oxirs_embed/
graphql_api.rs

1//! Advanced GraphQL API for embedding queries and management
2//!
3//! This module provides a comprehensive GraphQL interface for interacting with
4//! the embedding system, supporting type-safe queries, nested embeddings,
5//! filtering, aggregations, and real-time subscriptions.
6
7use crate::{CacheManager, ModelRegistry};
8use async_graphql::{
9    Context, Enum, FieldResult, InputObject, Object, Schema, SimpleObject, Subscription, Union, ID,
10};
11use chrono::Utc;
12use futures_util::Stream;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::pin::Pin;
16use std::sync::Arc;
17use tokio::sync::RwLock;
18use tokio_stream::{wrappers::BroadcastStream, StreamExt};
19use uuid::Uuid;
20
21/// GraphQL schema type
22pub type EmbeddingSchema = Schema<QueryRoot, MutationRoot, SubscriptionRoot>;
23
24/// Root query object
25pub struct QueryRoot;
26
27/// Root mutation object  
28pub struct MutationRoot;
29
30/// Root subscription object
31pub struct SubscriptionRoot;
32
33/// GraphQL context containing services
34pub struct GraphQLContext {
35    pub model_registry: Arc<ModelRegistry>,
36    pub cache_manager: Arc<CacheManager>,
37    pub event_broadcaster: Arc<RwLock<tokio::sync::broadcast::Sender<EmbeddingEvent>>>,
38}
39
40impl GraphQLContext {
41    pub fn new(model_registry: Arc<ModelRegistry>, cache_manager: Arc<CacheManager>) -> Self {
42        let (tx, _) = tokio::sync::broadcast::channel(1000);
43        Self {
44            model_registry,
45            cache_manager,
46            event_broadcaster: Arc::new(RwLock::new(tx)),
47        }
48    }
49}
50
51/// Embedding query result
52#[derive(SimpleObject)]
53pub struct EmbeddingResult {
54    pub entity_id: String,
55    pub embedding: Vec<f32>,
56    pub dimensions: i32,
57    pub model_name: String,
58    pub confidence: Option<f64>,
59    pub metadata: Option<HashMap<String, String>>,
60    pub timestamp: String, // Use String representation for GraphQL compatibility
61}
62
63/// Similarity search result
64#[derive(SimpleObject)]
65pub struct SimilarityResult {
66    pub entity_id: String,
67    pub similarity_score: f64,
68    pub embedding: Option<Vec<f32>>,
69    pub metadata: Option<HashMap<String, String>>,
70    pub distance_metric: String,
71}
72
73/// Batch embedding result
74#[derive(SimpleObject)]
75pub struct BatchEmbeddingResult {
76    pub job_id: ID,
77    pub status: BatchStatus,
78    pub progress: f64,
79    pub total_entities: i32,
80    pub processed_entities: i32,
81    pub estimated_completion: Option<String>,
82    pub results: Vec<EmbeddingResult>,
83    pub errors: Vec<String>,
84}
85
86/// Model information
87#[derive(SimpleObject)]
88pub struct ModelInfo {
89    pub id: ID,
90    pub name: String,
91    pub version: String,
92    pub model_type: ModelType,
93    pub dimensions: i32,
94    pub parameters: HashMap<String, String>,
95    pub performance_metrics: Option<PerformanceMetrics>,
96    pub created_at: String,
97    pub updated_at: String,
98}
99
100/// Performance metrics
101#[derive(SimpleObject)]
102pub struct PerformanceMetrics {
103    pub inference_latency_ms: f64,
104    pub throughput_embeddings_per_sec: f64,
105    pub memory_usage_mb: f64,
106    pub accuracy_score: Option<f64>,
107    pub quality_metrics: HashMap<String, f64>,
108}
109
110/// Aggregation result
111#[derive(SimpleObject)]
112pub struct AggregationResult {
113    pub field: String,
114    pub aggregation_type: AggregationType,
115    pub value: f64,
116    pub count: i32,
117    pub metadata: HashMap<String, String>,
118}
119
120/// Clustering result
121#[derive(SimpleObject)]
122pub struct ClusteringResult {
123    pub cluster_id: i32,
124    pub centroid: Vec<f32>,
125    pub entities: Vec<String>,
126    pub cohesion_score: f64,
127    pub metadata: HashMap<String, String>,
128}
129
130/// Embedding analytics
131#[derive(SimpleObject)]
132pub struct EmbeddingAnalytics {
133    pub total_embeddings: i32,
134    pub dimensions_distribution: Vec<DimensionStat>,
135    pub model_usage: Vec<ModelUsageStat>,
136    pub quality_trends: Vec<QualityTrend>,
137    pub performance_summary: PerformanceMetrics,
138    pub cache_statistics: CacheStats,
139}
140
141/// Dimension statistics
142#[derive(SimpleObject)]
143pub struct DimensionStat {
144    pub dimensions: i32,
145    pub count: i32,
146    pub percentage: f64,
147}
148
149/// Model usage statistics
150#[derive(SimpleObject)]
151pub struct ModelUsageStat {
152    pub model_name: String,
153    pub usage_count: i32,
154    pub success_rate: f64,
155    pub average_latency_ms: f64,
156}
157
158/// Quality trend data
159#[derive(SimpleObject)]
160pub struct QualityTrend {
161    pub timestamp: String,
162    pub quality_score: f64,
163    pub metric_name: String,
164}
165
166/// Cache statistics
167#[derive(SimpleObject)]
168pub struct CacheStats {
169    pub hit_rate: f64,
170    pub total_requests: i32,
171    pub cache_size_mb: f64,
172    pub evictions: i32,
173}
174
175/// Input types for queries
176/// Embedding query input
177#[derive(InputObject)]
178pub struct EmbeddingQueryInput {
179    pub entity_ids: Option<Vec<String>>,
180    pub model_name: Option<String>,
181    pub include_metadata: Option<bool>,
182    pub format: Option<EmbeddingFormat>,
183    pub filters: Option<EmbeddingFilters>,
184}
185
186/// Similarity search input
187#[derive(InputObject)]
188pub struct SimilaritySearchInput {
189    pub query_embedding: Option<Vec<f32>>,
190    pub query_entity_id: Option<String>,
191    pub model_name: String,
192    pub top_k: Option<i32>,
193    pub threshold: Option<f64>,
194    pub distance_metric: Option<DistanceMetric>,
195    pub filters: Option<SimilarityFilters>,
196}
197
198/// Batch embedding input
199#[derive(InputObject)]
200pub struct BatchEmbeddingInput {
201    pub entity_ids: Vec<String>,
202    pub model_name: String,
203    pub chunk_size: Option<i32>,
204    pub priority: Option<BatchPriority>,
205    pub callback_url: Option<String>,
206    pub metadata: Option<HashMap<String, String>>,
207}
208
209/// Embedding filters
210#[derive(InputObject)]
211pub struct EmbeddingFilters {
212    pub dimensions: Option<IntRange>,
213    pub confidence: Option<FloatRange>,
214    pub created_after: Option<String>,
215    pub created_before: Option<String>,
216    pub has_metadata: Option<bool>,
217    pub metadata_filters: Option<HashMap<String, String>>,
218}
219
220/// Similarity filters
221#[derive(InputObject)]
222pub struct SimilarityFilters {
223    pub entity_types: Option<Vec<String>>,
224    pub exclude_entities: Option<Vec<String>>,
225    pub metadata_filters: Option<HashMap<String, String>>,
226    pub confidence_threshold: Option<f64>,
227}
228
229/// Aggregation input
230#[derive(InputObject)]
231pub struct AggregationInput {
232    pub field: String,
233    pub aggregation_type: AggregationType,
234    pub group_by: Option<Vec<String>>,
235    pub filters: Option<EmbeddingFilters>,
236}
237
238/// Clustering input
239#[derive(InputObject)]
240pub struct ClusteringInput {
241    pub entity_ids: Option<Vec<String>>,
242    pub model_name: String,
243    pub num_clusters: Option<i32>,
244    pub algorithm: Option<ClusteringAlgorithm>,
245    pub distance_metric: Option<DistanceMetric>,
246}
247
248/// Time range input
249#[derive(InputObject)]
250pub struct TimeRange {
251    pub start: String,
252    pub end: String,
253}
254
255/// Range types
256#[derive(InputObject)]
257pub struct IntRange {
258    pub min: Option<i32>,
259    pub max: Option<i32>,
260}
261
262#[derive(InputObject)]
263pub struct FloatRange {
264    pub min: Option<f64>,
265    pub max: Option<f64>,
266}
267
268/// Enums
269
270#[derive(Enum, Copy, Clone, Eq, PartialEq)]
271pub enum ModelType {
272    Transformer,
273    TransE,
274    DistMult,
275    ComplEx,
276    RotatE,
277    QuatE,
278    GNN,
279    Custom,
280}
281
282#[derive(Enum, Copy, Clone, Eq, PartialEq)]
283pub enum EmbeddingFormat {
284    Dense,
285    Sparse,
286    Compressed,
287    Quantized,
288}
289
290#[derive(Enum, Copy, Clone, Eq, PartialEq)]
291pub enum DistanceMetric {
292    Cosine,
293    Euclidean,
294    Manhattan,
295    Jaccard,
296    Hamming,
297}
298
299#[derive(Enum, Copy, Clone, Eq, PartialEq, Serialize, Deserialize)]
300pub enum BatchStatus {
301    Pending,
302    Running,
303    Completed,
304    Failed,
305    Cancelled,
306}
307
308#[derive(Enum, Copy, Clone, Eq, PartialEq)]
309pub enum BatchPriority {
310    Low,
311    Normal,
312    High,
313    Critical,
314}
315
316#[derive(Enum, Copy, Clone, Eq, PartialEq)]
317pub enum AggregationType {
318    Count,
319    Sum,
320    Average,
321    Min,
322    Max,
323    StdDev,
324    Percentile,
325}
326
327#[derive(Enum, Copy, Clone, Eq, PartialEq)]
328pub enum ClusteringAlgorithm {
329    KMeans,
330    DBSCAN,
331    Hierarchical,
332    SpectralClustering,
333}
334
335/// Event types for subscriptions
336#[derive(Clone, Serialize, Deserialize, Union)]
337pub enum EmbeddingEvent {
338    EmbeddingGenerated(EmbeddingGeneratedEvent),
339    BatchCompleted(BatchCompletedEvent),
340    ModelUpdated(ModelUpdatedEvent),
341    QualityAlert(QualityAlertEvent),
342}
343
344#[derive(Clone, Serialize, Deserialize, SimpleObject)]
345pub struct EmbeddingGeneratedEvent {
346    pub entity_id: String,
347    pub model_name: String,
348    pub timestamp: String,
349    pub quality_score: Option<f64>,
350}
351
352#[derive(Clone, Serialize, Deserialize, SimpleObject)]
353pub struct BatchCompletedEvent {
354    pub job_id: String,
355    pub status: BatchStatus,
356    pub processed_count: i32,
357    pub error_count: i32,
358    pub completion_time: String,
359}
360
361#[derive(Clone, Serialize, Deserialize, SimpleObject)]
362pub struct ModelUpdatedEvent {
363    pub model_name: String,
364    pub version: String,
365    pub update_type: String,
366    pub timestamp: String,
367}
368
369#[derive(Clone, Serialize, Deserialize, SimpleObject)]
370pub struct QualityAlertEvent {
371    pub alert_type: String,
372    pub severity: String,
373    pub message: String,
374    pub affected_entities: Vec<String>,
375    pub timestamp: String,
376}
377
378/// GraphQL resolvers
379
380#[Object]
381impl QueryRoot {
382    /// Get embeddings for specified entities
383    async fn embeddings(
384        &self,
385        ctx: &Context<'_>,
386        input: EmbeddingQueryInput,
387    ) -> FieldResult<Vec<EmbeddingResult>> {
388        let _context = ctx.data::<GraphQLContext>()?;
389
390        // Implementation logic here
391        let mut results = Vec::new();
392
393        if let Some(entity_ids) = input.entity_ids {
394            for entity_id in entity_ids {
395                // Mock implementation - replace with actual embedding retrieval
396                results.push(EmbeddingResult {
397                    entity_id: entity_id.clone(),
398                    embedding: vec![0.1, 0.2, 0.3], // Mock embedding
399                    dimensions: 3,
400                    model_name: input
401                        .model_name
402                        .clone()
403                        .unwrap_or_else(|| "default".to_string()),
404                    confidence: Some(0.95),
405                    metadata: None,
406                    timestamp: Utc::now().to_rfc3339(),
407                });
408            }
409        }
410
411        Ok(results)
412    }
413
414    /// Search for similar entities
415    async fn similarity_search(
416        &self,
417        ctx: &Context<'_>,
418        _input: SimilaritySearchInput,
419    ) -> FieldResult<Vec<SimilarityResult>> {
420        let _context = ctx.data::<GraphQLContext>()?;
421
422        // Mock implementation
423        let results = vec![SimilarityResult {
424            entity_id: "similar_entity_1".to_string(),
425            similarity_score: 0.92,
426            embedding: Some(vec![0.1, 0.2, 0.3]),
427            metadata: None,
428            distance_metric: "cosine".to_string(),
429        }];
430
431        Ok(results)
432    }
433
434    /// Get model information
435    async fn models(
436        &self,
437        ctx: &Context<'_>,
438        _names: Option<Vec<String>>,
439    ) -> FieldResult<Vec<ModelInfo>> {
440        let _context = ctx.data::<GraphQLContext>()?;
441
442        // Mock implementation
443        let models = vec![ModelInfo {
444            id: ID::from("model_1"),
445            name: "TransE".to_string(),
446            version: "1.0.0".to_string(),
447            model_type: ModelType::TransE,
448            dimensions: 128,
449            parameters: HashMap::new(),
450            performance_metrics: None,
451            created_at: Utc::now().to_rfc3339(),
452            updated_at: Utc::now().to_rfc3339(),
453        }];
454
455        Ok(models)
456    }
457
458    /// Get aggregated statistics
459    async fn aggregation(
460        &self,
461        ctx: &Context<'_>,
462        input: AggregationInput,
463    ) -> FieldResult<AggregationResult> {
464        let _context = ctx.data::<GraphQLContext>()?;
465
466        // Mock implementation
467        Ok(AggregationResult {
468            field: input.field,
469            aggregation_type: input.aggregation_type,
470            value: 42.0,
471            count: 100,
472            metadata: HashMap::new(),
473        })
474    }
475
476    /// Perform clustering analysis
477    async fn clustering(
478        &self,
479        ctx: &Context<'_>,
480        _input: ClusteringInput,
481    ) -> FieldResult<Vec<ClusteringResult>> {
482        let _context = ctx.data::<GraphQLContext>()?;
483
484        // Mock implementation
485        let results = vec![ClusteringResult {
486            cluster_id: 0,
487            centroid: vec![0.1, 0.2, 0.3],
488            entities: vec!["entity1".to_string(), "entity2".to_string()],
489            cohesion_score: 0.85,
490            metadata: HashMap::new(),
491        }];
492
493        Ok(results)
494    }
495
496    /// Get comprehensive analytics
497    async fn analytics(
498        &self,
499        ctx: &Context<'_>,
500        _time_range: Option<TimeRange>,
501    ) -> FieldResult<EmbeddingAnalytics> {
502        let _context = ctx.data::<GraphQLContext>()?;
503
504        // Mock implementation
505        Ok(EmbeddingAnalytics {
506            total_embeddings: 10000,
507            dimensions_distribution: vec![
508                DimensionStat {
509                    dimensions: 128,
510                    count: 7000,
511                    percentage: 70.0,
512                },
513                DimensionStat {
514                    dimensions: 256,
515                    count: 3000,
516                    percentage: 30.0,
517                },
518            ],
519            model_usage: vec![],
520            quality_trends: vec![],
521            performance_summary: PerformanceMetrics {
522                inference_latency_ms: 25.5,
523                throughput_embeddings_per_sec: 1000.0,
524                memory_usage_mb: 512.0,
525                accuracy_score: Some(0.95),
526                quality_metrics: HashMap::new(),
527            },
528            cache_statistics: CacheStats {
529                hit_rate: 0.85,
530                total_requests: 50000,
531                cache_size_mb: 256.0,
532                evictions: 100,
533            },
534        })
535    }
536}
537
538#[Object]
539impl MutationRoot {
540    /// Start batch embedding generation
541    async fn start_batch_embedding(
542        &self,
543        ctx: &Context<'_>,
544        input: BatchEmbeddingInput,
545    ) -> FieldResult<BatchEmbeddingResult> {
546        let _context = ctx.data::<GraphQLContext>()?;
547
548        let job_id = Uuid::new_v4();
549
550        // Mock implementation
551        Ok(BatchEmbeddingResult {
552            job_id: ID::from(job_id.to_string()),
553            status: BatchStatus::Pending,
554            progress: 0.0,
555            total_entities: input.entity_ids.len() as i32,
556            processed_entities: 0,
557            estimated_completion: Some((Utc::now() + chrono::Duration::minutes(10)).to_rfc3339()),
558            results: vec![],
559            errors: vec![],
560        })
561    }
562
563    /// Cancel batch job
564    async fn cancel_batch_job(&self, ctx: &Context<'_>, _job_id: ID) -> FieldResult<bool> {
565        let _context = ctx.data::<GraphQLContext>()?;
566
567        // Mock implementation
568        Ok(true)
569    }
570
571    /// Update model configuration
572    async fn update_model(
573        &self,
574        ctx: &Context<'_>,
575        model_name: String,
576        parameters: HashMap<String, String>,
577    ) -> FieldResult<ModelInfo> {
578        let _context = ctx.data::<GraphQLContext>()?;
579
580        // Mock implementation
581        Ok(ModelInfo {
582            id: ID::from("model_1"),
583            name: model_name,
584            version: "1.1.0".to_string(),
585            model_type: ModelType::TransE,
586            dimensions: 128,
587            parameters,
588            performance_metrics: None,
589            created_at: Utc::now().to_rfc3339(),
590            updated_at: Utc::now().to_rfc3339(),
591        })
592    }
593}
594
595#[Subscription]
596impl SubscriptionRoot {
597    /// Subscribe to embedding generation events
598    async fn embedding_events(
599        &self,
600        ctx: &Context<'_>,
601        _entity_filter: Option<Vec<String>>,
602    ) -> Pin<Box<dyn Stream<Item = EmbeddingEvent> + Send>> {
603        let context = ctx.data::<GraphQLContext>().unwrap();
604        let rx = context.event_broadcaster.read().await.subscribe();
605
606        let stream = BroadcastStream::new(rx).filter_map(|result| result.ok());
607
608        Box::pin(stream)
609    }
610
611    /// Subscribe to batch job updates
612    async fn batch_updates(
613        &self,
614        ctx: &Context<'_>,
615        _job_id: Option<ID>,
616    ) -> Pin<Box<dyn Stream<Item = BatchCompletedEvent> + Send>> {
617        let context = ctx.data::<GraphQLContext>().unwrap();
618        let rx = context.event_broadcaster.read().await.subscribe();
619
620        let stream = BroadcastStream::new(rx).filter_map(|result| match result {
621            Ok(EmbeddingEvent::BatchCompleted(event)) => Some(event),
622            _ => None,
623        });
624
625        Box::pin(stream)
626    }
627
628    /// Subscribe to quality alerts
629    async fn quality_alerts(
630        &self,
631        ctx: &Context<'_>,
632        _severity_filter: Option<Vec<String>>,
633    ) -> Pin<Box<dyn Stream<Item = QualityAlertEvent> + Send>> {
634        let context = ctx.data::<GraphQLContext>().unwrap();
635        let rx = context.event_broadcaster.read().await.subscribe();
636
637        let stream = BroadcastStream::new(rx).filter_map(|result| match result {
638            Ok(EmbeddingEvent::QualityAlert(event)) => Some(event),
639            _ => None,
640        });
641
642        Box::pin(stream)
643    }
644}
645
646/// Create the GraphQL schema
647pub fn create_schema(context: GraphQLContext) -> EmbeddingSchema {
648    Schema::build(QueryRoot, MutationRoot, SubscriptionRoot)
649        .data(context)
650        .finish()
651}
652
653#[cfg(test)]
654mod tests {
655    use super::*;
656    use crate::ModelRegistry;
657
658    #[tokio::test]
659    async fn test_graphql_context_creation() {
660        let storage_path = tempfile::tempdir().unwrap().path().to_path_buf();
661        let model_registry = Arc::new(ModelRegistry::new(storage_path));
662        let cache_config = crate::caching::CacheConfig::default();
663        let cache_manager = Arc::new(CacheManager::new(cache_config));
664
665        let context = GraphQLContext::new(model_registry, cache_manager);
666        assert!(context.event_broadcaster.read().await.receiver_count() == 0);
667    }
668
669    #[tokio::test]
670    async fn test_schema_creation() {
671        let storage_path = tempfile::tempdir().unwrap().path().to_path_buf();
672        let model_registry = Arc::new(ModelRegistry::new(storage_path));
673        let cache_config = crate::caching::CacheConfig::default();
674        let cache_manager = Arc::new(CacheManager::new(cache_config));
675        let context = GraphQLContext::new(model_registry, cache_manager);
676
677        let schema = create_schema(context);
678        // Note: type_name method doesn't exist in async-graphql 7.0
679        // Just verify the schema was created successfully by checking it's not null
680        assert!(!schema.sdl().is_empty());
681    }
682}