1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
//! Generates bearer tokens and refresh tokens.
//!
//! Internally similar to the authorization module, tokens generated here live longer and can be
//! renewed. There exist two fundamental implementation as well, one utilizing in memory hash maps
//! while the other uses cryptographic signing.
use std::collections::HashMap;
use std::sync::{Arc, MutexGuard, RwLockWriteGuard};
use std::sync::atomic::{AtomicUsize, Ordering};

use chrono::{Duration, Utc};

use super::Time;
use super::grant::Grant;
use super::generator::{TagGrant, TaggedAssertion, Assertion};

/// Issuers create bearer tokens.
///
/// It's the issuers decision whether a refresh token is offered or not. In any case, it is also
/// responsible for determining the validity and parameters of any possible token string. Some
/// backends or frontends may decide not to propagate the refresh token (for example because
/// they do not intend to offer a statefull refresh api).
pub trait Issuer {
    /// Create a token authorizing the request parameters
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()>;

    /// Refresh a token.
    fn refresh(&mut self, _refresh: &str, _grant: Grant) -> Result<RefreshedToken, ()>;

    /// Get the values corresponding to a bearer token
    fn recover_token<'a>(&'a self, _: &'a str) -> Result<Option<Grant>, ()>;

    /// Get the values corresponding to a refresh token
    fn recover_refresh<'a>(&'a self, _: &'a str) -> Result<Option<Grant>, ()>;
}

/// Token parameters returned to a client.
#[derive(Clone, Debug)]
pub struct IssuedToken {
    /// The bearer token
    pub token: String,

    /// The refresh token, if any.
    pub refresh: Option<String>,

    /// Expiration timestamp (Utc).
    ///
    /// Technically, a time to live is expected in the response but this will be transformed later.
    /// In a direct backend access situation, this enables high precision timestamps.
    pub until: Time,

    /// The type of the token.
    pub token_type: TokenType,
}

/// The type of token, describing proper usage.
///
/// There is one other interesting type that is not yet formally specified: The MAC token,
/// see `draft-ietf-oauth-v2-http-mac-02`. The draft has long been expired but for the unlikely
/// case there are others, the enum exist. You might patch this to try out another token type
/// before proposing it for standardization.
///
/// In other context (RFC 8693) the explicitly non-access-token kind `N_A` also exists but this is
/// not a possible response.
#[non_exhaustive]
#[derive(Clone, Debug)]
pub enum TokenType {
    /// A bearer token used on its own in an Authorization header.
    ///
    /// For this variant and its usage see RFC 6750.
    Bearer,
}

/// Refresh token information returned to a client.
#[derive(Clone, Debug)]
pub struct RefreshedToken {
    /// The bearer token.
    pub token: String,

    /// The new refresh token.
    ///
    /// If this is set, the old refresh token has been invalidated.
    pub refresh: Option<String>,

    /// Expiration timestamp (Utc).
    ///
    /// Technically, a time to live is expected in the response but this will be transformed later.
    /// In a direct backend access situation, this enables high precision timestamps.
    pub until: Time,

    /// The type of the new access token.
    pub token_type: TokenType,
}

/// Keeps track of access and refresh tokens by a hash-map.
///
/// The generator is itself trait based and can be chosen during construction. It is assumed to not
/// be possible (or at least very unlikely during their overlapping lifetime) for two different
/// grants to generate the same token in the grant tagger.
pub struct TokenMap<G: TagGrant = Box<dyn TagGrant + Send + Sync + 'static>> {
    duration: Option<Duration>,
    generator: G,
    usage: u64,
    access: HashMap<Arc<str>, Arc<Token>>,
    refresh: HashMap<Arc<str>, Arc<Token>>,
}

struct Token {
    /// Back link to the access token.
    access: Arc<str>,

    /// Link to a refresh token for this grant, if it exists.
    refresh: Option<Arc<str>>,

    /// The grant that was originally granted.
    grant: Grant,
}

impl<G: TagGrant> TokenMap<G> {
    /// Construct a `TokenMap` from the given generator.
    pub fn new(generator: G) -> Self {
        Self {
            duration: None,
            generator,
            usage: 0,
            access: HashMap::new(),
            refresh: HashMap::new(),
        }
    }

    /// Set the validity of all issued grants to the specified duration.
    pub fn valid_for(&mut self, duration: Duration) {
        self.duration = Some(duration);
    }

    /// All grants are valid for their default duration.
    pub fn valid_for_default(&mut self) {
        self.duration = None;
    }

    /// Unconditionally delete grant associated with the token.
    ///
    /// This is the main advantage over signing tokens. By keeping internal state of allowed
    /// grants, the resource owner or other instances can revoke a token before it expires
    /// naturally. There is no differentiation between access and refresh tokens since these should
    /// have a marginal probability of colliding.
    pub fn revoke(&mut self, token: &str) {
        self.access.remove(token);
        self.refresh.remove(token);
    }

    /// Directly associate token with grant.
    ///
    /// No checks on the validity of the grant are performed but the expiration time of the grant
    /// is modified (if a `duration` was previously set).
    pub fn import_grant(&mut self, token: String, mut grant: Grant) {
        self.set_duration(&mut grant);
        let key: Arc<str> = Arc::from(token);
        let token = Token::from_access(key.clone(), grant);
        self.access.insert(key, Arc::new(token));
    }

    fn set_duration(&self, grant: &mut Grant) {
        if let Some(duration) = &self.duration {
            grant.until = Utc::now() + *duration;
        }
    }
}

impl Token {
    fn from_access(access: Arc<str>, grant: Grant) -> Self {
        Token {
            access,
            refresh: None,
            grant,
        }
    }

    fn from_refresh(access: Arc<str>, refresh: Arc<str>, grant: Grant) -> Self {
        Token {
            access,
            refresh: Some(refresh),
            grant,
        }
    }
}

impl IssuedToken {
    /// Construct a token that can not be refreshed.
    ///
    /// This is essential for issuers that can not revoke their tokens. Since refresh tokens are
    /// both long-lived and more powerful than their access token counterparts, it is more
    /// dangerous to have an unrevokable refresh token.
    ///
    /// This is only a shorthand for initializing the `IssuedToken` with `None` for `refresh`.
    ///
    /// ```
    /// # use oxide_auth::primitives::issuer::RefreshedToken;
    /// use oxide_auth::primitives::grant::Grant;
    /// use oxide_auth::primitives::issuer::{Issuer, IssuedToken};
    ///
    /// struct MyIssuer;
    ///
    /// impl MyIssuer {
    ///     fn access_token(&mut self, grant: &Grant) -> String {
    ///         // .. your implementation
    /// #       unimplemented!()
    ///     }
    /// }
    ///
    /// impl Issuer for MyIssuer {
    ///     fn issue(&mut self, mut grant: Grant) -> Result<IssuedToken, ()> {
    ///         let token = self.access_token(&grant);
    ///         Ok(IssuedToken::without_refresh(token, grant.until))
    ///     }
    ///     // …
    /// # fn recover_token<'t>(&'t self, token: &'t str) -> Result<Option<Grant>, ()> { Err(()) }
    /// # fn recover_refresh<'t>(&'t self, token: &'t str) -> Result<Option<Grant>, ()> { Err(()) }
    /// # fn refresh(&mut self, _: &str, _: Grant) -> Result<RefreshedToken, ()> { Err(()) }
    /// }
    /// ```
    pub fn without_refresh(token: String, until: Time) -> Self {
        IssuedToken {
            token,
            refresh: None,
            until,
            token_type: TokenType::Bearer,
        }
    }

    /// Determine if the access token can be refreshed.
    ///
    /// This returns `false` if `refresh` is `None` and `true` otherwise.
    pub fn refreshable(&self) -> bool {
        self.refresh.is_some()
    }
}

impl<G: TagGrant> Issuer for TokenMap<G> {
    fn issue(&mut self, mut grant: Grant) -> Result<IssuedToken, ()> {
        self.set_duration(&mut grant);
        // The (usage, grant) tuple needs to be unique. Since this wraps after 2^63 operations, we
        // expect the validity time of the grant to have changed by then. This works when you don't
        // set your system time forward/backward ~10billion seconds, assuming ~10^9 operations per
        // second.
        let next_usage = self.usage.wrapping_add(2);

        let (access, refresh) = {
            let access = self.generator.tag(self.usage, &grant)?;
            let refresh = self.generator.tag(self.usage.wrapping_add(1), &grant)?;
            debug_assert!(
                access.len() > 0,
                "An empty access token was generated, this is horribly insecure."
            );
            debug_assert!(
                refresh.len() > 0,
                "An empty refresh token was generated, this is horribly insecure."
            );
            (access, refresh)
        };

        let until = grant.until;
        let access_key: Arc<str> = Arc::from(access.clone());
        let refresh_key: Arc<str> = Arc::from(refresh.clone());
        let token = Token::from_refresh(access_key.clone(), refresh_key.clone(), grant);
        let token = Arc::new(token);

        self.access.insert(access_key, token.clone());
        self.refresh.insert(refresh_key, token);
        self.usage = next_usage;
        Ok(IssuedToken {
            token: access,
            refresh: Some(refresh),
            until,
            token_type: TokenType::Bearer,
        })
    }

    fn refresh(&mut self, refresh: &str, mut grant: Grant) -> Result<RefreshedToken, ()> {
        // Remove the old token.
        let (refresh_key, mut token) = self
            .refresh
            .remove_entry(refresh)
            // Should only be called on valid refresh tokens.
            .ok_or(())?;

        assert!(Arc::ptr_eq(token.refresh.as_ref().unwrap(), &refresh_key));
        self.set_duration(&mut grant);
        let until = grant.until;

        let tag = self.usage;
        let new_access = self.generator.tag(tag, &grant)?;

        let tag = tag.wrapping_add(1);
        let new_refresh = self.generator.tag(tag, &grant)?;

        let new_access_key: Arc<str> = Arc::from(new_access.clone());
        let new_refresh_key: Arc<str> = Arc::from(new_refresh.clone());

        if let Some(atoken) = self.access.remove(&token.access) {
            assert!(Arc::ptr_eq(&token, &atoken));
        }

        {
            // Should now be the only `Arc` pointing to this.
            let mut_token = Arc::get_mut(&mut token)
                .unwrap_or_else(|| unreachable!("Grant data was only shared with access and refresh"));
            // Remove the old access token, insert the new.
            mut_token.access = new_access_key.clone();
            mut_token.refresh = Some(new_refresh_key.clone());
            mut_token.grant = grant;
        }

        self.access.insert(new_access_key, token.clone());
        self.refresh.insert(new_refresh_key, token);

        self.usage = tag.wrapping_add(1);
        Ok(RefreshedToken {
            token: new_access,
            refresh: Some(new_refresh),
            until,
            token_type: TokenType::Bearer,
        })
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        Ok(self.access.get(token).map(|token| token.grant.clone()))
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        Ok(self.refresh.get(token).map(|token| token.grant.clone()))
    }
}

/// Signs grants instead of storing them.
///
/// Although this token instance allows preservation of memory it also implies that tokens, once
/// issued, are impossible to revoke.
pub struct TokenSigner {
    duration: Option<Duration>,
    signer: Assertion,
    // FIXME: make this an AtomicU64 once stable.
    counter: AtomicUsize,
    have_refresh: bool,
}

impl TokenSigner {
    /// Construct a signing instance from a private signing key.
    ///
    /// Security notice: Never use a password alone to construct the signing key. Instead, generate
    /// a new key using a utility such as `openssl rand` that you then store away securely.
    pub fn new(secret: Assertion) -> TokenSigner {
        TokenSigner {
            duration: None,
            signer: secret,
            counter: AtomicUsize::new(0),
            have_refresh: false,
        }
    }

    /// Construct a signing instance whose tokens only live for the program execution.
    ///
    /// Useful for rapid prototyping where tokens need not be stored in a persistent database and
    /// can be invalidated at any time. This interface is provided with simplicity in mind, using
    /// the default system random generator (`ring::rand::SystemRandom`).
    pub fn ephemeral() -> TokenSigner {
        TokenSigner::new(Assertion::ephemeral())
    }

    /// Set the validity of all issued grants to the specified duration.
    ///
    /// This only affects tokens issued after this call. The default duration is 1 (ONE) hour for
    /// tokens issued for the authorization code grant method. For many users this may seem to
    /// short but should be secure-by-default. You may want to increase the duration, or instead
    /// use long lived refresh token instead (although you currently need to handle refresh tokens
    /// yourself, coming soonish).
    pub fn valid_for(&mut self, duration: Duration) {
        self.duration = Some(duration);
    }

    /// Set all grants to be valid for their default duration.
    ///
    /// This only affects tokens issued after this call. The default duration is 1 (ONE) hour for
    /// tokens issued for the authorization code grant method.
    pub fn valid_for_default(&mut self) {
        self.duration = None;
    }

    /// Determine whether to generate refresh tokens.
    ///
    /// By default, this option is *off*. Since the `TokenSigner` can on its own not revoke any
    /// tokens it should be considered carefullly whether to issue very long-living and powerful
    /// refresh tokens. On instance where this might be okay is as a component of a grander token
    /// architecture that adds a revocation mechanism.
    pub fn generate_refresh_tokens(&mut self, refresh: bool) {
        self.have_refresh = refresh;
    }

    /// Get the next counter value.
    fn next_counter(&self) -> usize {
        // Acquire+Release is overkill. We only need to ensure that each return value occurs at
        // most once. We would even be content with getting the counter out-of-order in a single
        // thread.
        self.counter.fetch_add(1, Ordering::Relaxed)
    }

    fn refreshable_token(&self, grant: &Grant) -> Result<IssuedToken, ()> {
        let first_ctr = self.next_counter() as u64;
        let second_ctr = self.next_counter() as u64;

        let token = self.as_token().sign(first_ctr, grant)?;
        let refresh = self.as_refresh().sign(second_ctr, grant)?;

        Ok(IssuedToken {
            token,
            refresh: Some(refresh),
            until: grant.until,
            token_type: TokenType::Bearer,
        })
    }

    fn unrefreshable_token(&self, grant: &Grant) -> Result<IssuedToken, ()> {
        let counter = self.next_counter() as u64;

        let token = self.as_token().sign(counter, grant)?;

        Ok(IssuedToken::without_refresh(token, grant.until))
    }

    fn as_token(&self) -> TaggedAssertion {
        self.signer.tag("token")
    }

    fn as_refresh(&self) -> TaggedAssertion {
        self.signer.tag("refresh")
    }
}

impl<'s, I: Issuer + ?Sized> Issuer for &'s mut I {
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()> {
        (**self).issue(grant)
    }

    fn refresh(&mut self, token: &str, grant: Grant) -> Result<RefreshedToken, ()> {
        (**self).refresh(token, grant)
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_token(token)
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_refresh(token)
    }
}

impl<I: Issuer + ?Sized> Issuer for Box<I> {
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()> {
        (**self).issue(grant)
    }

    fn refresh(&mut self, token: &str, grant: Grant) -> Result<RefreshedToken, ()> {
        (**self).refresh(token, grant)
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_token(token)
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_refresh(token)
    }
}

impl<'s, I: Issuer + ?Sized> Issuer for MutexGuard<'s, I> {
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()> {
        (**self).issue(grant)
    }

    fn refresh(&mut self, token: &str, grant: Grant) -> Result<RefreshedToken, ()> {
        (**self).refresh(token, grant)
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_token(token)
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_refresh(token)
    }
}

impl<'s, I: Issuer + ?Sized> Issuer for RwLockWriteGuard<'s, I> {
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()> {
        (**self).issue(grant)
    }

    fn refresh(&mut self, token: &str, grant: Grant) -> Result<RefreshedToken, ()> {
        (**self).refresh(token, grant)
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_token(token)
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (**self).recover_refresh(token)
    }
}

impl Issuer for TokenSigner {
    fn issue(&mut self, grant: Grant) -> Result<IssuedToken, ()> {
        (&mut &*self).issue(grant)
    }

    fn refresh(&mut self, _refresh: &str, _grant: Grant) -> Result<RefreshedToken, ()> {
        Err(())
    }

    fn recover_token<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (&&*self).recover_token(token)
    }

    fn recover_refresh<'a>(&'a self, token: &'a str) -> Result<Option<Grant>, ()> {
        (&&*self).recover_refresh(token)
    }
}

impl<'a> Issuer for &'a TokenSigner {
    fn issue(&mut self, mut grant: Grant) -> Result<IssuedToken, ()> {
        if let Some(duration) = &self.duration {
            grant.until = Utc::now() + *duration;
        }

        if self.have_refresh {
            self.refreshable_token(&grant)
        } else {
            self.unrefreshable_token(&grant)
        }
    }

    fn refresh(&mut self, _refresh: &str, _grant: Grant) -> Result<RefreshedToken, ()> {
        Err(())
    }

    fn recover_token<'t>(&'t self, token: &'t str) -> Result<Option<Grant>, ()> {
        Ok(self.as_token().extract(token).ok())
    }

    fn recover_refresh<'t>(&'t self, token: &'t str) -> Result<Option<Grant>, ()> {
        if !self.have_refresh {
            return Ok(None);
        }

        Ok(self.as_refresh().extract(token).ok())
    }
}

#[cfg(test)]
/// Tests for issuer implementations, including those provided here.
pub mod tests {
    use super::*;
    use crate::primitives::grant::Extensions;
    use crate::primitives::generator::RandomGenerator;
    use chrono::{Duration, Utc};

    fn grant_template() -> Grant {
        Grant {
            client_id: "Client".to_string(),
            owner_id: "Owner".to_string(),
            redirect_uri: "https://example.com".parse().unwrap(),
            scope: "default".parse().unwrap(),
            until: Utc::now() + Duration::hours(1),
            extensions: Extensions::new(),
        }
    }

    /// Tests the simplest invariants that should be upheld by all authorizers.
    ///
    /// This create a token, without any extensions, an lets the issuer generate a issued token.
    /// The uri is `https://example.com` and the token lasts for an hour except if overwritten.
    /// Generation of a valid refresh token is not tested against.
    ///
    /// Custom implementations may want to import and use this in their own tests.
    pub fn simple_test_suite(issuer: &mut dyn Issuer) {
        let request = grant_template();

        let issued = issuer.issue(request.clone()).expect("Issuing failed");
        let from_token = issuer
            .recover_token(&issued.token)
            .expect("Issuer failed during recover")
            .expect("Issued token appears to be invalid");

        assert_ne!(Some(&issued.token), issued.refresh.as_ref());
        assert_eq!(from_token.client_id, "Client");
        assert_eq!(from_token.owner_id, "Owner");
        assert!(Utc::now() < from_token.until);

        let issued_2 = issuer.issue(request).expect("Issuing failed");
        assert_ne!(issued.token, issued_2.token);
        assert_ne!(Some(&issued.token), issued_2.refresh.as_ref());
        assert_ne!(issued.refresh, issued_2.refresh);
        assert_ne!(issued.refresh.as_ref(), Some(&issued_2.token));
    }

    #[test]
    fn signer_test_suite() {
        let mut signer = TokenSigner::ephemeral();
        // Refresh tokens must be unique if generated. If they are not even generated, they are
        // obviously not unique.
        signer.generate_refresh_tokens(true);
        simple_test_suite(&mut signer);
    }

    #[test]
    fn signer_no_default_refresh() {
        let mut signer = TokenSigner::ephemeral();
        let issued = signer.issue(grant_template());

        let token = issued.expect("Issuing without refresh token failed");
        assert!(!token.refreshable());
    }

    #[test]
    fn random_test_suite() {
        let mut token_map = TokenMap::new(RandomGenerator::new(16));
        simple_test_suite(&mut token_map);
    }

    #[test]
    fn random_has_refresh() {
        let mut token_map = TokenMap::new(RandomGenerator::new(16));
        let issued = token_map.issue(grant_template());

        let token = issued.expect("Issuing without refresh token failed");
        assert!(token.refreshable());
    }

    #[test]
    fn random_refresh_rotation() {
        let mut token_map = TokenMap::new(RandomGenerator::new(16));
        let issued = token_map.issue(grant_template());

        let token = issued.expect("Issuing with refresh token failed");
        let refresh = token.refresh.expect("No refresh token returned");

        let refreshed_token = token_map
            .refresh(&refresh, grant_template())
            .expect("Failed to refresh access token");

        let new_refresh = refreshed_token.refresh.expect("No new refresh token returned");

        assert!(refresh != new_refresh);
    }

    #[test]
    #[should_panic]
    fn bad_generator() {
        struct BadGenerator;
        impl TagGrant for BadGenerator {
            fn tag(&mut self, _: u64, _: &Grant) -> Result<String, ()> {
                Ok("YOLO.HowBadCanItBeToRepeatTokens?".into())
            }
        }
        let mut token_map = TokenMap::new(BadGenerator);
        simple_test_suite(&mut token_map);
    }
}