oxidd_parser/lib.rs
1//! Collection of parsers for various logical problem formats
2//!
3//! Every format is parsed into a [`Circuit`], i.e., a propositional formula
4//! with structure sharing, to enable (mostly) uniform handling of different
5//! formats in an application.
6//!
7//! ## Example
8//!
9//! ```no_run
10//! # use oxidd_parser::*;
11//! let parse_options = ParseOptionsBuilder::default().build().unwrap();
12//! let Some(problem) = load_file("foo.dimacs", &parse_options) else {
13//! return; // an error message has been printed to stderr
14//! };
15//! println!("circuit: {:?}", problem.circuit);
16//! println!("additional details: {:?}", problem.details);
17//! ```
18//!
19//! ## Feature flags
20#![doc = document_features::document_features!()]
21#![forbid(unsafe_code)]
22#![warn(missing_docs)]
23#![allow(clippy::type_complexity)]
24
25use std::collections::hash_map::Entry;
26use std::fmt::{self, Write};
27
28use bumpalo::boxed::Box as BumpBox;
29use bumpalo::collections::Vec as BumpVec;
30use derive_builder::Builder;
31use fixedbitset::FixedBitSet;
32use rustc_hash::FxHashMap;
33
34pub mod aiger;
35pub mod dimacs;
36pub mod nnf;
37mod tv_bitvec;
38mod util;
39mod vec2d;
40
41use tv_bitvec::TVBitVec;
42pub use vec2d::{Vec2d, Vec2dIter};
43
44#[cfg(feature = "load-file")]
45mod load_file;
46#[cfg(feature = "load-file")]
47pub use load_file::*;
48
49/// Variable type
50///
51/// The two most significant bits are never set.
52pub type Var = usize;
53
54/// A possibly negated variable
55///
56/// There are three kinds of variables: constants ([`Literal::FALSE`] and
57/// [`Literal::TRUE`]), circuit inputs, and gates.
58///
59/// Concerning ordering, the following properties hold: Given two [`Literal`]s
60/// `a, b`, `a <= b` is equivalent to the lexicographic comparison
61/// `(a.positive(), a.is_negative()) <= (b.positive(), b.is_negative())`.
62/// Furthermore, `Literal::FALSE <= a` holds (and thus `Literal::TRUE <= a` if
63/// `a != Literal::FALSE`).
64#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
65pub struct Literal(usize);
66
67impl Literal {
68 // We rely on POLARITY_BIT being the least significant bit for the ordering
69 const POLARITY_BIT: u32 = 0;
70 const GATE_BIT: u32 = 1;
71 const VAR_LSB: u32 = 2;
72
73 /// Maximum input number representable as literal
74 pub const MAX_INPUT: usize = (usize::MAX >> Self::VAR_LSB) - 2;
75 /// Maximum gate number representable as literal
76 pub const MAX_GATE: usize = usize::MAX >> Self::VAR_LSB;
77
78 /// Literal representing the constant `⊥`
79 ///
80 /// This is literal is considered to be positive (i.e., not negated):
81 ///
82 /// ```
83 /// # use oxidd_parser::Literal;
84 /// assert!(Literal::FALSE.is_positive());
85 /// assert!(Literal::FALSE < Literal::TRUE);
86 /// assert_eq!(Literal::FALSE.to_string(), "⊥");
87 /// ```
88 pub const FALSE: Self = Self(0);
89 /// Literal representing the constant `⊤`
90 ///
91 /// This is literal is considered to be negated:
92 ///
93 /// ```
94 /// # use oxidd_parser::Literal;
95 /// assert!(Literal::TRUE.is_negative());
96 /// assert!(Literal::TRUE < Literal::from_input(false, 0));
97 /// assert!(Literal::TRUE < Literal::from_gate(false, 0));
98 /// assert_eq!(Literal::TRUE.to_string(), "⊤");
99 /// ```
100 pub const TRUE: Self = Self(1 << Self::POLARITY_BIT);
101
102 /// Undefined literal
103 ///
104 /// This is considered to be a positive (i.e., not negated) input, but its
105 /// variable number is larger than `Self::MAX_INPUT`. Attempting to create
106 /// this literal using [`Self::from_input()`] will trigger a debug
107 /// assertion.
108 ///
109 /// ```
110 /// # use oxidd_parser::Literal;
111 /// assert!(Literal::UNDEF.is_positive());
112 /// assert!(Literal::UNDEF.is_input());
113 /// assert_eq!(Literal::UNDEF.get_input(), Some(Literal::MAX_INPUT + 1));
114 /// ```
115 pub const UNDEF: Self = Self((Self::MAX_INPUT + 2) << Self::VAR_LSB);
116
117 /// Create a new literal from an input variable
118 #[track_caller]
119 #[inline]
120 pub const fn from_input(negative: bool, input: Var) -> Self {
121 debug_assert!(input <= Self::MAX_INPUT, "input too large");
122 Self(((input + 1) << Self::VAR_LSB) | ((negative as usize) << Self::POLARITY_BIT))
123 }
124
125 /// Create a new literal from an input variable (value range `1..`) or false
126 /// (`0`)
127 #[track_caller]
128 #[inline]
129 const fn from_input_or_false(negative: bool, input: Var) -> Self {
130 debug_assert!(input <= Self::MAX_INPUT + 1, "input too large");
131 Self((input << Self::VAR_LSB) | ((negative as usize) << Self::POLARITY_BIT))
132 }
133
134 /// Create a new literal from a gate number
135 #[track_caller]
136 #[inline]
137 pub const fn from_gate(negative: bool, gate: Var) -> Self {
138 debug_assert!(gate <= Self::MAX_GATE, "gate number too large");
139 Self(
140 (gate << Self::VAR_LSB)
141 | (1 << Self::GATE_BIT)
142 | ((negative as usize) << Self::POLARITY_BIT),
143 )
144 }
145
146 /// Is the literal positive?
147 ///
148 /// Same as [`!self.is_negative()`][Self::is_negative]
149 ///
150 /// ```
151 /// # use oxidd_parser::Literal;
152 /// assert!(Literal::from_input(false, 42).is_positive());
153 /// assert!(!Literal::from_input(true, 1337).is_positive());
154 /// ```
155 #[inline(always)]
156 pub const fn is_positive(self) -> bool {
157 self.0 & (1 << Self::POLARITY_BIT) == 0
158 }
159 /// Is the literal negative?
160 ///
161 /// Same as [`!self.is_positive()`][Self::is_positive]
162 ///
163 /// ```
164 /// # use oxidd_parser::Literal;
165 /// assert!(Literal::from_gate(true, 42).is_negative());
166 /// assert!(!Literal::from_gate(false, 1337).is_negative());
167 /// ```
168 #[inline(always)]
169 pub const fn is_negative(self) -> bool {
170 !self.is_positive()
171 }
172
173 /// Get the positive variant of this literal
174 ///
175 /// ```
176 /// # use oxidd_parser::Literal;
177 /// assert!(Literal::from_input(true, 42).positive().is_positive());
178 /// ```
179 #[inline(always)]
180 pub const fn positive(self) -> Self {
181 Self(self.0 & !(1 << Self::POLARITY_BIT))
182 }
183
184 /// Get the negative variant of this literal
185 ///
186 /// ```
187 /// # use oxidd_parser::Literal;
188 /// assert_eq!(Literal::from_input(true, 42), Literal::from_input(false, 42).negative());
189 /// assert!(Literal::from_input(false, 42).negative().is_negative());
190 /// ```
191 #[inline(always)]
192 pub const fn negative(self) -> Self {
193 Self(self.0 | (1 << Self::POLARITY_BIT))
194 }
195
196 /// Does this literal refer to an input?
197 ///
198 /// ```
199 /// # use oxidd_parser::Literal;
200 /// assert!(Literal::from_input(false, 42).is_input());
201 /// assert!(!Literal::FALSE.is_input());
202 /// assert!(!Literal::TRUE.is_input());
203 /// assert!(!Literal::from_gate(false, 1337).is_input());
204 /// ```
205 #[inline(always)]
206 pub const fn is_input(self) -> bool {
207 self.get_input().is_some()
208 }
209
210 /// Check if this literal refers to a gate
211 ///
212 /// ```
213 /// # use oxidd_parser::Literal;
214 /// assert!(Literal::from_gate(false, 42).is_gate());
215 /// assert!(!Literal::FALSE.is_gate());
216 /// assert!(!Literal::TRUE.is_gate());
217 /// assert!(!Literal::from_input(false, 1337).is_gate());
218 /// ```
219 #[inline(always)]
220 pub const fn is_gate(self) -> bool {
221 self.0 & (1 << Self::GATE_BIT) != 0
222 }
223
224 /// Get the input number (if this literal refers to an input)
225 ///
226 /// ```
227 /// # use oxidd_parser::Literal;
228 /// assert_eq!(Literal::from_input(false, 42).get_input(), Some(42));
229 /// assert_eq!(Literal::FALSE.get_input(), None);
230 /// assert_eq!(Literal::TRUE.get_input(), None);
231 /// assert_eq!(Literal::from_gate(false, 42).get_input(), None);
232 /// ```
233 #[inline]
234 pub const fn get_input(self) -> Option<Var> {
235 if self.is_gate() {
236 return None;
237 }
238 (self.0 >> Self::VAR_LSB).checked_sub(1)
239 }
240
241 /// Get the gate number (if this literal refers to an input)
242 ///
243 /// ```
244 /// # use oxidd_parser::Literal;
245 /// assert_eq!(Literal::from_gate(false, 42).get_gate_no(), Some(42));
246 /// assert_eq!(Literal::FALSE.get_gate_no(), None);
247 /// assert_eq!(Literal::TRUE.get_gate_no(), None);
248 /// assert_eq!(Literal::from_input(false, 42).get_gate_no(), None);
249 /// ```
250 ///
251 /// See also: [`Circuit::gate()`]
252 #[inline]
253 pub const fn get_gate_no(self) -> Option<Var> {
254 if self.is_gate() {
255 return Some(self.0 >> Self::VAR_LSB);
256 }
257 None
258 }
259
260 /// Map this literal based on `gate_map`
261 ///
262 /// If this literal refers to a gate, the method performs a lookup for the
263 /// gate number in `gate_map`. If the gate number is in bounds, the return
264 /// value is the mapped literal with its sign adjusted, otherwise the return
265 /// value is [`Literal::UNDEF`]. Non-gate literals are returned as they are.
266 #[inline]
267 pub fn apply_gate_map(self, gate_map: &[Literal]) -> Self {
268 if let Some(gate) = self.get_gate_no() {
269 if let Some(mapped) = gate_map.get(gate) {
270 *mapped ^ self.is_negative()
271 } else {
272 Self::UNDEF
273 }
274 } else {
275 self
276 }
277 }
278}
279
280impl fmt::Display for Literal {
281 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
282 let i = self.0 >> Literal::VAR_LSB;
283 let (kind, i) = if self.0 & (1 << Self::GATE_BIT) != 0 {
284 ('g', i)
285 } else {
286 if i == 0 {
287 return f.write_char(if self.is_positive() { '⊥' } else { '⊤' });
288 }
289 if i == Literal::MAX_INPUT + 2 {
290 return f.write_str(if self.is_positive() { "+U" } else { "-U" });
291 }
292 ('i', i - 1)
293 };
294
295 let sign = if self.is_positive() { '+' } else { '-' };
296 write!(f, "{sign}{kind}{i}")
297 }
298}
299impl fmt::Debug for Literal {
300 #[inline(always)]
301 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
302 <Self as fmt::Display>::fmt(self, f)
303 }
304}
305
306impl std::ops::Not for Literal {
307 type Output = Self;
308
309 fn not(self) -> Self {
310 Self(self.0 ^ (1 << Self::POLARITY_BIT))
311 }
312}
313
314impl std::ops::BitXor<bool> for Literal {
315 type Output = Self;
316
317 #[inline(always)]
318 fn bitxor(self, rhs: bool) -> Self::Output {
319 Self(self.0 ^ ((rhs as usize) << Self::POLARITY_BIT))
320 }
321}
322
323/// Rooted tree with values of type `T` at the leaves
324#[allow(missing_docs)]
325#[derive(Clone, PartialEq, Eq, Debug)]
326pub enum Tree<T> {
327 Inner(Box<[Tree<T>]>),
328 Leaf(T),
329}
330
331impl<T: Clone> Tree<T> {
332 fn flatten_into(&self, into: &mut Vec<T>) {
333 match self {
334 Tree::Inner(sub) => sub.iter().for_each(|t| t.flatten_into(into)),
335 Tree::Leaf(v) => into.push(v.clone()),
336 }
337 }
338}
339
340/// Problem that may be returned by the problem parsers
341#[derive(Clone, PartialEq, Eq, Debug)]
342pub struct Problem {
343 /// Combinational circuit as the core of the problem
344 pub circuit: Circuit,
345
346 /// Additional details on the problem
347 pub details: ProblemDetails,
348}
349
350impl Problem {
351 /// Simplify the circuit (see [`Circuit::simplify()`]), and map the gate
352 /// literals in the additional problem details accordingly
353 ///
354 /// If the reachable circuit fragment contains a cycle, this method returns
355 /// `Err(l)`, where `l` represents a gate that is part of the cycle.
356 ///
357 /// On success, `simplify()` returns the simplified problem along with a
358 /// `Vec<Literal>` which maps the gates of `self` to literals valid in the
359 /// simplified circuit. The simplified circuit only contains gates reachable
360 /// from the problem details (except for the
361 /// [AIGER literal map][AIGERDetails::map_aiger_literal]).
362 pub fn simplify(&self) -> Result<(Self, Vec<Literal>), Literal> {
363 let (circuit, map) = match &self.details {
364 ProblemDetails::Root(l) => self.circuit.simplify([*l]),
365 ProblemDetails::AIGER(aig) => {
366 let aig = &**aig;
367 self.circuit.simplify(
368 aig.latches
369 .iter()
370 .chain(aig.outputs.iter())
371 .chain(aig.bad.iter())
372 .chain(aig.invariants.iter())
373 .chain(aig.justice.all_elements().iter())
374 .chain(aig.fairness.iter())
375 .copied(),
376 )
377 }
378 }?;
379 let new_problem = Self {
380 circuit,
381 details: self.details.apply_gate_map(&map),
382 };
383 Ok((new_problem, map))
384 }
385}
386
387/// Details of a [`Problem`] in addition to the circuit structure
388#[derive(Clone, PartialEq, Eq, Debug)]
389pub enum ProblemDetails {
390 /// Simple circuit with a single root
391 Root(Literal),
392 /// Details from the AIGER format
393 AIGER(Box<AIGERDetails>),
394}
395
396impl ProblemDetails {
397 /// Map the literals in `self` based on `gate_map`
398 ///
399 /// See [`Literal::apply_gate_map()`] for more details.
400 pub fn apply_gate_map(&self, map: &[Literal]) -> Self {
401 match self {
402 ProblemDetails::Root(l) => ProblemDetails::Root(l.apply_gate_map(map)),
403 ProblemDetails::AIGER(aig) => ProblemDetails::AIGER(Box::new(aig.apply_gate_map(map))),
404 }
405 }
406
407 /// In-place version of [`Self::apply_gate_map()`]
408 pub fn apply_gate_map_in_place(&mut self, map: &[Literal]) {
409 match self {
410 ProblemDetails::Root(l) => *l = l.apply_gate_map(map),
411 ProblemDetails::AIGER(aig) => aig.apply_gate_map_in_place(map),
412 }
413 }
414}
415
416/// Variable set, potentially along with a variable order and variable names
417///
418/// The variable numbers are in range `0..self.len()`.
419#[derive(Clone, PartialEq, Eq, Debug)]
420pub struct VarSet {
421 /// Number of variables
422 len: usize,
423
424 /// Permutation of the variables. `order[0]` is supposed to be the number of
425 /// the top-most variable.
426 order: Vec<Var>,
427 /// If present, `order` is just the flattened tree
428 order_tree: Option<Tree<Var>>,
429
430 /// Mapping from variable numbers to optional names. Has minimal length,
431 /// i.e., `names.last() != Some(&None)`.
432 names: Vec<Option<String>>,
433}
434
435impl VarSet {
436 /// Create a variable set without a variable order and names
437 #[inline(always)]
438 pub const fn new(n: usize) -> Self {
439 Self {
440 len: n,
441 order: Vec::new(),
442 order_tree: None,
443 names: Vec::new(),
444 }
445 }
446
447 /// Create a variable set with the given names
448 ///
449 /// The number of variables is given by `names.len()`.
450 pub fn with_names(mut names: Vec<Option<String>>) -> Self {
451 let len = names.len();
452 while let Some(None) = names.last() {
453 names.pop();
454 }
455 Self {
456 len,
457 order: Vec::new(),
458 order_tree: None,
459 names,
460 }
461 }
462
463 /// Number of variables
464 #[inline(always)]
465 pub fn len(&self) -> usize {
466 self.len
467 }
468
469 /// Returns true iff the number of variables is 0
470 #[inline(always)]
471 pub fn is_empty(&self) -> bool {
472 self.len == 0
473 }
474
475 /// Get the linear variable order, if present
476 ///
477 /// The order is given as a mapping from positions to variables.
478 ///
479 /// If [`self.order_tree()`][Self::order_tree] is not `None`, then it is the
480 /// flattened tree.
481 #[inline]
482 pub fn order(&self) -> Option<&[Var]> {
483 if self.len != self.order.len() {
484 None
485 } else {
486 Some(&self.order)
487 }
488 }
489
490 /// Get the tree of variable groups, if present
491 ///
492 /// This may be useful for, e.g., group sifting.
493 #[inline]
494 pub fn order_tree(&self) -> Option<&Tree<Var>> {
495 self.order_tree.as_ref()
496 }
497
498 /// Returns `true` if any variable has a name
499 #[inline]
500 pub fn has_names(&self) -> bool {
501 !self.names.is_empty()
502 }
503
504 /// Get the name for variable `var`
505 #[inline]
506 pub fn name(&self, var: Var) -> Option<&str> {
507 self.names.get(var)?.as_deref()
508 }
509 /// Set the name for variable `var`. Returns the previous name.
510 #[track_caller]
511 pub fn set_name(&mut self, var: Var, name: impl Into<String>) -> Option<String> {
512 if var >= self.names.len() {
513 if var >= self.len {
514 return None;
515 }
516 self.names.resize(var + 1, None);
517 }
518 self.names[var].replace(name.into())
519 }
520
521 #[allow(unused)]
522 fn check_valid(&self) {
523 assert!(self.order.is_empty() || self.order.len() == self.len);
524 assert!(!self.order.is_empty() || self.order_tree.is_none());
525 assert_ne!(self.names.last(), Some(&None));
526 }
527}
528
529type GateVec2d = vec2d::with_metadata::Vec2d<Literal, { Circuit::GATE_METADATA_BITS }>;
530
531/// Combinational circuit with negation as well as n-ary AND, OR, and XOR gates
532#[derive(Clone, PartialEq, Eq)]
533pub struct Circuit {
534 inputs: VarSet,
535 gates: GateVec2d,
536}
537
538/// Logical gate including the literals representing its inputs
539///
540/// This enum type includes the phony gate variants `False` (representing the
541/// constant false) and `Input` (for a circuit input). This is mainly to make
542/// using [`Circuit::gate()`] more ergonomic.
543#[allow(missing_docs)]
544#[derive(Clone, Copy, PartialEq, Eq)]
545pub struct Gate<'a> {
546 pub kind: GateKind,
547 pub inputs: &'a [Literal],
548}
549
550impl fmt::Debug for Gate<'_> {
551 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
552 let mut builder = f.debug_tuple(match self.kind {
553 GateKind::And => "and",
554 GateKind::Or => "or",
555 GateKind::Xor => "xor",
556 });
557 for literal in self.inputs {
558 builder.field(literal);
559 }
560 builder.finish()
561 }
562}
563
564#[allow(unused)] // used in tests
565impl<'a> Gate<'a> {
566 const fn and(inputs: &'a [Literal]) -> Self {
567 Self {
568 kind: GateKind::And,
569 inputs,
570 }
571 }
572 const fn or(inputs: &'a [Literal]) -> Self {
573 Self {
574 kind: GateKind::Or,
575 inputs,
576 }
577 }
578 const fn xor(inputs: &'a [Literal]) -> Self {
579 Self {
580 kind: GateKind::Xor,
581 inputs,
582 }
583 }
584}
585
586/// Kind of a logical gate in a [`Circuit`]
587#[allow(missing_docs)]
588#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
589pub enum GateKind {
590 And,
591 Or,
592 Xor,
593}
594
595impl GateKind {
596 /// Get the literal representing a gate of this kind without any inputs
597 const fn empty_gate(self) -> Literal {
598 match self {
599 GateKind::And => Literal::TRUE,
600 GateKind::Or | GateKind::Xor => Literal::FALSE,
601 }
602 }
603}
604
605impl From<usize> for GateKind {
606 fn from(value: usize) -> Self {
607 match value {
608 _ if value == GateKind::And as usize => GateKind::And,
609 _ if value == GateKind::Or as usize => GateKind::Or,
610 _ => GateKind::Xor,
611 }
612 }
613}
614
615impl Circuit {
616 const GATE_METADATA_BITS: u32 = 2;
617
618 /// Create an empty circuit with the given circuit inputs
619 #[inline(always)]
620 pub fn new(inputs: VarSet) -> Self {
621 Self {
622 inputs,
623 gates: Default::default(),
624 }
625 }
626
627 /// Get the circuit inputs
628 #[inline(always)]
629 pub fn inputs(&self) -> &VarSet {
630 &self.inputs
631 }
632 /// Get a mutable reference to the circuit inputs
633 #[inline(always)]
634 pub fn inputs_mut(&mut self) -> &mut VarSet {
635 &mut self.inputs
636 }
637
638 /// Reserve space for at least `additional` more gates. Note that this will
639 /// not reserve space for gate inputs. To that end, use
640 /// [`Self::reserve_gate_inputs()`].
641 ///
642 /// This is essentially a wrapper around [`Vec::reserve()`], so the
643 /// documentation there provides more details.
644 #[inline(always)]
645 pub fn reserve_gates(&mut self, additional: usize) {
646 self.gates.reserve_vectors(additional);
647 }
648
649 /// Reserve space for at least `additional` more gate inputs (the space is
650 /// shared between all gates). Note that this will not reserve space for
651 /// the gate metadata. To that end, use [`Self::reserve_gates()`].
652 ///
653 /// This is essentially a wrapper around [`Vec::reserve()`], so the
654 /// documentation there provides more details.
655 #[inline(always)]
656 pub fn reserve_gate_inputs(&mut self, additional: usize) {
657 self.gates.reserve_elements(additional);
658 }
659
660 /// Get the number of gates in this circuit
661 #[inline(always)]
662 pub fn num_gates(&self) -> usize {
663 self.gates.len()
664 }
665
666 /// Get the [`Gate`] for `literal`
667 ///
668 /// Returns [`None`] iff `literal` refers to a constant, a circuit input, or
669 /// a gate that is not present in this circuit.
670 ///
671 /// See also: [`Self::gate_for_no()`]
672 #[inline]
673 pub fn gate(&self, literal: Literal) -> Option<Gate<'_>> {
674 self.gate_for_no(literal.get_gate_no()?)
675 }
676
677 /// Get the [`Gate`] for `gate_no`
678 ///
679 /// Returns [`None`] iff `literal` refers to a gate that is not present in
680 /// this circuit.
681 ///
682 /// See also: [`Self::gate()`]
683 pub fn gate_for_no(&self, gate_no: Var) -> Option<Gate<'_>> {
684 if let Some((kind, inputs)) = self.gates.get(gate_no) {
685 Some(Gate {
686 kind: kind.into(),
687 inputs,
688 })
689 } else {
690 None
691 }
692 }
693
694 /// Get a mutable reference to the gate inputs
695 ///
696 /// Returns [`None`] iff `literal` refers to a constant, a circuit input, or
697 /// a gate that is not present in this circuit.
698 #[inline]
699 pub fn gate_inputs_mut(&mut self, literal: Literal) -> Option<&mut [Literal]> {
700 self.gates.get_mut(literal.get_gate_no()?)
701 }
702
703 /// Get a mutable reference to the gate inputs
704 ///
705 /// Returns [`None`] iff `literal` refers to a constant, a circuit input, or
706 /// a gate that is not present in this circuit.
707 #[inline(always)]
708 pub fn gate_inputs_mut_for_no(&mut self, gate_no: Var) -> Option<&mut [Literal]> {
709 self.gates.get_mut(gate_no)
710 }
711
712 /// Set the kind of the gate referenced by `literal`
713 ///
714 /// Panics if `literal` does not refer to a gate in this circuit.
715 #[track_caller]
716 #[inline]
717 pub fn set_gate_kind(&mut self, literal: Literal, kind: GateKind) {
718 self.gates.set_metadata(
719 literal
720 .get_gate_no()
721 .expect("`literal` must refer to a gate"),
722 kind as usize,
723 );
724 }
725
726 /// Set the kind of the gate referenced by `gate_no`
727 ///
728 /// Panics if `literal` does not refer to a gate in this circuit.
729 #[track_caller]
730 #[inline(always)]
731 pub fn set_gate_kind_for_no(&mut self, gate_no: Var, kind: GateKind) {
732 self.gates.set_metadata(gate_no, kind as usize);
733 }
734
735 /// Set the kind of the gate referenced by `literal`
736 ///
737 /// Panics if the circuit is empty.
738 #[track_caller]
739 #[inline]
740 pub fn set_last_gate_kind(&mut self, kind: GateKind) {
741 let n = self.gates.len();
742 if n == 0 {
743 panic!("there are no gates in the circuit");
744 }
745 self.gates.set_metadata(n - 1, kind as usize);
746 }
747
748 /// Get the first gate
749 ///
750 /// Returns [`None`] iff `literal` refers to a constant, a circuit input, or
751 /// a gate that is not present in this circuit.
752 pub fn first_gate(&self) -> Option<Gate<'_>> {
753 let (kind, inputs) = self.gates.first()?;
754 Some(Gate {
755 kind: kind.into(),
756 inputs,
757 })
758 }
759
760 /// Get the last gate
761 ///
762 /// Returns [`None`] iff `literal` refers to a constant, a circuit input, or
763 /// a gate that is not present in this circuit.
764 pub fn last_gate(&self) -> Option<Gate<'_>> {
765 let (kind, inputs) = self.gates.last()?;
766 Some(Gate {
767 kind: kind.into(),
768 inputs,
769 })
770 }
771
772 /// Create a new empty gate at the end of the sequence
773 pub fn push_gate(&mut self, kind: GateKind) -> Literal {
774 let l = Literal::from_gate(false, self.gates.len());
775 self.gates.push_vec(kind as _);
776 l
777 }
778
779 /// Remove the last gate (if there is one)
780 ///
781 /// Returns true iff the number of gates was positive before removal.
782 #[inline(always)]
783 pub fn pop_gate(&mut self) -> bool {
784 self.gates.pop_vec()
785 }
786
787 /// Add an input to the last gate
788 ///
789 /// There must be already one gate in the circuit, otherwise this method
790 /// triggers a debug assertion or does not do anything, respectively.
791 #[inline(always)]
792 #[track_caller]
793 pub fn push_gate_input(&mut self, literal: Literal) {
794 self.gates.push_element(literal);
795 }
796
797 /// Add inputs to the last gate
798 ///
799 /// There must be already one gate in the circuit, otherwise this method
800 /// triggers a debug assertion or does not do anything, respectively.
801 #[inline(always)]
802 #[track_caller]
803 pub fn push_gate_inputs(&mut self, literals: impl IntoIterator<Item = Literal>) {
804 self.gates.push_elements(literals);
805 }
806
807 /// Iterate over all gates in the circuit
808 ///
809 /// The iteration order is from first to last in the gate sequence.
810 #[inline(always)]
811 pub fn iter_gates(&self) -> CircuitGateIter<'_> {
812 CircuitGateIter(self.gates.iter())
813 }
814
815 /// Retain the gates for which `predicate` returns `true`
816 ///
817 /// Note that removing one gate changes the gate numbers of all subsequent
818 /// gates, but this method does not automatically update the gate inputs.
819 #[inline]
820 pub fn retain_gates(&mut self, mut predicate: impl FnMut(&mut [Literal]) -> bool) {
821 self.gates.retain(move |_, inputs| predicate(inputs))
822 }
823
824 /// Remove all gate definitions from the circuit
825 #[inline(always)]
826 pub fn clear_gates(&mut self) {
827 self.gates.clear();
828 }
829
830 /// Check if this circuit is acyclic
831 ///
832 /// Returns [`None`] if acyclic, or [`Some(literal)`][Some] if `literal`
833 /// depends on itself.
834 pub fn find_cycle(&self) -> Option<Literal> {
835 let mut visited = FixedBitSet::with_capacity(self.gates.len() * 2);
836
837 fn inner(gates: &GateVec2d, visited: &mut FixedBitSet, index: usize) -> bool {
838 if visited.contains(index * 2 + 1) {
839 return false; // finished
840 }
841 if visited.contains(index * 2) {
842 return true; // discovered -> cycle
843 }
844 visited.insert(index * 2); // discovered
845
846 for &l in gates.get(index).unwrap().1 {
847 if l.is_gate() && inner(gates, visited, l.0 >> Literal::VAR_LSB) {
848 return true;
849 }
850 }
851
852 visited.insert(index * 2 + 1); // finished
853 false
854 }
855
856 for index in 0..self.gates.len() {
857 if inner(&self.gates, &mut visited, index) {
858 return Some(Literal::from_gate(false, index));
859 }
860 }
861 None
862 }
863
864 /// Simplify the circuit such that
865 ///
866 /// 1. no gate has constant inputs
867 /// 2. no inputs of XOR gates are negated (only the output)
868 /// 3. for every gate, all its inputs are distinct (disregarding polarities)
869 /// 4. all gates have at least two inputs
870 /// 5. there are no two structurally equivalent gates (same kind and inputs,
871 /// disregarding the input order)
872 ///
873 /// Additionally, the new circuit will only contain gates reachable from
874 /// `roots`. The order of gate inputs in the resulting circuit follows the
875 /// order of the first discovered equivalent gate (with duplicates etc.
876 /// removed).
877 ///
878 /// If the reachable circuit fragment contains a cycle, this method returns
879 /// `Err(l)`, where `l` represents a gate that is part of the cycle.
880 /// Likewise, if the reachable fragment depends on unknown inputs
881 /// (`input_number >= self.inputs().len()`, including [`Literal::UNDEF`]),
882 /// the return value is `Err(l)`, where `l` is the unknown literal.
883 ///
884 /// On success, the gates in the returned circuit are topologically sorted.
885 /// The additional `Vec<Literal>` maps the gates of `self` to literals valid
886 /// in the simplified circuit.
887 ///
888 /// Hint: [`Problem::simplify()`] uses this method to simplify the circuit
889 /// and also maps the literals in the problem details accordingly.
890 pub fn simplify(
891 &self,
892 roots: impl IntoIterator<Item = Literal>,
893 ) -> Result<(Self, Vec<Literal>), Literal> {
894 const DISCOVERED: Literal = Literal::UNDEF.negative();
895
896 let bump = bumpalo::Bump::new();
897 let mut gate_map = Vec::new();
898 gate_map.resize(self.gates.len(), Literal::UNDEF);
899 // Whether a non-constant literal (hence 2 * vars) is an input to the
900 // current gate
901 let mut input_set = FixedBitSet::with_capacity(2 * (self.gates.len() + self.inputs.len()));
902 let mut new_gates: GateVec2d =
903 GateVec2d::with_capacity(self.gates.len(), self.gates.all_elements().len());
904 let mut unique_map = FxHashMap::default();
905 unique_map.reserve(self.gates.len());
906
907 fn inner<'a>(
908 bump: &'a bumpalo::Bump,
909 gates: &GateVec2d,
910 index: usize,
911 input_set: &mut FixedBitSet,
912 unique_map: &mut FxHashMap<(GateKind, BumpBox<'a, [Literal]>), Literal>,
913 new_gates: &mut GateVec2d,
914 gate_map: &mut [Literal],
915 ) -> Result<(), Literal> {
916 if gate_map[index] == DISCOVERED {
917 // discovered -> cycle
918 return Err(Literal::from_gate(false, index));
919 }
920 if gate_map[index] != Literal::UNDEF {
921 return Ok(()); // finished
922 }
923 gate_map[index] = DISCOVERED;
924
925 let (meta, inputs) = gates.get(index).unwrap();
926 let kind = GateKind::from(meta);
927
928 for &l in inputs {
929 if let Some(gate) = l.get_gate_no() {
930 inner(
931 bump, gates, gate, input_set, unique_map, new_gates, gate_map,
932 )?;
933 }
934 }
935
936 // apply `gate_map` to the inputs and establish conditions 1+2
937 let mut neg_out = false;
938 let mut mapped = BumpVec::with_capacity_in(inputs.len(), bump);
939 let known_inputs = input_set.len() - gates.len();
940 match kind {
941 GateKind::And | GateKind::Or => {
942 let (identity, dominator) = match kind {
943 GateKind::And => (Literal::TRUE, Literal::FALSE),
944 GateKind::Or => (Literal::FALSE, Literal::TRUE),
945 _ => unreachable!(),
946 };
947 for &l in inputs {
948 let l = l.get_gate_no().map_or(l, |i| gate_map[i] ^ l.is_negative());
949 if l.is_input() && l.get_input().unwrap() > known_inputs {
950 return Err(l);
951 }
952 if l == dominator {
953 gate_map[index] = dominator;
954 return Ok(());
955 }
956 if l != identity {
957 mapped.push(l);
958 }
959 }
960 }
961 GateKind::Xor => {
962 for &l in inputs {
963 neg_out ^= l.is_negative(); // negate for every flip
964 let l = if let Some(i) = l.get_gate_no() {
965 let l = gate_map[i];
966 neg_out ^= l.is_negative();
967 l.positive()
968 } else {
969 let l = l.positive();
970 debug_assert!(l != Literal::TRUE);
971 if l == Literal::FALSE {
972 continue; // x ⊕ ⊥ ≡ x
973 }
974 l
975 };
976 if l.is_input() && l.get_input().unwrap() > known_inputs {
977 return Err(l);
978 }
979 mapped.push(l);
980 }
981 }
982 };
983 let mut inputs = mapped;
984
985 // first part of condition 4
986 if inputs.is_empty() {
987 gate_map[index] = match kind {
988 GateKind::And => Literal::TRUE,
989 GateKind::Or => Literal::FALSE,
990 GateKind::Xor => Literal::TRUE ^ neg_out,
991 };
992 return Ok(());
993 }
994
995 // condition 3 with fast-path for exactly two different inputs
996 if inputs.len() >= 3
997 || (inputs.len() == 2 && inputs[0].negative() == inputs[1].negative())
998 {
999 let no_gate_add = 2 * gates.len() - 2; // -2 for constants
1000 let map = move |l: Literal| {
1001 const { assert!(Literal::POLARITY_BIT == 0) };
1002 let i = ((l.0 >> Literal::VAR_LSB) << 1) | (l.0 & (1 << Literal::POLARITY_BIT));
1003 if l.is_gate() {
1004 i
1005 } else {
1006 i + no_gate_add
1007 }
1008 };
1009
1010 match kind {
1011 GateKind::And | GateKind::Or => {
1012 for (i, &l) in inputs.iter().enumerate() {
1013 if input_set.contains(map(!l)) {
1014 // found complement literal -> clear `input_set` and return ⊥/⊤
1015 for &l in &inputs[..i] {
1016 input_set.remove(map(l));
1017 }
1018 gate_map[index] = match kind {
1019 GateKind::And => Literal::FALSE, // x ∧ ¬x ≡ ⊥
1020 GateKind::Or => Literal::TRUE, // x ∨ ¬x ≡ ⊤
1021 _ => unreachable!(),
1022 };
1023 return Ok(());
1024 }
1025 input_set.insert(map(l));
1026 }
1027 }
1028 GateKind::Xor => {
1029 for &l in &inputs {
1030 let i = map(l);
1031 input_set.toggle(i);
1032 }
1033 }
1034 }
1035
1036 inputs.retain(|&l| {
1037 let i = map(l);
1038 if input_set.contains(i) {
1039 input_set.remove(i);
1040 true
1041 } else {
1042 false
1043 }
1044 });
1045 }
1046 // second part of condition 4
1047 if let [l] = &inputs[..] {
1048 gate_map[index] = *l ^ neg_out;
1049 return Ok(());
1050 }
1051
1052 // save the children in the current order and sort
1053 let new_gate_no = new_gates.len();
1054 new_gates.push_vec(kind as usize);
1055 new_gates.push_elements(inputs.iter().copied());
1056 inputs.sort_unstable();
1057
1058 let l = match unique_map.entry((kind, inputs.into_boxed_slice())) {
1059 Entry::Occupied(e) => {
1060 new_gates.pop_vec();
1061 *e.get()
1062 }
1063 Entry::Vacant(e) => *e.insert(Literal::from_gate(false, new_gate_no)),
1064 };
1065 gate_map[index] = l ^ neg_out;
1066
1067 Ok(())
1068 }
1069
1070 for root in roots {
1071 if let Some(i) = root.get_gate_no() {
1072 inner(
1073 &bump,
1074 &self.gates,
1075 i,
1076 &mut input_set,
1077 &mut unique_map,
1078 &mut new_gates,
1079 &mut gate_map,
1080 )?;
1081 }
1082 }
1083
1084 let new_circuit = Self {
1085 inputs: self.inputs.clone(),
1086 gates: new_gates,
1087 };
1088 Ok((new_circuit, gate_map))
1089 }
1090}
1091
1092/// Iterator returned by [`Circuit::iter_gates()`]
1093#[derive(Clone)]
1094pub struct CircuitGateIter<'a>(
1095 vec2d::with_metadata::Vec2dIter<'a, Literal, { Circuit::GATE_METADATA_BITS }>,
1096);
1097
1098impl<'a> Iterator for CircuitGateIter<'a> {
1099 type Item = Gate<'a>;
1100
1101 #[inline]
1102 fn next(&mut self) -> Option<Self::Item> {
1103 let (kind, inputs) = self.0.next()?;
1104 Some(Gate {
1105 kind: kind.into(),
1106 inputs,
1107 })
1108 }
1109
1110 #[inline(always)]
1111 fn size_hint(&self) -> (usize, Option<usize>) {
1112 self.0.size_hint()
1113 }
1114}
1115
1116impl ExactSizeIterator for CircuitGateIter<'_> {
1117 #[inline(always)]
1118 fn len(&self) -> usize {
1119 self.0.len()
1120 }
1121}
1122
1123impl fmt::Debug for CircuitGateIter<'_> {
1124 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1125 f.debug_list().entries(self.clone()).finish()
1126 }
1127}
1128
1129impl fmt::Debug for Circuit {
1130 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1131 f.debug_struct("Circuit")
1132 .field("inputs", &self.inputs)
1133 .field("gates", &self.iter_gates())
1134 .finish()
1135 }
1136}
1137
1138/// Problem details such as latches, outputs, and bad states for an and-inverter
1139/// graph
1140///
1141/// Latches are not natively supported by [`Circuit`s][Circuit], but each latch
1142/// output is modeled as a an additional circuit input, and each latch input is
1143/// modeled as a Boolean function, concretely a [`Literal`]. In the current
1144/// implementation, the input numbers for latches are in range
1145/// `(self.inputs() + 1)..(self.inputs() + self.latches().len())`.
1146#[derive(Clone, PartialEq, Eq, Debug)]
1147pub struct AIGERDetails {
1148 /// Number of input variables
1149 inputs: usize,
1150 /// Latch inputs
1151 latches: Vec<Literal>,
1152 /// Latch initial values
1153 latch_init_values: TVBitVec,
1154 /// Outputs
1155 outputs: Vec<Literal>,
1156 /// Bad state literals
1157 bad: Vec<Literal>,
1158 /// Invariant constraints
1159 invariants: Vec<Literal>,
1160 /// Justice properties
1161 justice: Vec2d<Literal>,
1162 /// Fairness constraints
1163 fairness: Vec<Literal>,
1164
1165 /// Mapping from AIGER variable numbers (literals divided by 2) to literals
1166 /// in the circuit
1167 map: Vec<Literal>,
1168
1169 /// Output names
1170 ///
1171 /// Either empty or has the same length as `outputs`
1172 output_names: Vec<Option<String>>,
1173 /// Bad state literal names
1174 ///
1175 /// Either empty or has the same length as `bad`
1176 bad_names: Vec<Option<String>>,
1177 /// Invariant state names
1178 ///
1179 /// Either empty or has the same length as `invariants`
1180 invariant_names: Vec<Option<String>>,
1181 /// Justice property names
1182 ///
1183 /// Either empty or has the same length as `justice`
1184 justice_names: Vec<Option<String>>,
1185 /// Fairness constraint names
1186 ///
1187 /// Either empty or has the same length as `fairness`
1188 fairness_names: Vec<Option<String>>,
1189}
1190
1191impl AIGERDetails {
1192 /// Get the latch number of `literal`, if it refers to a latch
1193 ///
1194 /// If the return value is `Some(index)`, `index` is valid for the slice
1195 /// returned by [`Self::latches()`].
1196 #[inline]
1197 pub fn get_latch_no(&self, literal: Literal) -> Option<usize> {
1198 if literal.is_gate() {
1199 return None;
1200 }
1201 let first_latch = 1 + self.inputs;
1202 let result = (literal.0 >> Literal::VAR_LSB).checked_sub(first_latch)?;
1203 if result >= self.latches.len() {
1204 return None;
1205 }
1206 Some(result)
1207 }
1208
1209 /// Get the number of input variables
1210 #[inline(always)]
1211 pub fn inputs(&self) -> usize {
1212 self.inputs
1213 }
1214
1215 /// Get the input literals of each latch
1216 #[inline(always)]
1217 pub fn latches(&self) -> &[Literal] {
1218 &self.latches
1219 }
1220 /// Get the initial value of latch `i`
1221 #[inline(always)]
1222 pub fn latch_init_value(&self, i: usize) -> Option<bool> {
1223 self.latch_init_values.at(i)
1224 }
1225
1226 /// Get the output definitions
1227 #[inline(always)]
1228 pub fn outputs(&self) -> &[Literal] {
1229 &self.outputs
1230 }
1231
1232 /// Map the given AIGER literal to a [`Literal`] for use with the
1233 /// [`Circuit`]
1234 ///
1235 /// Note that the literals in [`AIGERDetails`] are already mapped
1236 /// accordingly. This method is useful if you want to refer to specific
1237 /// gates or literals using the values from the AIGER source.
1238 #[inline(always)]
1239 pub fn map_aiger_literal(&self, literal: usize) -> Option<Literal> {
1240 let l = *self.map.get(literal >> 1)?;
1241 Some(if literal & 1 != 0 { !l } else { l })
1242 }
1243
1244 /// Get the name for output `i`
1245 #[inline(always)]
1246 pub fn output_name(&self, i: usize) -> Option<&str> {
1247 self.output_names.get(i)?.as_deref()
1248 }
1249 /// Get the name for bad state literal `i`
1250 #[inline(always)]
1251 pub fn bad_name(&self, i: usize) -> Option<&str> {
1252 self.bad_names.get(i)?.as_deref()
1253 }
1254 /// Get the name for invariant constraint `i`
1255 #[inline(always)]
1256 pub fn invariant_name(&self, i: usize) -> Option<&str> {
1257 self.invariant_names.get(i)?.as_deref()
1258 }
1259 /// Get the name for justice constraint `i`
1260 #[inline(always)]
1261 pub fn justice_name(&self, i: usize) -> Option<&str> {
1262 self.justice_names.get(i)?.as_deref()
1263 }
1264
1265 /// Map the literals in `self` based on `gate_map`
1266 ///
1267 /// See [`Literal::apply_gate_map()`] for more details.
1268 pub fn apply_gate_map(&self, gate_map: &[Literal]) -> Self {
1269 let map_slice = move |slice: &[Literal]| {
1270 slice
1271 .iter()
1272 .map(move |l| l.apply_gate_map(gate_map))
1273 .collect::<Vec<_>>()
1274 };
1275
1276 let mut justice =
1277 Vec2d::with_capacity(self.justice.len(), self.justice.all_elements().len());
1278 for j in self.justice.iter() {
1279 justice.push_vec();
1280 justice.push_elements(j.iter().map(move |l| l.apply_gate_map(gate_map)));
1281 }
1282
1283 Self {
1284 inputs: self.inputs,
1285 latches: map_slice(&self.latches),
1286 latch_init_values: self.latch_init_values.clone(),
1287 outputs: map_slice(&self.outputs),
1288 bad: map_slice(&self.bad),
1289 invariants: map_slice(&self.invariants),
1290 justice,
1291 fairness: map_slice(&self.fairness),
1292 map: map_slice(&self.map),
1293 output_names: self.output_names.clone(),
1294 bad_names: self.bad_names.clone(),
1295 invariant_names: self.invariant_names.clone(),
1296 justice_names: self.justice_names.clone(),
1297 fairness_names: self.fairness_names.clone(),
1298 }
1299 }
1300
1301 /// In-place version of [`Self::apply_gate_map()`]
1302 pub fn apply_gate_map_in_place(&mut self, map: &[Literal]) {
1303 let map_slice = move |slice: &mut [Literal]| {
1304 for l in slice.iter_mut() {
1305 *l = l.apply_gate_map(map);
1306 }
1307 };
1308
1309 map_slice(&mut self.latches);
1310 map_slice(&mut self.outputs);
1311 map_slice(&mut self.bad);
1312 map_slice(&mut self.invariants);
1313 map_slice(self.justice.all_elements_mut());
1314 map_slice(&mut self.fairness);
1315 map_slice(&mut self.map);
1316 }
1317}
1318
1319/// Options for the parsers
1320#[non_exhaustive]
1321#[derive(Clone, Builder, Default, Debug)]
1322pub struct ParseOptions {
1323 /// Whether to parse a variable orders
1324 ///
1325 /// The [DIMACS satisfiability formats][dimacs], for instance, do not
1326 /// natively support specifying a variable order, however it is not uncommon
1327 /// to use the comment lines for this purpose. But while some files may
1328 /// contain a variable order in the comment lines, others may use them for
1329 /// arbitrary comments. Hence, it may be desired to turn on parsing orders
1330 /// for some files and turn it off for other files.
1331 #[builder(default = "false")]
1332 pub var_order: bool,
1333
1334 /// Whether to parse a clause tree (for [DIMACS CNF][dimacs])
1335 ///
1336 /// If the CNF contains, e.g., five clauses, and one of the comment lines
1337 /// contains `co [[0, 1], [2, 3, 4]]`, then the parsed circuit will have
1338 /// three AND gates (one with clauses 0 and 1 as input, one with clauses
1339 /// 2, 3, and 4, as well as one with those two conjuncts).
1340 #[builder(default = "false")]
1341 pub clause_tree: bool,
1342
1343 /// Whether to check that the circuit is acyclic
1344 ///
1345 /// The time complexity of this check is linear in the circuit's size, and
1346 /// therefore rather inexpensive. Therefore, it is enabled by default.
1347 #[builder(default = "true")]
1348 pub check_acyclic: bool,
1349}
1350
1351#[cfg(test)]
1352mod tests {
1353 use super::*;
1354 use crate::util::test::*;
1355
1356 #[test]
1357 fn simplify() {
1358 let mut circuit = Circuit::new(VarSet::new(3));
1359 circuit.push_gate(GateKind::Xor);
1360 circuit.push_gate_inputs([!v(0), v(1), v(2)]);
1361 circuit.push_gate(GateKind::And);
1362 circuit.push_gate_input(g(0));
1363
1364 let (simplified, map) = circuit.simplify([Literal::from_gate(false, 1)]).unwrap();
1365 assert_eq!(simplified.num_gates(), 1);
1366 assert_eq!(
1367 simplified.gate_for_no(0),
1368 Some(Gate::xor(&[v(0), v(1), v(2)]))
1369 );
1370 assert_eq!(&map, &[!g(0), !g(0)]);
1371 }
1372}