oxidd_parser/vec2d.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
//! Compact representation of a `Vec<Vec<T>>`
use std::fmt;
use std::iter::FusedIterator;
/// Compact representation of a `Vec<Vec<T>>`
#[derive(Clone, PartialEq, Eq)]
pub struct Vec2d<T> {
/// Start indices of the inner vectors in `data`
///
/// If the 2d vector is non-empty, the first element should be 0, but this
/// is not a requirement for correctness. With debug assertions disabled,
/// the user could push elements before creating the first inner vector.
index: Vec<usize>,
data: Vec<T>,
}
impl<T> Default for Vec2d<T> {
fn default() -> Self {
Self {
index: Default::default(),
data: Default::default(),
}
}
}
impl<T> Vec2d<T> {
/// Create a new empty `Vec2d`.
///
/// This is equivalent to
/// [`Self::with_capacity(0, 0)`][Self::with_capacity].
#[inline(always)]
pub fn new() -> Self {
Self::default()
}
/// Create a new empty `Vec2d` with at least the specified capacities.
///
/// A `Vec2d` internally contains two [`Vec`]s, one for the elements of all
/// the inner vectors and one for the indices where these inner vectors
/// begin. `vectors` is the capacity for the latter and `elements_sum` is
/// the capacity for the former `Vec`.
#[inline(always)]
pub fn with_capacity(vectors: usize, elements_sum: usize) -> Self {
Self {
index: Vec::with_capacity(vectors),
data: Vec::with_capacity(elements_sum),
}
}
/// Reserve space for at least `additional` more inner vectors. Note that
/// this will not reserve space for elements of the inner vectors. To that
/// end, use [`Self::reserve_elements()`].
///
/// This is essentially a wrapper around [`Vec::reserve()`], so the
/// documentation there provides more details.
#[inline(always)]
pub fn reserve_vectors(&mut self, additional: usize) {
self.index.reserve(additional);
}
/// Reserve space for at least `additional` more elements in the inner
/// vectors. The space is shared between the inner vectors: After reserving
/// space for `n` additional elements, pushing, e.g., two vectors with `k1 +
/// k2 <= n` elements will not lead to a reallocation.
///
/// This is essentially a wrapper around [`Vec::reserve()`], so the
/// documentation there provides more details.
#[inline(always)]
pub fn reserve_elements(&mut self, additional: usize) {
self.data.reserve(additional);
}
/// Get the number of inner vectors
#[inline(always)]
pub fn len(&self) -> usize {
self.index.len()
}
/// `true` iff there are no inner vectors
///
/// Equivalent to [`self.len() == 0`][Self::len]
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.index.is_empty()
}
/// Get the vector at `index` if there is one
pub fn get(&self, index: usize) -> Option<&[T]> {
if index + 1 < self.index.len() {
Some(&self.data[self.index[index]..self.index[index + 1]])
} else if index < self.index.len() {
Some(&self.data[self.index[index]..])
} else {
None
}
}
/// Get the vector at `index` if there is one
pub fn get_mut(&mut self, index: usize) -> Option<&mut [T]> {
if index + 1 < self.index.len() {
Some(&mut self.data[self.index[index]..self.index[index + 1]])
} else if index < self.index.len() {
Some(&mut self.data[self.index[index]..])
} else {
None
}
}
/// Get the first vector if there is one
pub fn first(&self) -> Option<&[T]> {
if self.index.len() >= 2 {
Some(&self.data[self.index[0]..self.index[1]])
} else if self.index.len() == 1 {
Some(&self.data[self.index[0]..])
} else {
None
}
}
/// Get the first vector if there is one
pub fn first_mut(&mut self) -> Option<&mut [T]> {
if self.index.len() >= 2 {
Some(&mut self.data[self.index[0]..self.index[1]])
} else if self.index.len() == 1 {
Some(&mut self.data[self.index[0]..])
} else {
None
}
}
/// Get the last vector if there is one
pub fn last(&self) -> Option<&[T]> {
let start = *self.index.last()?;
Some(&self.data[start..])
}
/// Get the last vector if there is one
pub fn last_mut(&mut self) -> Option<&mut [T]> {
let start = *self.index.last()?;
Some(&mut self.data[start..])
}
/// Iterate over the inner vector
#[inline(always)]
pub fn iter(&self) -> Vec2dIter<T> {
Vec2dIter {
index: &self.index,
end_index: self.data.len(),
data: &self.data,
}
}
/// Add an empty inner vector
///
/// Elements can be added to that vector using [`Self::push_element()`]
pub fn push_vec(&mut self) {
self.index.push(self.data.len());
}
/// Remove the last vector (if there is one)
///
/// Returns true iff the outer vector was non-empty before removal.
pub fn pop_vec(&mut self) -> bool {
match self.index.pop() {
Some(i) => {
self.data.truncate(i);
true
}
None => false,
}
}
/// Truncate the outer vector to `len` inner vectors
///
/// If `len` is greater or equal to [`self.len()`][Self::len()], this is a
/// no-op.
pub fn truncate(&mut self, len: usize) {
if len < self.index.len() {
self.data.truncate(self.index[len]);
self.index.truncate(len);
}
}
/// Push an element to the last vector
///
/// The vector list must be non-empty.
pub fn push_element(&mut self, element: T) {
debug_assert!(
!self.is_empty(),
"The outer vector is empty. Use push_vec() to create the first vector."
);
self.data.push(element);
}
/// Extend the last vector by the elements from `iter`
///
/// There must be at least one inner vector (i.e.,
/// [`!self.is_empty()`][Self::is_empty()]).
pub fn push_elements(&mut self, iter: impl IntoIterator<Item = T>) {
debug_assert!(
!self.is_empty(),
"The outer vector is empty. Use push_vec() to create the first vector."
);
self.data.extend(iter)
}
/// Get a slice containing all elements, ignoring the boundaries of the
/// inner vectors
#[inline(always)]
pub fn all_elements(&self) -> &[T] {
&self.data
}
/// Get a slice containing all elements, ignoring the boundaries of the
/// inner vectors
#[inline(always)]
pub fn all_elements_mut(&mut self) -> &mut [T] {
&mut self.data
}
}
impl<T> std::ops::Index<usize> for Vec2d<T> {
type Output = [T];
#[track_caller]
#[inline]
fn index(&self, index: usize) -> &[T] {
if index + 1 < self.index.len() {
&self.data[self.index[index]..self.index[index + 1]]
} else {
assert!(index < self.index.len(), "index out of bounds");
&self.data[self.index[index]..]
}
}
}
impl<T> std::ops::IndexMut<usize> for Vec2d<T> {
#[track_caller]
#[inline]
fn index_mut(&mut self, index: usize) -> &mut [T] {
if index + 1 < self.index.len() {
&mut self.data[self.index[index]..self.index[index + 1]]
} else {
assert!(index < self.index.len(), "index out of bounds");
&mut self.data[self.index[index]..]
}
}
}
impl<'a, T: Copy> Extend<&'a [T]> for Vec2d<T> {
fn extend<I: IntoIterator<Item = &'a [T]>>(&mut self, iter: I) {
let it = iter.into_iter();
let min_len = it.size_hint().0;
self.index.reserve(min_len);
self.data.reserve(min_len * 4);
for v in it {
self.index.push(self.data.len());
self.data.extend(v);
}
}
}
impl<'a, T: Copy> FromIterator<&'a [T]> for Vec2d<T> {
#[inline(always)]
fn from_iter<I: IntoIterator<Item = &'a [T]>>(iter: I) -> Self {
let mut vec = Vec2d::new();
vec.extend(iter);
vec
}
}
impl<T: fmt::Debug> fmt::Debug for Vec2d<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
/// Iterator over the inner vectors of a [`Vec2d`]
pub struct Vec2dIter<'a, T> {
/// Remaining `index`
index: &'a [usize],
/// Index of the first vector not referenced by `index` (or `data.len()`)
end_index: usize,
/// Full `data`
data: &'a [T],
}
impl<'a, T> Iterator for Vec2dIter<'a, T> {
type Item = &'a [T];
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
match self.index {
[start, end, ..] => {
self.index = &self.index[1..];
Some(&self.data[*start..*end])
}
[start] => {
self.index = &self.index[1..];
Some(&self.data[*start..self.end_index])
}
[] => None,
}
}
#[inline(always)]
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
// performance optimization
#[inline(always)]
fn count(self) -> usize {
self.len()
}
#[inline(always)]
fn last(self) -> Option<&'a [T]> {
match self.index {
[.., last] => Some(&self.data[*last..self.end_index]),
[] => None,
}
}
#[inline]
fn nth(&mut self, n: usize) -> Option<&'a [T]> {
let len = self.index.len();
if n >= len {
self.index = &self.index[len..];
None
} else {
let start = self.index[n];
self.index = &self.index[n + 1..];
let end = self.index.first().copied().unwrap_or(self.end_index);
Some(&self.data[start..end])
}
}
}
impl<'a, T> FusedIterator for Vec2dIter<'a, T> {}
impl<'a, T> ExactSizeIterator for Vec2dIter<'a, T> {
#[inline(always)]
fn len(&self) -> usize {
self.index.len()
}
}
impl<'a, T> DoubleEndedIterator for Vec2dIter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a [T]> {
match self.index {
[rem @ .., last] => {
self.index = rem;
let res = &self.data[*last..self.end_index];
self.end_index = *last;
Some(res)
}
[] => None,
}
}
// performance optimization
#[inline]
fn nth_back(&mut self, n: usize) -> Option<&'a [T]> {
let len = self.index.len();
if n >= len {
self.index = &self.index[..0];
// ignore `self.end_index`
None
} else {
let end = if n == 0 {
self.end_index
} else {
self.index[len - n]
};
let start = self.index[len - n - 1];
self.end_index = start;
let start = self.index[n];
self.index = &self.index[..len - n - 1];
Some(&self.data[start..end])
}
}
}