1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
use crate::Matrix;
use std::error::Error;
impl<T> Matrix<T>
where T: std::ops::Mul<Output=T>
+ std::ops::Sub<Output=T>
+ Clone
+ std::cmp::PartialOrd
+ std::ops::Div<Output=T>
+ std::ops::Add<Output=T> {
pub fn inverse(&self, zero: T, one: T) -> Result<Matrix<T>, Box<dyn Error>> {
let (rows, columns) = self.dimensions()?;
if rows == columns {
let determinant = self.determinant()?;
if determinant != zero {
let mut a = self.clone();
let identity = Matrix::identity(rows, zero.clone(), one.clone());
let mut inverse = identity.clone();
for c in 0..columns {
if self.0[c][c] != one {
if self.0[c][c] != zero {
inverse.0[c] = inverse.0[c]
.iter()
.map(|x| x.clone() / a.0[c][c].clone())
.collect();
a.0[c] = a.0[c]
.iter()
.map(|x| x.clone() / a.0[c][c].clone())
.collect();
} else {
inverse.0[c] = inverse.0[c]
.iter()
.map(|x| x.clone() + one.clone())
.collect();
a.0[c] = a.0[c]
.iter()
.map(|x| x.clone() + one.clone())
.collect();
}
}
for r in 0..rows {
if c != r {
inverse.0[r] = inverse.0[r]
.iter()
.enumerate()
.map(|(i,x)| x.clone() - (a.0[r][c].clone() * inverse.0[c][i].clone()))
.collect();
a.0[r] = a.0[r]
.iter()
.enumerate()
.map(|(i,x)| x.clone() - (a.0[r][c].clone() * a.0[c][i].clone()))
.collect();
}
}
}
if (self.clone() * inverse.clone())? == identity {
Ok(inverse)
} else {
Err("Cannot find inverse!")?
}
} else {
Err("Matrix is not invertible!")?
}
} else {
Err("Non Square matrix!")?
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_matrix_inverse() {
let a = Matrix(vec![vec![1,2], vec![1,3]]);
let a_inverse = Matrix(vec![vec![3,-2], vec![-1,1]]);
assert_eq!(a.inverse(0,1).unwrap(), a_inverse);
}
}