optimization_solvers/quasi_newton/
dfp.rs1use super::*;
2
3#[derive(derive_getters::Getters)]
4pub struct DFP {
5 approx_inv_hessian: DMatrix<Floating>,
6 x: DVector<Floating>,
7 k: usize,
8 tol: Floating,
9 s_norm: Option<Floating>,
10 y_norm: Option<Floating>,
11 identity: DMatrix<Floating>,
12}
13
14impl DFP {
15 pub fn next_iterate_too_close(&self) -> bool {
16 match self.s_norm() {
17 Some(s) => s < &self.tol,
18 None => false,
19 }
20 }
21 pub fn gradient_next_iterate_too_close(&self) -> bool {
22 match self.y_norm() {
23 Some(y) => y < &self.tol,
24 None => false,
25 }
26 }
27 pub fn new(tol: Floating, x0: DVector<Floating>) -> Self {
28 let n = x0.len();
29 let identity = DMatrix::identity(n, n);
30 DFP {
31 approx_inv_hessian: identity.clone(),
32 x: x0,
33 k: 0,
34 tol,
35 s_norm: None,
36 y_norm: None,
37 identity,
38 }
39 }
40}
41
42impl ComputeDirection for DFP {
43 fn compute_direction(
44 &mut self,
45 eval: &FuncEvalMultivariate,
46 ) -> Result<DVector<Floating>, SolverError> {
47 Ok(-&self.approx_inv_hessian * eval.g())
48 }
49}
50
51impl LineSearchSolver for DFP {
52 fn k(&self) -> &usize {
53 &self.k
54 }
55 fn xk(&self) -> &DVector<Floating> {
56 &self.x
57 }
58 fn xk_mut(&mut self) -> &mut DVector<Floating> {
59 &mut self.x
60 }
61 fn k_mut(&mut self) -> &mut usize {
62 &mut self.k
63 }
64 fn has_converged(&self, eval: &FuncEvalMultivariate) -> bool {
65 if self.next_iterate_too_close() {
68 warn!(target: "DFP","Minimization completed: next iterate too close");
69 true
70 } else if self.gradient_next_iterate_too_close() {
71 warn!(target: "DFP","Minimization completed: gradient next iterate too close");
72 true
73 } else {
74 eval.g().norm() < self.tol
75 }
76 }
77
78 fn update_next_iterate<LS: LineSearch>(
79 &mut self,
80 line_search: &mut LS,
81 eval_x_k: &FuncEvalMultivariate,
82 oracle: &mut impl FnMut(&DVector<Floating>) -> FuncEvalMultivariate,
83 direction: &DVector<Floating>,
84 max_iter_line_search: usize,
85 ) -> Result<(), SolverError> {
86 let step = line_search.compute_step_len(
87 self.xk(),
88 eval_x_k,
89 direction,
90 oracle,
91 max_iter_line_search,
92 );
93
94 let next_iterate = self.xk() + step * direction;
95
96 let s = &next_iterate - &self.x;
97 self.s_norm = Some(s.norm());
98 let y = oracle(&next_iterate).g() - eval_x_k.g();
99 self.y_norm = Some(y.norm());
100
101 *self.xk_mut() = next_iterate;
103
104 if self.next_iterate_too_close() {
107 return Ok(());
108 }
109
110 if self.gradient_next_iterate_too_close() {
111 return Ok(());
112 }
113
114 let ss = &s * s.transpose();
116 let yy = &y * y.transpose();
117 let sy = s.dot(&y);
118 let yhy = y.dot(&(&self.approx_inv_hessian * &y));
119 self.approx_inv_hessian +=
120 ss / sy - (&self.approx_inv_hessian * &yy * &self.approx_inv_hessian) / yhy;
121
122 Ok(())
123 }
124}
125#[cfg(test)]
126mod test_dfp {
127 use super::*;
128 #[test]
129 fn test_outer() {
130 let a = DVector::from_vec(vec![1.0, 2.0]);
131 let b = DVector::from_vec(vec![3.0, 4.0]);
132 let c = a * b.transpose();
133 println!("{:?}", c);
134 }
135
136 #[test]
137 pub fn dfp_morethuente() {
138 std::env::set_var("RUST_LOG", "info");
139
140 let _ = Tracer::default()
141 .with_stdout_layer(Some(LogFormat::Normal))
142 .build();
143 let gamma = 1.;
144 let f_and_g = |x: &DVector<Floating>| -> FuncEvalMultivariate {
145 let f = 0.5 * ((x[0] + 1.).powi(2) + gamma * (x[1] - 1.).powi(2));
146 let g = DVector::from(vec![x[0] + 1., gamma * (x[1] - 1.)]);
147 (f, g).into()
148 };
149
150 let mut ls = MoreThuente::default();
153
154 let tol = 1e-12;
156 let x_0 = DVector::from(vec![180.0, 152.0]);
157 let mut gd = DFP::new(tol, x_0);
158
159 let max_iter_solver = 1000;
161 let max_iter_line_search = 100000;
162
163 gd.minimize(
164 &mut ls,
165 f_and_g,
166 max_iter_solver,
167 max_iter_line_search,
168 None,
169 )
170 .unwrap();
171
172 println!("Iterate: {:?}", gd.xk());
173
174 let eval = f_and_g(gd.xk());
175 println!("Function eval: {:?}", eval);
176 println!("Gradient norm: {:?}", eval.g().norm());
177 println!("tol: {:?}", tol);
178
179 let convergence = gd.has_converged(&eval);
180 println!("Convergence: {:?}", convergence);
181
182 assert!((eval.f() - 0.0).abs() < 1e-6);
183 }
184
185 #[test]
186 pub fn dfp_backtracking() {
187 std::env::set_var("RUST_LOG", "info");
188
189 let _ = Tracer::default()
190 .with_stdout_layer(Some(LogFormat::Normal))
191 .build();
192 let gamma = 1.;
193 let f_and_g = |x: &DVector<Floating>| -> FuncEvalMultivariate {
194 let f = 0.5 * ((x[0] + 1.).powi(2) + gamma * (x[1] - 1.).powi(2));
195 let g = DVector::from(vec![x[0] + 1., gamma * (x[1] - 1.)]);
196 (f, g).into()
197 };
198
199 let alpha = 1e-4;
201 let beta = 0.5; let mut ls = BackTracking::new(alpha, beta);
204
205 let tol = 1e-12;
207 let x_0 = DVector::from(vec![180.0, 152.0]);
208 let mut gd = DFP::new(tol, x_0);
209
210 let max_iter_solver = 1000;
212 let max_iter_line_search = 100000;
213
214 gd.minimize(
215 &mut ls,
216 f_and_g,
217 max_iter_solver,
218 max_iter_line_search,
219 None,
220 )
221 .unwrap();
222
223 println!("Iterate: {:?}", gd.xk());
224
225 let eval = f_and_g(gd.xk());
226 println!("Function eval: {:?}", eval);
227 println!("Gradient norm: {:?}", eval.g().norm());
228 println!("tol: {:?}", tol);
229
230 let convergence = gd.has_converged(&eval);
231 println!("Convergence: {:?}", convergence);
232
233 assert!((eval.f() - 0.0).abs() < 1e-6);
234 }
235}