orx_concurrent_vec/
vec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use crate::elem::ConcurrentElement;
use crate::ConcurrentSlice;
use crate::{helpers::DefaultPinVec, state::ConcurrentVecState};
use core::ops::RangeBounds;
use core::sync::atomic::Ordering;
use orx_pinned_concurrent_col::PinnedConcurrentCol;
use orx_pinned_vec::IntoConcurrentPinnedVec;

/// A thread-safe, efficient and lock-free vector allowing concurrent grow, read and update operations.
///
/// ConcurrentVec provides safe api for the following three sets of concurrent operations, grow & read & update.
///
/// # Examples
///
/// ```rust
/// use orx_concurrent_vec::*;
/// use std::time::Duration;
///
/// #[derive(Debug, Default)]
/// struct Metric {
///     sum: i32,
///     count: i32,
/// }
/// impl Metric {
///     fn aggregate(self, value: &i32) -> Self {
///         Self {
///             sum: self.sum + value,
///             count: self.count + 1,
///         }
///     }
/// }
///
/// // record measurements in random intervals, roughly every 2ms
/// let measurements = ConcurrentVec::new();
///
/// // collect metrics every 100 milliseconds
/// let metrics = ConcurrentVec::new();
///
/// std::thread::scope(|s| {
///     // thread to store measurements as they arrive
///     s.spawn(|| {
///         for i in 0..100 {
///             std::thread::sleep(Duration::from_millis(i % 5));
///
///             // collect measurements and push to measurements vec
///             measurements.push(i as i32);
///         }
///     });
///
///     // thread to collect metrics every 100 milliseconds
///     s.spawn(|| {
///         for _ in 0..10 {
///             // safely read from measurements vec to compute the metric at that instant
///             let metric =
///                 measurements.fold(Metric::default(), |x, value| x.aggregate(value));
///
///             // push result to metrics
///             metrics.push(metric);
///
///             std::thread::sleep(Duration::from_millis(100));
///         }
///     });
/// });
///
/// let measurements: Vec<_> = measurements.to_vec();
/// let averages: Vec<_> = metrics.to_vec();
///
/// assert_eq!(measurements.len(), 100);
/// assert_eq!(averages.len(), 10);
/// ```
pub struct ConcurrentVec<T, P = DefaultPinVec<T>>
where
    P: IntoConcurrentPinnedVec<ConcurrentElement<T>>,
{
    pub(crate) core: PinnedConcurrentCol<ConcurrentElement<T>, P::ConPinnedVec, ConcurrentVecState>,
}

impl<T, P> ConcurrentVec<T, P>
where
    P: IntoConcurrentPinnedVec<ConcurrentElement<T>>,
{
    /// Consumes the concurrent vec and returns the underlying pinned vector.
    ///
    /// Any `PinnedVec` implementation can be converted to a `ConcurrentVec` using the `From` trait.
    /// Similarly, underlying pinned vector can be obtained by calling the consuming `into_inner` method.
    pub fn into_inner(self) -> P {
        let len = self.core.state().len();
        // # SAFETY: ConcurrentBag only allows to push to the end of the bag, keeping track of the length.
        // Therefore, the underlying pinned vector is in a valid condition at any given time.
        unsafe { self.core.into_inner(len) }
    }

    /// Returns the number of elements which are pushed to the vec,
    /// including the elements which received their reserved locations and are currently being pushed.
    #[inline(always)]
    pub(crate) fn reserved_len(&self) -> usize {
        let len = self.core.state().len();
        let cap = self.core.capacity();
        match len <= cap {
            true => len,
            false => cap,
        }
    }

    /// Returns the number of elements which are pushed to the vec,
    /// excluding the elements which received their reserved locations and are currently being pushed.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let vec = ConcurrentVec::new();
    /// vec.push('a');
    /// vec.push('b');
    ///
    /// assert_eq!(2, vec.len());
    /// ```
    pub fn len(&self) -> usize {
        let len = self.len_written().load(Ordering::Acquire);
        let cap = self.capacity();
        let len_reserved = self.len_reserved().load(Ordering::Relaxed);
        let until = match len_reserved <= cap {
            true => len_reserved,
            false => cap,
        };

        let iter = unsafe { self.core.iter_over_range(len..until) };
        let mut num_pushed = 0;
        for x in iter {
            match x.0.is_some_with_order(Ordering::Relaxed) {
                true => num_pushed += 1,
                false => break,
            }
        }
        let new_len = len + num_pushed;

        self.len_written().fetch_max(new_len, Ordering::Release);

        new_len
    }

    /// Returns whether or not the bag is empty.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::ConcurrentVec;
    ///
    /// let mut vec = ConcurrentVec::new();
    ///
    /// assert!(vec.is_empty());
    ///
    /// vec.push('a');
    /// vec.push('b');
    ///
    /// assert!(!vec.is_empty());
    ///
    /// vec.clear();
    /// assert!(vec.is_empty());
    /// ```
    #[inline(always)]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the current allocated capacity of the collection.
    pub fn capacity(&self) -> usize {
        self.core.capacity()
    }

    /// Returns maximum possible capacity that the collection can reach without calling [`ConcurrentVec::reserve_maximum_capacity`].
    ///
    /// Importantly note that maximum capacity does not correspond to the allocated memory.
    pub fn maximum_capacity(&self) -> usize {
        self.core.maximum_capacity()
    }

    /// Creates and returns a slice of a `ConcurrentVec` or another `ConcurrentSlice`.
    ///
    /// Concurrent counterpart of a slice for a standard vec or an array.
    ///
    /// A `ConcurrentSlice` provides a focused / restricted view on a slice of the vector.
    /// It provides all methods of the concurrent vector except for the ones which
    /// grow the size of the vector.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3, 4]);
    ///
    /// let slice = vec.slice(1..);
    /// assert_eq!(&slice, &[1, 2, 3, 4]);
    ///
    /// let slice = vec.slice(1..4);
    /// assert_eq!(&slice, &[1, 2, 3]);
    ///
    /// let slice = vec.slice(..3);
    /// assert_eq!(&slice, &[0, 1, 2]);
    ///
    /// let slice = vec.slice(3..10);
    /// assert_eq!(&slice, &[3, 4]);
    ///
    /// let slice = vec.slice(7..9);
    /// assert_eq!(&slice, &[]);
    ///
    /// // slices can also be sliced
    ///
    /// let slice = vec.slice(1..=4);
    /// assert_eq!(&slice, &[1, 2, 3, 4]);
    ///
    /// let sub_slice = slice.slice(1..3);
    /// assert_eq!(&sub_slice, &[2, 3]);
    /// ```
    pub fn slice<R: RangeBounds<usize>>(&self, range: R) -> ConcurrentSlice<T, P> {
        let [a, b] = orx_pinned_vec::utils::slice::vec_range_limits(&range, Some(self.len()));
        let len = b - a;
        ConcurrentSlice::new(self, a, len)
    }

    /// Creates and returns a slice of all elements of the vec.
    ///
    /// Note that `vec.as_slice()` is equivalent to `vec.slice(..)`.
    ///
    /// A `ConcurrentSlice` provides a focused / restricted view on a slice of the vector.
    /// It provides all methods of the concurrent vector except for the ones which
    /// grow the size of the vector.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3, 4]);
    ///
    /// let slice = vec.as_slice();
    /// assert_eq!(&slice, &[0, 1, 2, 3, 4]);
    /// ```
    pub fn as_slice(&self) -> ConcurrentSlice<T, P> {
        self.slice(0..self.len())
    }

    /// Returns the element at the `i`-th position;
    /// returns None if the index is out of bounds.
    ///
    /// The safe api of the `ConcurrentVec` never gives out `&T` or `&mut T` references.
    /// Instead, returns a [`ConcurrentElement`] which provides thread safe concurrent read and write
    /// methods on the element.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3]);
    ///
    /// assert!(vec.get(4).is_none());
    ///
    /// let cloned = vec.get(2).map(|elem| elem.cloned());
    /// assert_eq!(cloned, Some(2));
    ///
    /// let double = vec.get(2).map(|elem| elem.map(|x| x * 2));
    /// assert_eq!(double, Some(4));
    ///
    /// let elem = vec.get(2).unwrap();
    /// assert_eq!(elem, &2);
    ///
    /// elem.set(42);
    /// assert_eq!(elem, &42);
    ///
    /// elem.update(|x| *x = *x / 2);
    /// assert_eq!(elem, &21);
    ///
    /// let old = elem.replace(7);
    /// assert_eq!(old, 21);
    /// assert_eq!(elem, &7);
    ///
    /// assert_eq!(&vec, &[0, 1, 7, 3]);
    /// ```
    #[inline(always)]
    pub fn get(&self, i: usize) -> Option<&ConcurrentElement<T>> {
        match i < self.len() {
            true => unsafe { self.core.get(i) },
            false => None,
        }
    }

    /// Returns the cloned value of element at the `i`-th position;
    /// returns None if the index is out of bounds.
    ///
    /// Note that `vec.get_cloned(i)` is short-hand for `vec.get(i).map(|elem| elem.cloned())`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3]);
    ///
    /// assert_eq!(vec.get_cloned(2), Some(2));
    /// assert_eq!(vec.get_cloned(4), None);
    /// ```
    #[inline(always)]
    pub fn get_cloned(&self, i: usize) -> Option<T>
    where
        T: Clone,
    {
        match i < self.reserved_len() {
            true => unsafe { self.core.get(i) }.and_then(|elem| elem.0.clone_into_option()),
            false => None,
        }
    }

    /// Returns the copied value of element at the `i`-th position;
    /// returns None if the index is out of bounds.
    ///
    /// Note that `vec.get_copied(i)` is short-hand for `vec.get(i).map(|elem| elem.copied())`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3]);
    ///
    /// assert_eq!(vec.get_copied(2), Some(2));
    /// assert_eq!(vec.get_copied(4), None);
    /// ```
    #[inline(always)]
    pub fn get_copied(&self, i: usize) -> Option<T>
    where
        T: Copy,
    {
        self.get_cloned(i)
    }

    /// Returns an iterator to the elements of the vec.
    ///
    /// The safe api of the `ConcurrentVec` never gives out `&T` or `&mut T` references.
    /// Instead, the iterator yields [`ConcurrentElement`] which provides thread safe concurrent read and write
    /// methods on the element.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::from_iter([0, 1, 2, 3]);
    ///
    /// // read - map
    ///
    /// let doubles: Vec<_> = vec.iter().map(|elem| elem.map(|x| x * 2)).collect();
    /// assert_eq!(doubles, [0, 2, 4, 6]);
    ///
    /// // read - reduce
    ///
    /// let sum: i32 = vec.iter().map(|elem| elem.cloned()).sum();
    /// assert_eq!(sum, 6);
    ///
    /// // mutate
    ///
    /// for (i, elem) in vec.iter().enumerate() {
    ///     match i {
    ///         2 => elem.set(42),
    ///         _ => elem.update(|x| *x *= 2),
    ///     }
    /// }
    /// assert_eq!(&vec, &[0, 2, 42, 6]);
    ///
    /// let old_vals: Vec<_> = vec.iter().map(|elem| elem.replace(7)).collect();
    /// assert_eq!(&old_vals, &[0, 2, 42, 6]);
    /// assert_eq!(&vec, &[7, 7, 7, 7]);
    /// ```
    pub fn iter(&self) -> impl Iterator<Item = &ConcurrentElement<T>> {
        unsafe { self.core.iter(self.len()) }
    }

    /// Returns an iterator to cloned values of the elements of the vec.
    ///
    /// Note that `vec.iter_cloned()` is short-hand for `vec.iter().map(|elem| elem.cloned())`.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_concurrent_vec::*;
    ///
    /// let vec = ConcurrentVec::new();
    /// vec.extend([42, 7]);
    ///
    /// let mut iter = vec.iter_cloned();
    ///
    /// assert_eq!(iter.next(), Some(42));
    /// assert_eq!(iter.next(), Some(7));
    /// assert_eq!(iter.next(), None);
    ///
    /// let sum: i32 = vec.iter_cloned().sum();
    /// assert_eq!(sum, 49);
    /// ```
    pub fn iter_cloned(&self) -> impl Iterator<Item = T> + '_
    where
        T: Clone,
    {
        unsafe { self.core.iter(self.len()) }.map(|elem| elem.cloned())
    }
}

// HELPERS

impl<T, P> ConcurrentVec<T, P>
where
    P: IntoConcurrentPinnedVec<ConcurrentElement<T>>,
{
    pub(crate) fn new_from_pinned(pinned_vec: P) -> Self {
        Self {
            core: PinnedConcurrentCol::new_from_pinned(pinned_vec),
        }
    }
}

unsafe impl<T: Sync, P: IntoConcurrentPinnedVec<ConcurrentElement<T>>> Sync
    for ConcurrentVec<T, P>
{
}

unsafe impl<T: Send, P: IntoConcurrentPinnedVec<ConcurrentElement<T>>> Send
    for ConcurrentVec<T, P>
{
}