() as usize;
331        let control_bit_pos = num_qubits - 1 - control;
332        let target_bit_pos = num_qubits - 1 - target;
333
334        for i in 0..state_size {
335            let control_bit = (i >> control_bit_pos) & 1;
336            if control_bit == 1 {
337                // If control bit is 1, flip target bit
338                let i_flip = i ^ (1 << target_bit_pos);
339                new_state[i_flip] = self.state_vector[i];
340            } else {
341                // If control bit is 0, leave target unchanged
342                new_state[i] = self.state_vector[i];
343            }
344        }
345
346        self.state_vector = new_state;
347    }
348
349    /// Execute quantum circuit
350    pub fn execute_circuit(&mut self, circuit: &QuantumCircuit) -> Result<()> {
351        for (gate_idx, gate) in circuit.gates.iter().enumerate() {
352            match gate {
353                QuantumGate::I => {
354                    // Identity gate - do nothing
355                }
356                QuantumGate::X
357                | QuantumGate::Y
358                | QuantumGate::Z
359                | QuantumGate::H
360                | QuantumGate::S
361                | QuantumGate::T => {
362                    let matrix = circuit.get_single_qubit_matrix(gate);
363                    // Apply to first qubit for now (would need qubit specification in real implementation)
364                    self.apply_single_qubit_gate(&matrix, 0);
365                }
366                QuantumGate::RX(theta) | QuantumGate::RY(theta) | QuantumGate::RZ(theta) => {
367                    let mut theta_val = *theta;
368
369                    // Check if this gate uses parameters
370                    if let Some(param_indices) = circuit.parameter_mapping.get(&gate_idx) {
371                        if !param_indices.is_empty() && param_indices[0] < circuit.parameters.len()
372                        {
373                            theta_val = circuit.parameters[param_indices[0]];
374                        }
375                    }
376
377                    let matrix = match gate {
378                        QuantumGate::RX(_) => {
379                            circuit.get_single_qubit_matrix(&QuantumGate::RX(theta_val))
380                        }
381                        QuantumGate::RY(_) => {
382                            circuit.get_single_qubit_matrix(&QuantumGate::RY(theta_val))
383                        }
384                        QuantumGate::RZ(_) => {
385                            circuit.get_single_qubit_matrix(&QuantumGate::RZ(theta_val))
386                        }
387                        _ => unreachable!(),
388                    };
389                    self.apply_single_qubit_gate(&matrix, 0);
390                }
391                QuantumGate::CNOT(control, target) => {
392                    self.apply_cnot(*control, *target);
393                }
394                QuantumGate::CZ(control, target) => {
395                    // Controlled-Z gate
396                    let state_size = self.state_vector.len();
397                    for i in 0..state_size {
398                        let control_bit = (i >> control) & 1;
399                        let target_bit = (i >> target) & 1;
400                        if control_bit == 1 && target_bit == 1 {
401                            self.state_vector[i] = self.state_vector[i] * Complex::new(-1.0, 0.0);
402                        }
403                    }
404                }
405                QuantumGate::Toffoli(control1, control2, target) => {
406                    // Toffoli gate (CCX)
407                    let state_size = self.state_vector.len();
408                    let mut new_state = self.state_vector.clone();
409
410                    for i in 0..state_size {
411                        let c1_bit = (i >> control1) & 1;
412                        let c2_bit = (i >> control2) & 1;
413                        if c1_bit == 1 && c2_bit == 1 {
414                            let i_flip = i ^ (1 << target);
415                            new_state.swap(i, i_flip);
416                        }
417                    }
418                    self.state_vector = new_state;
419                }
420                QuantumGate::Unitary(matrix) => {
421                    // Apply arbitrary unitary (simplified for single qubit)
422                    self.apply_single_qubit_gate(matrix, 0);
423                }
424            }
425        }
426        Ok(())
427    }
428
429    /// Measure qubit in computational basis
430    pub fn measure_qubit(&self, qubit: usize) -> (f64, f64) {
431        let mut prob_0 = 0.0;
432        let mut prob_1 = 0.0;
433
434        for (i, amplitude) in self.state_vector.iter().enumerate() {
435            let bit = (i >> qubit) & 1;
436            let prob = amplitude.magnitude_squared();
437
438            if bit == 0 {
439                prob_0 += prob;
440            } else {
441                prob_1 += prob;
442            }
443        }
444
445        (prob_0, prob_1)
446    }
447
448    /// Get expectation value of Pauli-Z operator on a qubit
449    pub fn expectation_z(&self, qubit: usize) -> f64 {
450        let (prob_0, prob_1) = self.measure_qubit(qubit);
451        prob_0 - prob_1
452    }
453
454    /// Get all measurement probabilities
455    pub fn get_probabilities(&self) -> Vec<f64> {
456        self.state_vector
457            .iter()
458            .map(|amp| amp.magnitude_squared())
459            .collect()
460    }
461}
462
463/// Variational Quantum Eigensolver (VQE) implementation
464#[derive(Debug, Clone)]
465pub struct VariationalQuantumEigensolver {
466    /// Quantum circuit ansatz
467    pub ansatz: QuantumCircuit,
468    /// Hamiltonian terms (Pauli strings)
469    pub hamiltonian: Vec<(f64, Vec<(usize, char)>)>, // (coefficient, [(qubit, pauli_op)])
470    /// Current parameters
471    pub parameters: Vec<f64>,
472    /// Optimization history
473    pub energy_history: Vec<f64>,
474}
475
476impl VariationalQuantumEigensolver {
477    /// Create new VQE instance
478    pub fn new(num_qubits: usize, ansatz_depth: usize) -> Self {
479        let mut ansatz = QuantumCircuit::new(num_qubits);
480        let mut parameters = Vec::new();
481        let mut param_idx = 0;
482
483        // Create hardware-efficient ansatz
484        for _layer in 0..ansatz_depth {
485            // RY rotations
486            for _qubit in 0..num_qubits {
487                ansatz.add_parameterized_gate(QuantumGate::RY(0.0), vec![param_idx]);
488                let random_value = {
489                    let mut random = Random::default();
490                    0.1 * random.random::<f64>()
491                };
492                parameters.push(random_value);
493                param_idx += 1;
494            }
495
496            // CNOT entangling gates
497            for qubit in 0..num_qubits - 1 {
498                ansatz.add_gate(QuantumGate::CNOT(qubit, qubit + 1));
499            }
500
501            // RZ rotations
502            for _qubit in 0..num_qubits {
503                ansatz.add_parameterized_gate(QuantumGate::RZ(0.0), vec![param_idx]);
504                let random_value = {
505                    let mut random = Random::default();
506                    0.1 * random.random::<f64>()
507                };
508                parameters.push(random_value);
509                param_idx += 1;
510            }
511        }
512
513        Self {
514            ansatz,
515            hamiltonian: Vec::new(),
516            parameters,
517            energy_history: Vec::new(),
518        }
519    }
520
521    /// Add Hamiltonian term
522    pub fn add_hamiltonian_term(&mut self, coefficient: f64, pauli_string: Vec<(usize, char)>) {
523        self.hamiltonian.push((coefficient, pauli_string));
524    }
525
526    /// Compute energy expectation value
527    pub fn compute_energy(&self, parameters: &[f64]) -> Result<f64> {
528        let mut total_energy = 0.0;
529
530        for (coefficient, pauli_string) in &self.hamiltonian {
531            let mut simulator = QuantumSimulator::new(self.ansatz.num_qubits);
532            let mut circuit = self.ansatz.clone();
533            circuit.set_parameters(parameters.to_vec());
534
535            simulator.execute_circuit(&circuit)?;
536
537            // Compute expectation value for this Pauli string
538            let mut expectation = 1.0;
539            for &(qubit, pauli_op) in pauli_string {
540                match pauli_op {
541                    'Z' => expectation *= simulator.expectation_z(qubit),
542                    'X' => {
543                        // Apply H gate before Z measurement for X
544                        let mut sim_copy = simulator.clone();
545                        let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
546                        sim_copy.apply_single_qubit_gate(&h_matrix, qubit);
547                        expectation *= sim_copy.expectation_z(qubit);
548                    }
549                    'Y' => {
550                        // Apply S†H gate before Z measurement for Y
551                        let mut sim_copy = simulator.clone();
552                        let s_dag = Array2::from_shape_vec(
553                            (2, 2),
554                            vec![
555                                Complex::new(1.0, 0.0),
556                                Complex::new(0.0, 0.0),
557                                Complex::new(0.0, 0.0),
558                                Complex::new(0.0, -1.0),
559                            ],
560                        )
561                        .expect("2x2 matrix shape should match 4-element vector");
562                        let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
563                        sim_copy.apply_single_qubit_gate(&s_dag, qubit);
564                        sim_copy.apply_single_qubit_gate(&h_matrix, qubit);
565                        expectation *= sim_copy.expectation_z(qubit);
566                    }
567                    'I' => {
568                        // Identity - contributes 1.0
569                    }
570                    _ => return Err(anyhow!("Unknown Pauli operator: {}", pauli_op)),
571                }
572            }
573
574            total_energy += coefficient * expectation;
575        }
576
577        Ok(total_energy)
578    }
579
580    /// Optimize parameters using gradient descent
581    pub fn optimize(&mut self, max_iterations: usize, learning_rate: f64) -> Result<f64> {
582        for iteration in 0..max_iterations {
583            let current_energy = self.compute_energy(&self.parameters)?;
584            self.energy_history.push(current_energy);
585
586            // Compute gradients using parameter shift rule
587            let mut gradients = vec![0.0; self.parameters.len()];
588            let shift = PI / 2.0;
589
590            for (i, &param) in self.parameters.iter().enumerate() {
591                // Forward shift
592                let mut params_plus = self.parameters.clone();
593                params_plus[i] = param + shift;
594                let energy_plus = self.compute_energy(&params_plus)?;
595
596                // Backward shift
597                let mut params_minus = self.parameters.clone();
598                params_minus[i] = param - shift;
599                let energy_minus = self.compute_energy(&params_minus)?;
600
601                // Gradient using parameter shift rule
602                gradients[i] = 0.5 * (energy_plus - energy_minus);
603            }
604
605            // Update parameters
606            for (i, &gradient) in gradients.iter().enumerate() {
607                self.parameters[i] -= learning_rate * gradient;
608            }
609
610            // Early convergence check
611            if iteration > 10 {
612                let recent_energies = &self.energy_history[iteration.saturating_sub(5)..];
613                let energy_variance = recent_energies
614                    .iter()
615                    .map(|&e| (e - current_energy).powi(2))
616                    .sum::<f64>()
617                    / recent_energies.len() as f64;
618
619                if energy_variance < 1e-8 {
620                    break;
621                }
622            }
623        }
624
625        self.compute_energy(&self.parameters)
626    }
627}
628
629/// Quantum Approximate Optimization Algorithm (QAOA) implementation
630#[derive(Debug, Clone)]
631pub struct QuantumApproximateOptimization {
632    /// Number of qubits
633    pub num_qubits: usize,
634    /// QAOA depth (p layers)
635    pub depth: usize,
636    /// Cost Hamiltonian
637    pub cost_hamiltonian: Vec<(f64, Vec<(usize, char)>)>,
638    /// Mixer Hamiltonian (usually X gates)
639    pub mixer_hamiltonian: Vec<(f64, Vec<(usize, char)>)>,
640    /// Beta parameters (mixer angles)
641    pub beta_params: Vec<f64>,
642    /// Gamma parameters (cost angles)
643    pub gamma_params: Vec<f64>,
644    /// Optimization history
645    pub cost_history: Vec<f64>,
646}
647
648impl QuantumApproximateOptimization {
649    /// Create new QAOA instance
650    pub fn new(num_qubits: usize, depth: usize) -> Self {
651        let mut mixer_hamiltonian = Vec::new();
652
653        // Default mixer: sum of X operators
654        for qubit in 0..num_qubits {
655            mixer_hamiltonian.push((1.0, vec![(qubit, 'X')]));
656        }
657
658        Self {
659            num_qubits,
660            depth,
661            cost_hamiltonian: Vec::new(),
662            mixer_hamiltonian,
663            beta_params: vec![0.1; depth],
664            gamma_params: vec![0.1; depth],
665            cost_history: Vec::new(),
666        }
667    }
668
669    /// Add cost term (typically ZZ interactions for MaxCut)
670    pub fn add_cost_term(&mut self, coefficient: f64, pauli_string: Vec<(usize, char)>) {
671        self.cost_hamiltonian.push((coefficient, pauli_string));
672    }
673
674    /// Build QAOA circuit
675    pub fn build_circuit(&self) -> QuantumCircuit {
676        let mut circuit = QuantumCircuit::new(self.num_qubits);
677
678        // Initial superposition
679        for _qubit in 0..self.num_qubits {
680            circuit.add_gate(QuantumGate::H);
681        }
682
683        // QAOA layers
684        for layer in 0..self.depth {
685            // Cost unitary e^(-i*γ*H_C)
686            for (coefficient, pauli_string) in &self.cost_hamiltonian {
687                let angle = self.gamma_params[layer] * coefficient;
688
689                // For ZZ terms, decompose into CNOTs and RZ
690                if pauli_string.len() == 2 && pauli_string.iter().all(|(_, op)| *op == 'Z') {
691                    let qubit1 = pauli_string[0].0;
692                    let qubit2 = pauli_string[1].0;
693
694                    circuit.add_gate(QuantumGate::CNOT(qubit1, qubit2));
695                    circuit.add_gate(QuantumGate::RZ(angle));
696                    circuit.add_gate(QuantumGate::CNOT(qubit1, qubit2));
697                }
698            }
699
700            // Mixer unitary e^(-i*β*H_M)
701            let beta = self.beta_params[layer];
702            for _qubit in 0..self.num_qubits {
703                circuit.add_gate(QuantumGate::RX(2.0 * beta));
704            }
705        }
706
707        circuit
708    }
709
710    /// Compute cost function expectation
711    pub fn compute_cost(&self) -> Result<f64> {
712        let circuit = self.build_circuit();
713        let mut simulator = QuantumSimulator::new(self.num_qubits);
714        simulator.execute_circuit(&circuit)?;
715
716        let mut total_cost = 0.0;
717        for (coefficient, pauli_string) in &self.cost_hamiltonian {
718            let mut expectation = 1.0;
719            for &(qubit, pauli_op) in pauli_string {
720                match pauli_op {
721                    'Z' => expectation *= simulator.expectation_z(qubit),
722                    _ => return Err(anyhow!("QAOA cost function only supports Z operators")),
723                }
724            }
725            total_cost += coefficient * expectation;
726        }
727
728        Ok(total_cost)
729    }
730
731    /// Optimize QAOA parameters
732    pub fn optimize(&mut self, max_iterations: usize, learning_rate: f64) -> Result<f64> {
733        for iteration in 0..max_iterations {
734            let current_cost = self.compute_cost()?;
735            self.cost_history.push(current_cost);
736
737            // Simple gradient descent on parameters
738            let mut beta_gradients = vec![0.0; self.depth];
739            let mut gamma_gradients = vec![0.0; self.depth];
740            let shift = 0.1;
741
742            // Compute gradients for beta parameters
743            for (i, grad) in beta_gradients.iter_mut().enumerate().take(self.depth) {
744                // Forward shift
745                self.beta_params[i] += shift;
746                let cost_plus = self.compute_cost()?;
747
748                // Backward shift
749                self.beta_params[i] -= 2.0 * shift;
750                let cost_minus = self.compute_cost()?;
751
752                // Restore original value
753                self.beta_params[i] += shift;
754
755                *grad = (cost_plus - cost_minus) / (2.0 * shift);
756            }
757
758            // Compute gradients for gamma parameters
759            for (i, grad) in gamma_gradients.iter_mut().enumerate().take(self.depth) {
760                // Forward shift
761                self.gamma_params[i] += shift;
762                let cost_plus = self.compute_cost()?;
763
764                // Backward shift
765                self.gamma_params[i] -= 2.0 * shift;
766                let cost_minus = self.compute_cost()?;
767
768                // Restore original value
769                self.gamma_params[i] += shift;
770
771                *grad = (cost_plus - cost_minus) / (2.0 * shift);
772            }
773
774            // Update parameters (minimize cost)
775            for i in 0..self.depth {
776                self.beta_params[i] -= learning_rate * beta_gradients[i];
777                self.gamma_params[i] -= learning_rate * gamma_gradients[i];
778            }
779
780            // Early convergence
781            if iteration > 10 {
782                let recent_variance = self.cost_history[iteration.saturating_sub(5)..]
783                    .iter()
784                    .map(|&c| (c - current_cost).powi(2))
785                    .sum::<f64>()
786                    / 5.0;
787
788                if recent_variance < 1e-8 {
789                    break;
790                }
791            }
792        }
793
794        self.compute_cost()
795    }
796}
797
798/// Quantum Neural Network layer
799#[derive(Debug, Clone)]
800pub struct QuantumNeuralNetworkLayer {
801    /// Number of qubits
802    pub num_qubits: usize,
803    /// Layer parameters
804    pub parameters: Vec<f64>,
805    /// Layer type
806    pub layer_type: QNNLayerType,
807}
808
809/// Types of QNN layers
810#[derive(Debug, Clone)]
811pub enum QNNLayerType {
812    /// Strongly entangling layer
813    StronglyEntangling,
814    /// Basic entangling layer
815    BasicEntangling,
816    /// Amplitude embedding layer
817    AmplitudeEmbedding,
818    /// Angle embedding layer
819    AngleEmbedding,
820}
821
822impl QuantumNeuralNetworkLayer {
823    /// Create new QNN layer
824    pub fn new(num_qubits: usize, layer_type: QNNLayerType) -> Self {
825        let num_params = match layer_type {
826            QNNLayerType::StronglyEntangling => 3 * num_qubits,
827            QNNLayerType::BasicEntangling => num_qubits,
828            QNNLayerType::AmplitudeEmbedding => 2_usize.pow(num_qubits as u32) - 1,
829            QNNLayerType::AngleEmbedding => num_qubits,
830        };
831
832        let parameters = (0..num_params)
833            .map(|_| {
834                let mut random = Random::default();
835                2.0 * PI * random.random::<f64>()
836            })
837            .collect();
838
839        Self {
840            num_qubits,
841            parameters,
842            layer_type,
843        }
844    }
845
846    /// Build circuit for this layer
847    pub fn build_circuit(&self, input_data: Option<&[f64]>) -> QuantumCircuit {
848        let mut circuit = QuantumCircuit::new(self.num_qubits);
849
850        match &self.layer_type {
851            QNNLayerType::StronglyEntangling => {
852                // Strongly entangling layer with RX, RY, RZ rotations and CNOT gates
853                for i in 0..self.num_qubits {
854                    circuit.add_gate(QuantumGate::RX(self.parameters[3 * i]));
855                    circuit.add_gate(QuantumGate::RY(self.parameters[3 * i + 1]));
856                    circuit.add_gate(QuantumGate::RZ(self.parameters[3 * i + 2]));
857                }
858
859                // Entangling gates
860                for i in 0..self.num_qubits {
861                    circuit.add_gate(QuantumGate::CNOT(i, (i + 1) % self.num_qubits));
862                }
863            }
864            QNNLayerType::BasicEntangling => {
865                // Basic entangling layer with RY rotations
866                for i in 0..self.num_qubits {
867                    circuit.add_gate(QuantumGate::RY(self.parameters[i]));
868                }
869
870                // Circular CNOT gates
871                for i in 0..self.num_qubits {
872                    circuit.add_gate(QuantumGate::CNOT(i, (i + 1) % self.num_qubits));
873                }
874            }
875            QNNLayerType::AmplitudeEmbedding => {
876                if let Some(data) = input_data {
877                    // Encode classical data into quantum amplitudes
878                    let normalized_data = self.normalize_data(data);
879                    // This would require a complex amplitude embedding procedure
880                    // For now, use angle embedding as approximation
881                    for (i, &value) in normalized_data.iter().enumerate() {
882                        if i < self.num_qubits {
883                            circuit.add_gate(QuantumGate::RY(value * PI));
884                        }
885                    }
886                }
887            }
888            QNNLayerType::AngleEmbedding => {
889                if let Some(data) = input_data {
890                    // Encode data into rotation angles
891                    for (i, &value) in data.iter().enumerate() {
892                        if i < self.num_qubits {
893                            circuit.add_gate(QuantumGate::RY(value * self.parameters[i]));
894                        }
895                    }
896                }
897            }
898        }
899
900        circuit
901    }
902
903    /// Normalize input data
904    fn normalize_data(&self, data: &[f64]) -> Vec<f64> {
905        let norm = data.iter().map(|x| x * x).sum::<f64>().sqrt();
906        if norm > 0.0 {
907            data.iter().map(|x| x / norm).collect()
908        } else {
909            data.to_vec()
910        }
911    }
912}
913
914/// Quantum Error Correction Syndrome
915#[derive(Debug, Clone, Serialize, Deserialize)]
916pub struct ErrorSyndrome {
917    /// Detected error pattern
918    pub error_pattern: Vec<bool>,
919    /// Error correction suggestions
920    pub corrections: Vec<QuantumGate>,
921    /// Confidence in error detection
922    pub confidence: f64,
923    /// Error type classification
924    pub error_types: Vec<ErrorType>,
925}
926
927/// Types of quantum errors
928#[derive(Debug, Clone, Serialize, Deserialize)]
929pub enum ErrorType {
930    /// Bit flip error (X error)
931    BitFlip(usize),
932    /// Phase flip error (Z error)
933    PhaseFlip(usize),
934    /// Depolarizing error
935    Depolarizing(usize, f64),
936    /// Coherence decay
937    CoherenceDecay(usize, f64),
938    /// Cross-talk between qubits
939    CrossTalk(usize, usize, f64),
940}
941
942/// Quantum Error Correction Engine
943#[derive(Debug, Clone)]
944pub struct QuantumErrorCorrection {
945    /// Error detection threshold
946    pub detection_threshold: f64,
947    /// Correction confidence threshold
948    pub correction_threshold: f64,
949    /// Error syndrome history
950    pub syndrome_history: Vec<ErrorSyndrome>,
951    /// Error mitigation strategies
952    pub mitigation_strategies: Vec<ErrorMitigationStrategy>,
953}
954
955impl Default for QuantumErrorCorrection {
956    fn default() -> Self {
957        Self::new()
958    }
959}
960
961/// Error mitigation strategies
962#[derive(Debug, Clone, PartialEq)]
963pub enum ErrorMitigationStrategy {
964    /// Zero noise extrapolation
965    ZeroNoiseExtrapolation,
966    /// Readout error mitigation
967    ReadoutErrorMitigation,
968    /// Symmetry verification
969    SymmetryVerification,
970    /// Virtual distillation
971    VirtualDistillation,
972}
973
974impl QuantumErrorCorrection {
975    /// Create new error correction engine
976    pub fn new() -> Self {
977        Self {
978            detection_threshold: 0.01,
979            correction_threshold: 0.8,
980            syndrome_history: Vec::new(),
981            mitigation_strategies: vec![
982                ErrorMitigationStrategy::ZeroNoiseExtrapolation,
983                ErrorMitigationStrategy::ReadoutErrorMitigation,
984                ErrorMitigationStrategy::SymmetryVerification,
985            ],
986        }
987    }
988
989    /// Detect quantum errors in state vector
990    pub fn detect_errors(&mut self, state_vector: &[Complex]) -> Result<ErrorSyndrome> {
991        let mut error_pattern = Vec::new();
992        let mut corrections = Vec::new();
993        let mut error_types = Vec::new();
994        let mut total_error_magnitude = 0.0;
995
996        // Check for amplitude anomalies
997        let expected_normalization = state_vector
998            .iter()
999            .map(|amp| amp.magnitude_squared())
1000            .sum::<f64>();
1001
1002        if (expected_normalization - 1.0).abs() > self.detection_threshold {
1003            error_types.push(ErrorType::CoherenceDecay(0, expected_normalization - 1.0));
1004            corrections.push(QuantumGate::I); // Placeholder for normalization correction
1005            total_error_magnitude += (expected_normalization - 1.0).abs();
1006        }
1007
1008        // Detect phase inconsistencies
1009        for (i, amplitude) in state_vector.iter().enumerate() {
1010            let phase = amplitude.imag.atan2(amplitude.real);
1011            if phase.abs() > PI * 0.9 && amplitude.magnitude_squared() > 0.01 {
1012                error_pattern.push(true);
1013                error_types.push(ErrorType::PhaseFlip(i));
1014                corrections.push(QuantumGate::Z);
1015                total_error_magnitude += phase.abs() / PI;
1016            } else {
1017                error_pattern.push(false);
1018            }
1019        }
1020
1021        // Calculate confidence based on error magnitude
1022        let confidence = if total_error_magnitude > 0.0 {
1023            (1.0 - total_error_magnitude.min(1.0)).max(0.0)
1024        } else {
1025            1.0
1026        };
1027
1028        let syndrome = ErrorSyndrome {
1029            error_pattern,
1030            corrections,
1031            confidence,
1032            error_types,
1033        };
1034
1035        self.syndrome_history.push(syndrome.clone());
1036        if self.syndrome_history.len() > 100 {
1037            self.syndrome_history.remove(0);
1038        }
1039
1040        Ok(syndrome)
1041    }
1042
1043    /// Apply error corrections to quantum circuit
1044    pub fn apply_corrections(
1045        &self,
1046        circuit: &mut QuantumCircuit,
1047        syndrome: &ErrorSyndrome,
1048    ) -> Result<()> {
1049        if syndrome.confidence < self.correction_threshold {
1050            return Ok(()); // Don't apply corrections if confidence is too low
1051        }
1052
1053        for correction in syndrome.corrections.iter() {
1054            match correction {
1055                QuantumGate::Z => {
1056                    // Apply phase correction
1057                    circuit.add_gate(QuantumGate::Z);
1058                }
1059                QuantumGate::X => {
1060                    // Apply bit flip correction
1061                    circuit.add_gate(QuantumGate::X);
1062                }
1063                QuantumGate::I => {
1064                    // Apply identity (normalization will be handled by simulator)
1065                }
1066                _ => {
1067                    // Apply custom correction
1068                    circuit.add_gate(correction.clone());
1069                }
1070            }
1071        }
1072
1073        Ok(())
1074    }
1075
1076    /// Get error correction statistics
1077    pub fn get_correction_stats(&self) -> (f64, f64, usize) {
1078        if self.syndrome_history.is_empty() {
1079            return (0.0, 0.0, 0);
1080        }
1081
1082        let avg_confidence = self
1083            .syndrome_history
1084            .iter()
1085            .map(|s| s.confidence)
1086            .sum::<f64>()
1087            / self.syndrome_history.len() as f64;
1088
1089        let error_rate = self
1090            .syndrome_history
1091            .iter()
1092            .filter(|s| !s.error_types.is_empty())
1093            .count() as f64
1094            / self.syndrome_history.len() as f64;
1095
1096        (avg_confidence, error_rate, self.syndrome_history.len())
1097    }
1098}
1099
1100/// Coherence Time Manager
1101#[derive(Debug, Clone)]
1102pub struct CoherenceTimeManager {
1103    /// T1 relaxation times for each qubit (seconds)
1104    pub t1_times: Vec<f64>,
1105    /// T2 dephasing times for each qubit (seconds)
1106    pub t2_times: Vec<f64>,
1107    /// Current circuit execution time (seconds)
1108    pub execution_time: f64,
1109    /// Coherence decay models
1110    pub decay_models: Vec<CoherenceDecayModel>,
1111}
1112
1113/// Coherence decay models
1114#[derive(Debug, Clone)]
1115pub enum CoherenceDecayModel {
1116    /// Exponential decay
1117    Exponential,
1118    /// Gaussian decay
1119    Gaussian,
1120    /// Power law decay
1121    PowerLaw(f64), // exponent
1122}
1123
1124impl CoherenceTimeManager {
1125    /// Create new coherence time manager
1126    pub fn new(num_qubits: usize) -> Self {
1127        // Realistic coherence times for current quantum devices
1128        let t1_times = vec![50e-6; num_qubits]; // 50 microseconds
1129        let t2_times = vec![25e-6; num_qubits]; // 25 microseconds (T2 < T1)
1130        let decay_models = vec![CoherenceDecayModel::Exponential; num_qubits];
1131
1132        Self {
1133            t1_times,
1134            t2_times,
1135            execution_time: 0.0,
1136            decay_models,
1137        }
1138    }
1139
1140    /// Set custom coherence times
1141    pub fn set_coherence_times(&mut self, t1_times: Vec<f64>, t2_times: Vec<f64>) {
1142        self.t1_times = t1_times;
1143        self.t2_times = t2_times;
1144    }
1145
1146    /// Calculate coherence factor for a qubit
1147    pub fn calculate_coherence_factor(&self, qubit: usize) -> f64 {
1148        if qubit >= self.t1_times.len() || qubit >= self.t2_times.len() {
1149            return 1.0;
1150        }
1151
1152        let t1 = self.t1_times[qubit];
1153        let t2 = self.t2_times[qubit];
1154        let time = self.execution_time;
1155
1156        match &self.decay_models[qubit] {
1157            CoherenceDecayModel::Exponential => {
1158                let relaxation_factor = (-time / t1).exp();
1159                let dephasing_factor = (-2.0 * time / t2).exp();
1160                (relaxation_factor * dephasing_factor).max(0.01) // Minimum coherence
1161            }
1162            CoherenceDecayModel::Gaussian => {
1163                let sigma = t2 / (2.0 * (2.0 * (2.0_f64).ln()).sqrt());
1164                (-(time * time) / (2.0 * sigma * sigma)).exp().max(0.01)
1165            }
1166            CoherenceDecayModel::PowerLaw(exponent) => (1.0 + time / t2).powf(-exponent).max(0.01),
1167        }
1168    }
1169
1170    /// Apply coherence decay to quantum state
1171    pub fn apply_coherence_decay(&self, state_vector: &mut [Complex]) -> Result<()> {
1172        let num_qubits = (state_vector.len() as f64).log2() as usize;
1173
1174        for qubit in 0..num_qubits {
1175            let coherence_factor = self.calculate_coherence_factor(qubit);
1176
1177            // Apply amplitude damping (T1 process)
1178            for (i, amplitude) in state_vector.iter_mut().enumerate() {
1179                let bit = (i >> qubit) & 1;
1180                if bit == 1 {
1181                    // Excited state decays
1182                    *amplitude = *amplitude * coherence_factor;
1183                }
1184            }
1185
1186            // Apply dephasing (T2 process) by adding random phase
1187            if coherence_factor < 1.0 {
1188                let phase_noise = {
1189                    let mut random = Random::default();
1190                    (1.0 - coherence_factor) * random.random::<f64>() * PI
1191                };
1192                for amplitude in state_vector.iter_mut() {
1193                    let phase_factor = Complex::new(phase_noise.cos(), phase_noise.sin());
1194                    *amplitude = *amplitude * phase_factor;
1195                }
1196            }
1197        }
1198
1199        // Renormalize
1200        let norm = state_vector
1201            .iter()
1202            .map(|amp| amp.magnitude_squared())
1203            .sum::<f64>()
1204            .sqrt();
1205
1206        if norm > 0.0 {
1207            for amp in state_vector.iter_mut() {
1208                *amp = *amp * (1.0 / norm);
1209            }
1210        }
1211
1212        Ok(())
1213    }
1214
1215    /// Update execution time
1216    pub fn update_execution_time(&mut self, delta_time: f64) {
1217        self.execution_time += delta_time;
1218    }
1219
1220    /// Reset execution time
1221    pub fn reset_execution_time(&mut self) {
1222        self.execution_time = 0.0;
1223    }
1224
1225    /// Get coherence health report
1226    pub fn get_coherence_report(&self) -> CoherenceReport {
1227        let coherence_factors: Vec<f64> = (0..self.t1_times.len())
1228            .map(|qubit| self.calculate_coherence_factor(qubit))
1229            .collect();
1230
1231        let avg_coherence = coherence_factors.iter().sum::<f64>() / coherence_factors.len() as f64;
1232        let min_coherence = coherence_factors
1233            .iter()
1234            .fold(f64::INFINITY, |a, &b| a.min(b));
1235        let max_coherence = coherence_factors
1236            .iter()
1237            .fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1238
1239        CoherenceReport {
1240            execution_time: self.execution_time,
1241            qubit_coherence_factors: coherence_factors,
1242            average_coherence: avg_coherence,
1243            minimum_coherence: min_coherence,
1244            maximum_coherence: max_coherence,
1245            coherence_uniformity: 1.0 - (max_coherence - min_coherence) / max_coherence,
1246        }
1247    }
1248}
1249
1250/// Coherence health report
1251#[derive(Debug, Clone, Serialize, Deserialize)]
1252pub struct CoherenceReport {
1253    pub execution_time: f64,
1254    pub qubit_coherence_factors: Vec<f64>,
1255    pub average_coherence: f64,
1256    pub minimum_coherence: f64,
1257    pub maximum_coherence: f64,
1258    pub coherence_uniformity: f64,
1259}
1260
1261/// Quantum system diagnostics
1262#[derive(Debug, Clone, Serialize, Deserialize)]
1263pub struct QuantumDiagnostics {
1264    pub error_correction_confidence: f64,
1265    pub error_rate: f64,
1266    pub num_error_measurements: usize,
1267    pub coherence_report: CoherenceReport,
1268    pub error_correction_enabled: bool,
1269    pub coherence_modeling_enabled: bool,
1270}
1271
1272/// Enhanced Quantum Neural Network with Error Correction
1273#[derive(Debug, Clone)]
1274pub struct QuantumNeuralNetwork {
1275    /// Number of qubits
1276    pub num_qubits: usize,
1277    /// QNN layers
1278    pub layers: Vec<QuantumNeuralNetworkLayer>,
1279    /// Output measurement strategy
1280    pub measurement_strategy: MeasurementStrategy,
1281    /// Training history
1282    pub loss_history: Vec<f64>,
1283    /// Quantum error correction engine
1284    pub error_correction: QuantumErrorCorrection,
1285    /// Coherence time manager
1286    pub coherence_manager: CoherenceTimeManager,
1287    /// Error correction enabled flag
1288    pub enable_error_correction: bool,
1289    /// Coherence modeling enabled flag
1290    pub enable_coherence_modeling: bool,
1291}
1292
1293/// Measurement strategies for QNN output
1294#[derive(Debug, Clone)]
1295pub enum MeasurementStrategy {
1296    /// Expectation values of Pauli-Z on all qubits
1297    ExpectationZ,
1298    /// Expectation values of Pauli-X on all qubits
1299    ExpectationX,
1300    /// Probability of measuring |0⟩ on all qubits
1301    Probability0,
1302    /// Custom Pauli string measurements
1303    CustomPauli(Vec<(usize, char)>),
1304}
1305
1306impl QuantumNeuralNetwork {
1307    /// Create new QNN with advanced error correction
1308    pub fn new(num_qubits: usize, layer_configs: Vec<QNNLayerType>) -> Self {
1309        let layers = layer_configs
1310            .into_iter()
1311            .map(|layer_type| QuantumNeuralNetworkLayer::new(num_qubits, layer_type))
1312            .collect();
1313
1314        Self {
1315            num_qubits,
1316            layers,
1317            measurement_strategy: MeasurementStrategy::ExpectationZ,
1318            loss_history: Vec::new(),
1319            error_correction: QuantumErrorCorrection::new(),
1320            coherence_manager: CoherenceTimeManager::new(num_qubits),
1321            enable_error_correction: true,
1322            enable_coherence_modeling: true,
1323        }
1324    }
1325
1326    /// Create new QNN with custom error correction settings
1327    pub fn new_with_error_correction(
1328        num_qubits: usize,
1329        layer_configs: Vec<QNNLayerType>,
1330        enable_error_correction: bool,
1331        enable_coherence_modeling: bool,
1332    ) -> Self {
1333        let layers = layer_configs
1334            .into_iter()
1335            .map(|layer_type| QuantumNeuralNetworkLayer::new(num_qubits, layer_type))
1336            .collect();
1337
1338        Self {
1339            num_qubits,
1340            layers,
1341            measurement_strategy: MeasurementStrategy::ExpectationZ,
1342            loss_history: Vec::new(),
1343            error_correction: QuantumErrorCorrection::new(),
1344            coherence_manager: CoherenceTimeManager::new(num_qubits),
1345            enable_error_correction,
1346            enable_coherence_modeling,
1347        }
1348    }
1349
1350    /// Set custom coherence times
1351    pub fn set_coherence_times(&mut self, t1_times: Vec<f64>, t2_times: Vec<f64>) {
1352        self.coherence_manager
1353            .set_coherence_times(t1_times, t2_times);
1354    }
1355
1356    /// Enhanced forward pass with error correction and coherence modeling
1357    pub fn forward(&mut self, input_data: &[f64]) -> Result<Vec<f64>> {
1358        let mut circuit = QuantumCircuit::new(self.num_qubits);
1359
1360        // Reset coherence manager for new forward pass
1361        self.coherence_manager.reset_execution_time();
1362
1363        // Build circuit from all layers
1364        for (i, layer) in self.layers.iter().enumerate() {
1365            let layer_circuit = if i == 0 {
1366                // First layer gets input data
1367                layer.build_circuit(Some(input_data))
1368            } else {
1369                // Subsequent layers use their parameters
1370                layer.build_circuit(None)
1371            };
1372
1373            // Update execution time for coherence modeling
1374            if self.enable_coherence_modeling {
1375                let gate_time = 0.1e-6; // 100 nanoseconds per gate (typical)
1376                self.coherence_manager
1377                    .update_execution_time(gate_time * layer_circuit.gates.len() as f64);
1378            }
1379
1380            // Add layer gates to main circuit
1381            for gate in &layer_circuit.gates {
1382                circuit.add_gate(gate.clone());
1383            }
1384        }
1385
1386        // Execute circuit
1387        let mut simulator = QuantumSimulator::new(self.num_qubits);
1388        simulator.execute_circuit(&circuit)?;
1389
1390        // Apply coherence decay if enabled
1391        if self.enable_coherence_modeling {
1392            self.coherence_manager
1393                .apply_coherence_decay(&mut simulator.state_vector)?;
1394        }
1395
1396        // Apply error detection and correction if enabled
1397        if self.enable_error_correction {
1398            let syndrome = self
1399                .error_correction
1400                .detect_errors(&simulator.state_vector)?;
1401
1402            if syndrome.confidence > 0.5 {
1403                // If error detected with reasonable confidence, apply corrections
1404                let mut correction_circuit = QuantumCircuit::new(self.num_qubits);
1405                self.error_correction
1406                    .apply_corrections(&mut correction_circuit, &syndrome)?;
1407
1408                if !correction_circuit.gates.is_empty() {
1409                    simulator.execute_circuit(&correction_circuit)?;
1410                }
1411            }
1412        }
1413
1414        // Perform measurements based on strategy
1415        let output = match &self.measurement_strategy {
1416            MeasurementStrategy::ExpectationZ => (0..self.num_qubits)
1417                .map(|qubit| simulator.expectation_z(qubit))
1418                .collect(),
1419            MeasurementStrategy::ExpectationX => {
1420                let mut outputs = Vec::new();
1421                for qubit in 0..self.num_qubits {
1422                    let mut sim_copy = simulator.clone();
1423                    let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
1424                    sim_copy.apply_single_qubit_gate(&h_matrix, qubit);
1425                    outputs.push(sim_copy.expectation_z(qubit));
1426                }
1427                outputs
1428            }
1429            MeasurementStrategy::Probability0 => (0..self.num_qubits)
1430                .map(|qubit| simulator.measure_qubit(qubit).0)
1431                .collect(),
1432            MeasurementStrategy::CustomPauli(pauli_string) => {
1433                let mut expectation = 1.0;
1434                for &(qubit, pauli_op) in pauli_string {
1435                    match pauli_op {
1436                        'Z' => expectation *= simulator.expectation_z(qubit),
1437                        'X' => {
1438                            let mut sim_copy = simulator.clone();
1439                            let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
1440                            sim_copy.apply_single_qubit_gate(&h_matrix, qubit);
1441                            expectation *= sim_copy.expectation_z(qubit);
1442                        }
1443                        'I' => {} // Identity
1444                        _ => return Err(anyhow!("Unsupported Pauli operator: {}", pauli_op)),
1445                    }
1446                }
1447                vec![expectation]
1448            }
1449        };
1450
1451        Ok(output)
1452    }
1453
1454    /// Get quantum error and coherence diagnostics
1455    pub fn get_quantum_diagnostics(&self) -> QuantumDiagnostics {
1456        let (avg_confidence, error_rate, num_measurements) =
1457            self.error_correction.get_correction_stats();
1458        let coherence_report = self.coherence_manager.get_coherence_report();
1459
1460        QuantumDiagnostics {
1461            error_correction_confidence: avg_confidence,
1462            error_rate,
1463            num_error_measurements: num_measurements,
1464            coherence_report,
1465            error_correction_enabled: self.enable_error_correction,
1466            coherence_modeling_enabled: self.enable_coherence_modeling,
1467        }
1468    }
1469
1470    /// Train QNN using gradient descent
1471    pub fn train(
1472        &mut self,
1473        training_data: &[(Vec<f64>, Vec<f64>)],
1474        epochs: usize,
1475        learning_rate: f64,
1476    ) -> Result<()> {
1477        for epoch in 0..epochs {
1478            let mut total_loss = 0.0;
1479
1480            for (input, target) in training_data {
1481                let prediction = self.forward(input)?;
1482
1483                // Mean squared error loss
1484                let loss = prediction
1485                    .iter()
1486                    .zip(target.iter())
1487                    .map(|(p, t)| (p - t).powi(2))
1488                    .sum::<f64>()
1489                    / prediction.len() as f64;
1490
1491                total_loss += loss;
1492
1493                // Update parameters using finite difference gradients
1494                self.update_parameters(input, target, learning_rate)?;
1495            }
1496
1497            self.loss_history
1498                .push(total_loss / training_data.len() as f64);
1499
1500            if epoch % 10 == 0 {
1501                println!(
1502                    "Epoch {}: Average Loss = {:.6}",
1503                    epoch,
1504                    self.loss_history
1505                        .last()
1506                        .expect("loss_history should not be empty after training")
1507                );
1508            }
1509        }
1510
1511        Ok(())
1512    }
1513
1514    /// Update parameters using gradient descent
1515    fn update_parameters(
1516        &mut self,
1517        input: &[f64],
1518        target: &[f64],
1519        learning_rate: f64,
1520    ) -> Result<()> {
1521        let shift = 0.01;
1522
1523        // Collect all gradients first
1524        let mut gradients = Vec::new();
1525
1526        // Collect layer information first to avoid borrow conflicts
1527        let layer_info: Vec<(usize, usize)> = self
1528            .layers
1529            .iter()
1530            .enumerate()
1531            .map(|(idx, layer)| (idx, layer.parameters.len()))
1532            .collect();
1533
1534        for (layer_idx, param_count) in layer_info {
1535            let mut layer_gradients = Vec::new();
1536
1537            for i in 0..param_count {
1538                // Forward shift
1539                self.layers[layer_idx].parameters[i] += shift;
1540                let prediction_plus = self.forward(input)?;
1541                let loss_plus = prediction_plus
1542                    .iter()
1543                    .zip(target.iter())
1544                    .map(|(p, t)| (p - t).powi(2))
1545                    .sum::<f64>();
1546
1547                // Backward shift
1548                self.layers[layer_idx].parameters[i] -= 2.0 * shift;
1549                let prediction_minus = self.forward(input)?;
1550                let loss_minus = prediction_minus
1551                    .iter()
1552                    .zip(target.iter())
1553                    .map(|(p, t)| (p - t).powi(2))
1554                    .sum::<f64>();
1555
1556                // Restore original parameter
1557                self.layers[layer_idx].parameters[i] += shift;
1558
1559                // Calculate gradient
1560                let gradient = (loss_plus - loss_minus) / (2.0 * shift);
1561                layer_gradients.push(gradient);
1562            }
1563            gradients.push(layer_gradients);
1564        }
1565
1566        // Apply all gradients
1567        for (layer_idx, layer_gradients) in gradients.iter().enumerate() {
1568            for (param_idx, gradient) in layer_gradients.iter().enumerate() {
1569                self.layers[layer_idx].parameters[param_idx] -= learning_rate * gradient;
1570            }
1571        }
1572
1573        Ok(())
1574    }
1575}
1576
1577#[cfg(test)]
1578mod tests {
1579    use super::*;
1580
1581    #[test]
1582    fn test_complex_arithmetic() {
1583        let a = Complex::new(1.0, 2.0);
1584        let b = Complex::new(3.0, 4.0);
1585
1586        let sum = a + b;
1587        assert_eq!(sum.real, 4.0);
1588        assert_eq!(sum.imag, 6.0);
1589
1590        let product = a * b;
1591        assert_eq!(product.real, -5.0); // 1*3 - 2*4
1592        assert_eq!(product.imag, 10.0); // 1*4 + 2*3
1593    }
1594
1595    #[test]
1596    fn test_quantum_gates() {
1597        let circuit = QuantumCircuit::new(1);
1598
1599        // Test Pauli-X gate
1600        let x_matrix = circuit.get_single_qubit_matrix(&QuantumGate::X);
1601        assert_eq!(x_matrix[(0, 0)].real, 0.0);
1602        assert_eq!(x_matrix[(0, 1)].real, 1.0);
1603        assert_eq!(x_matrix[(1, 0)].real, 1.0);
1604        assert_eq!(x_matrix[(1, 1)].real, 0.0);
1605
1606        // Test Hadamard gate
1607        let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
1608        let inv_sqrt2 = 1.0 / (2.0_f64).sqrt();
1609        assert!((h_matrix[(0, 0)].real - inv_sqrt2).abs() < 1e-10);
1610        assert!((h_matrix[(1, 1)].real + inv_sqrt2).abs() < 1e-10);
1611    }
1612
1613    #[test]
1614    fn test_quantum_simulator() {
1615        let mut simulator = QuantumSimulator::new(2);
1616
1617        // Initial state should be |00⟩ (use tolerance for floating point comparisons)
1618        assert!((simulator.state_vector[0].real - 1.0).abs() < 1e-10);
1619        assert!((simulator.state_vector[0].imag).abs() < 1e-10);
1620        assert!((simulator.state_vector[1].real).abs() < 1e-10);
1621        assert!((simulator.state_vector[1].imag).abs() < 1e-10);
1622        assert!((simulator.state_vector[2].real).abs() < 1e-10);
1623        assert!((simulator.state_vector[2].imag).abs() < 1e-10);
1624        assert!((simulator.state_vector[3].real).abs() < 1e-10);
1625        assert!((simulator.state_vector[3].imag).abs() < 1e-10);
1626
1627        // Apply H gate to first qubit
1628        let circuit = QuantumCircuit::new(2);
1629        let h_matrix = circuit.get_single_qubit_matrix(&QuantumGate::H);
1630        simulator.apply_single_qubit_gate(&h_matrix, 0);
1631
1632        // Should be in superposition (|00⟩ + |10⟩)/√2
1633        let inv_sqrt2 = 1.0 / (2.0_f64).sqrt();
1634        assert!((simulator.state_vector[0].real - inv_sqrt2).abs() < 1e-6);
1635        assert!((simulator.state_vector[2].real - inv_sqrt2).abs() < 1e-6);
1636        assert!((simulator.state_vector[1].real).abs() < 1e-10);
1637        assert!((simulator.state_vector[3].real).abs() < 1e-10);
1638    }
1639
1640    #[test]
1641    fn test_cnot_gate() {
1642        let mut simulator = QuantumSimulator::new(2);
1643
1644        // Prepare |10⟩ state
1645        let circuit = QuantumCircuit::new(2);
1646        let x_matrix = circuit.get_single_qubit_matrix(&QuantumGate::X);
1647        simulator.apply_single_qubit_gate(&x_matrix, 0);
1648
1649        // Apply CNOT
1650        simulator.apply_cnot(0, 1);
1651
1652        // Should be in |11⟩ state (use tolerance for floating point comparisons)
1653        assert!((simulator.state_vector[0].real).abs() < 1e-10);
1654        assert!((simulator.state_vector[0].imag).abs() < 1e-10);
1655        assert!((simulator.state_vector[1].real).abs() < 1e-10);
1656        assert!((simulator.state_vector[1].imag).abs() < 1e-10);
1657        assert!((simulator.state_vector[2].real).abs() < 1e-10);
1658        assert!((simulator.state_vector[2].imag).abs() < 1e-10);
1659        assert!((simulator.state_vector[3].real - 1.0).abs() < 1e-10);
1660        assert!((simulator.state_vector[3].imag).abs() < 1e-10);
1661    }
1662
1663    #[test]
1664    fn test_vqe_creation() {
1665        let vqe = VariationalQuantumEigensolver::new(2, 1);
1666        assert_eq!(vqe.ansatz.num_qubits, 2);
1667        assert!(!vqe.parameters.is_empty());
1668    }
1669
1670    #[test]
1671    fn test_qaoa_creation() {
1672        let mut qaoa = QuantumApproximateOptimization::new(3, 2);
1673        assert_eq!(qaoa.num_qubits, 3);
1674        assert_eq!(qaoa.depth, 2);
1675        assert_eq!(qaoa.beta_params.len(), 2);
1676        assert_eq!(qaoa.gamma_params.len(), 2);
1677
1678        // Add MaxCut cost terms
1679        qaoa.add_cost_term(0.5, vec![(0, 'Z'), (1, 'Z')]);
1680        qaoa.add_cost_term(0.5, vec![(1, 'Z'), (2, 'Z')]);
1681
1682        assert_eq!(qaoa.cost_hamiltonian.len(), 2);
1683    }
1684
1685    #[test]
1686    fn test_qnn_layer() {
1687        let layer = QuantumNeuralNetworkLayer::new(2, QNNLayerType::BasicEntangling);
1688        assert_eq!(layer.num_qubits, 2);
1689        assert_eq!(layer.parameters.len(), 2);
1690
1691        let circuit = layer.build_circuit(None);
1692        assert_eq!(circuit.num_qubits, 2);
1693        assert!(!circuit.gates.is_empty());
1694    }
1695
1696    #[test]
1697    fn test_qnn_forward() {
1698        let mut qnn = QuantumNeuralNetwork::new(
1699            2,
1700            vec![QNNLayerType::AngleEmbedding, QNNLayerType::BasicEntangling],
1701        );
1702
1703        let input = vec![0.5, 0.8];
1704        let output = qnn.forward(&input).unwrap();
1705
1706        assert_eq!(output.len(), 2);
1707        // More tolerant bounds for quantum measurements
1708        assert!(output.iter().all(|&x| (-1.1..=1.1).contains(&x)));
1709        // Ensure we get reasonable values (not NaN or infinite)
1710        assert!(output.iter().all(|&x| x.is_finite()));
1711    }
1712
1713    #[test]
1714    fn test_rotation_gates() {
1715        let circuit = QuantumCircuit::new(1);
1716
1717        // Test RY gate with π/2 rotation
1718        let ry_matrix = circuit.get_single_qubit_matrix(&QuantumGate::RY(PI / 2.0));
1719        let inv_sqrt2 = 1.0 / (2.0_f64).sqrt();
1720
1721        assert!((ry_matrix[(0, 0)].real - inv_sqrt2).abs() < 1e-10);
1722        assert!((ry_matrix[(0, 1)].real + inv_sqrt2).abs() < 1e-10);
1723        assert!((ry_matrix[(1, 0)].real - inv_sqrt2).abs() < 1e-10);
1724        assert!((ry_matrix[(1, 1)].real - inv_sqrt2).abs() < 1e-10);
1725    }
1726
1727    #[test]
1728    fn test_error_correction() {
1729        let mut error_correction = QuantumErrorCorrection::new();
1730
1731        // Create a test state vector with some error
1732        let state_vector = vec![
1733            Complex::new(0.7, 0.0), // |00⟩ - slightly denormalized
1734            Complex::new(0.0, 0.0), // |01⟩
1735            Complex::new(0.7, 0.0), // |10⟩ - slightly denormalized
1736            Complex::new(0.0, 0.0), // |11⟩
1737        ];
1738
1739        let syndrome = error_correction.detect_errors(&state_vector).unwrap();
1740
1741        // Should detect normalization error
1742        assert!(!syndrome.error_types.is_empty());
1743        assert!(syndrome.confidence > 0.0);
1744    }
1745
1746    #[test]
1747    fn test_coherence_time_manager() {
1748        let mut coherence_manager = CoherenceTimeManager::new(2);
1749
1750        // Set custom coherence times
1751        coherence_manager.set_coherence_times(vec![100e-6, 50e-6], vec![50e-6, 25e-6]);
1752
1753        // Test coherence factor calculation
1754        let factor_qubit0 = coherence_manager.calculate_coherence_factor(0);
1755        let factor_qubit1 = coherence_manager.calculate_coherence_factor(1);
1756
1757        assert!(factor_qubit0 > 0.0);
1758        assert!(factor_qubit1 > 0.0);
1759        assert!(factor_qubit0 <= 1.0);
1760        assert!(factor_qubit1 <= 1.0);
1761
1762        // Update execution time and check decay
1763        coherence_manager.update_execution_time(10e-6); // 10 microseconds
1764
1765        let factor_after = coherence_manager.calculate_coherence_factor(0);
1766        assert!(factor_after < factor_qubit0); // Should decay with time
1767    }
1768
1769    #[test]
1770    fn test_enhanced_qnn() {
1771        let mut qnn = QuantumNeuralNetwork::new(
1772            2,
1773            vec![QNNLayerType::AngleEmbedding, QNNLayerType::BasicEntangling],
1774        );
1775
1776        // Test that error correction is enabled by default
1777        assert!(qnn.enable_error_correction);
1778        assert!(qnn.enable_coherence_modeling);
1779
1780        // Set custom coherence times
1781        qnn.set_coherence_times(vec![100e-6, 50e-6], vec![50e-6, 25e-6]);
1782
1783        let input = vec![0.5, 0.8];
1784        let output = qnn.forward(&input).unwrap();
1785
1786        assert_eq!(output.len(), 2);
1787        assert!(output.iter().all(|&x| (-1.1..=1.1).contains(&x)));
1788        assert!(output.iter().all(|&x| x.is_finite()));
1789
1790        // Test diagnostics
1791        let diagnostics = qnn.get_quantum_diagnostics();
1792        assert!(diagnostics.error_correction_enabled);
1793        assert!(diagnostics.coherence_modeling_enabled);
1794        assert!(diagnostics.coherence_report.execution_time >= 0.0);
1795    }
1796
1797    #[test]
1798    fn test_coherence_decay_models() {
1799        let mut manager = CoherenceTimeManager::new(3);
1800
1801        // Test different decay models
1802        manager.decay_models = vec![
1803            CoherenceDecayModel::Exponential,
1804            CoherenceDecayModel::Gaussian,
1805            CoherenceDecayModel::PowerLaw(1.5),
1806        ];
1807
1808        manager.update_execution_time(5e-6);
1809
1810        for qubit in 0..3 {
1811            let factor = manager.calculate_coherence_factor(qubit);
1812            assert!(factor > 0.0);
1813            assert!(factor <= 1.0);
1814        }
1815
1816        // Test coherence report
1817        let report = manager.get_coherence_report();
1818        assert_eq!(report.qubit_coherence_factors.len(), 3);
1819        assert!(report.average_coherence > 0.0);
1820        assert!(report.coherence_uniformity >= 0.0);
1821        assert!(report.coherence_uniformity <= 1.0);
1822    }
1823
1824    #[test]
1825    fn test_error_mitigation_strategies() {
1826        let error_correction = QuantumErrorCorrection::new();
1827
1828        // Check that default mitigation strategies are set
1829        assert!(!error_correction.mitigation_strategies.is_empty());
1830        assert!(error_correction
1831            .mitigation_strategies
1832            .contains(&ErrorMitigationStrategy::ZeroNoiseExtrapolation));
1833        assert!(error_correction
1834            .mitigation_strategies
1835            .contains(&ErrorMitigationStrategy::ReadoutErrorMitigation));
1836        assert!(error_correction
1837            .mitigation_strategies
1838            .contains(&ErrorMitigationStrategy::SymmetryVerification));
1839    }
1840}