opendp-ffi 0.4.0

Foreign function interfaces for the OpenDP library.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
use std::collections::HashMap;
use std::fs::File;
use std::io::Read;
use std::path::PathBuf;

use indexmap::map::IndexMap;
use serde_json::Value;

use crate::{Argument, Function, Module, RuntimeType};

/// Top-level function to generate python bindings, including all modules.
pub fn generate_bindings(modules: IndexMap<String, Module>) -> IndexMap<PathBuf, String> {
    let mut contents = String::new();
    File::open("build/python_typemap.json")
        .expect("python typemap not found")
        .read_to_string(&mut contents)
        .expect("failed reading python typemap json");
    let typemap: HashMap<String, String> = serde_json::from_str(&contents).unwrap();

    let mut contents = String::new();
    File::open("build/type_hierarchy.json")
        .expect("type hierarchy not found")
        .read_to_string(&mut contents)
        .expect("failed reading type hierarchy json");
    let hierarchy: HashMap<String, Vec<String>> = serde_json::from_str(&contents).unwrap();

    modules.into_iter()
        .map(|(module_name, module)| (
            PathBuf::from(format!("{}.py", if module_name == "data".to_string() {"_data".to_string()} else {module_name.clone()})),
            generate_module(module_name, module, &typemap, &hierarchy)
        ))
        .collect()
}

/// Generates all code for an opendp python module.
/// Each call corresponds to one python file.
fn generate_module(
    module_name: String,
    module: Module,
    typemap: &HashMap<String, String>,
    hierarchy: &HashMap<String, Vec<String>>,
) -> String {
    let all = module.keys().map(|v| format!("    \"{}\"", v)).collect::<Vec<_>>().join(",\n");
    let functions = module.into_iter()
        .map(|(func_name, func)| generate_function(&module_name, &func_name, &func, typemap, hierarchy))
        .collect::<Vec<String>>()
        .join("\n");

    format!(r#"# Auto-generated. Do not edit.
from opendp._convert import *
from opendp._lib import *
from opendp.mod import *
from opendp.typing import *

__all__ = [
{all}
]

{functions}"#, all = all, functions = functions)
}

fn generate_function(
    module_name: &String,
    func_name: &String, func: &Function,
    typemap: &HashMap<String, String>,
    hierarchy: &HashMap<String, Vec<String>>,
) -> String {
    println!("generating: {}", func_name);
    let mut args = func.args.iter()
        .map(|arg| generate_input_argument(arg, func, hierarchy))
        .collect::<Vec<_>>();
    args.sort_by(|(_, l_is_default), (_, r_is_default)| l_is_default.cmp(r_is_default));
    let args = args.into_iter().map(|v| v.0).collect::<Vec<_>>().join(",\n");

    let sig_return = func.ret.python_type_hint(hierarchy)
        .map(|v| format!(" -> {}", v))
        .unwrap_or_else(String::new);

    format!(r#"
def {func_name}(
{args}
){sig_return}:
{docstring}
{body}
"#,
            func_name = func_name,
            args = crate::indent(args),
            sig_return = sig_return,
            docstring = crate::indent(generate_docstring(&func, func_name, hierarchy)),
            body = crate::indent(generate_body(module_name, func_name, &func, typemap)))
}


impl Argument {
    /// retrieve the python ctype corresponding to the type inside FfiResult<*>
    fn python_unwrapped_ctype(&self, typemap: &HashMap<String, String>) -> String {
        assert_eq!(&self.c_type()[..9], "FfiResult");
        typemap.get(&self.c_type()[10..self.c_type().len() - 1]).unwrap().clone()
    }
    /// retrieve the python ctypes corresponding to the origin of a type (subtypes/args omitted)
    fn python_origin_ctype(&self, typemap: &HashMap<String, String>) -> String {
        typemap.get(&self.c_type_origin()).cloned().expect("ctype not recognized in typemap")
    }
    fn python_type_hint(&self, hierarchy: &HashMap<String, Vec<String>>) -> Option<String> {
        if self.hint.is_some() {
            return self.hint.clone()
        }
        if self.is_type {
            return Some("RuntimeTypeDescriptor".to_string())
        }
        self.c_type.clone().and_then(|mut c_type| {
            if c_type.starts_with("FfiResult<") {
                c_type = c_type[10..c_type.len() - 1].to_string();
            }
            if c_type.ends_with("AnyTransformation *") {
                return Some("Transformation".to_string())
            }
            if c_type.ends_with("AnyMeasurement *") {
                return Some("Measurement".to_string())
            }
            if c_type.ends_with("AnyObject *") {
                // py_to_object converts Any to AnyObjectPtr
                return Some("Any".to_string())
            }
            if c_type.ends_with("FfiSlice *") {
                // py_to_c converts Any to FfiSlicePtr
                return Some("Any".to_string())
            }

            hierarchy.iter()
                .find(|(_k, members)| members.contains(&c_type))
                .and_then(|(k, _)| Some(match k.as_str() {
                    k if k == "integer" => "int",
                    k if k == "float" => "float",
                    k if k == "string" => "str",
                    k if k == "bool" => "bool",
                    _ => return None
                }))
                .map(|v| v.to_string())
        })
    }
}

/// generate an input argument, complete with name, hint and default.
/// also returns a bool to make it possible to move arguments with defaults to the end of the signature.
fn generate_input_argument(arg: &Argument, func: &Function, hierarchy: &HashMap<String, Vec<String>>) -> (String, bool) {
    let default = if let Some(default) = &arg.default {
        Some(match default {
            Value::Null => "None".to_string(),
            Value::Bool(value) => if *value {"True"} else {"False"}.to_string(),
            Value::Number(number) => number.to_string(),
            Value::String(string) => format!("\"{}\"", string),
            Value::Array(array) => format!("{:?}", array),
            Value::Object(_) => unimplemented!()
        })
    } else {
        // let default value be None if it is a type arg and there is a public example
        generate_public_example(func, arg).map(|_| "None".to_string())
    };
    (format!(
        r#"{name}{hint}{default}"#,
        name = arg.name(),
        hint = arg.python_type_hint(hierarchy)
            .map(|hint| format!(": {}", hint))
            .unwrap_or_else(String::new),
        default = default.as_ref()
            .map(|default| format!(" = {}", default))
            .unwrap_or_else(String::new)), default.is_some())
}

/// generate a docstring for the current function, with the function description, args, and return
/// in Sphinx format: https://sphinx-rtd-tutorial.readthedocs.io/en/latest/docstrings.html
fn generate_docstring(func: &Function, func_name: &String, hierarchy: &HashMap<String, Vec<String>>) -> String {
    let mut description = func.description.as_ref()
        .map(|v| format!("{}\n", v))
        .unwrap_or_else(String::new);
    if let Some(proof) = &func.proof {
        description = format!(r#"{description}

`This constructor is supported by the linked proof. <{proof}>`_
"#,
        description=description,
        proof=proof);
    }

    let doc_args = func.args.iter()
        .map(|v| generate_docstring_arg(v, hierarchy))
        .collect::<Vec<String>>()
        .join("\n");

    let raises = format!(
        r#":raises AssertionError: if an argument's type differs from the expected type
:raises UnknownTypeError: if a type-argument fails to parse{opendp_raise}"#,
        opendp_raise = if func.ret.c_type_origin() == "FfiResult" {
            "\n:raises OpenDPException: packaged error from the core OpenDP library"
        } else { "" });

    format!(r#""""{description}
{doc_args}{ret_arg}
{raises}
""""#,
            description = description,
            doc_args = doc_args,
            ret_arg = generate_docstring_return_arg(&func.ret, func_name, hierarchy),
            raises = raises)
}

/// generate the part of a docstring corresponding to an argument
fn generate_docstring_arg(arg: &Argument, hierarchy: &HashMap<String, Vec<String>>) -> String {
    let name = arg.name.clone().unwrap_or_else(String::new);
    format!(r#":param {name}: {description}{type_}"#,
            name = name,
            type_ = arg.python_type_hint(hierarchy)
                .map(|v| format!("\n:type {}: {}", name, v))
                .unwrap_or_else(String::new),
            description = arg.description.clone().unwrap_or_else(String::new))
}

/// generate the part of a docstring corresponding to a return argument
fn generate_docstring_return_arg(arg: &Argument, func_name: &String, hierarchy: &HashMap<String, Vec<String>>) -> String {
    let mut ret = Vec::new();
    if let Some(description) = &arg.description {
        ret.push(format!(":return: {description}", description = description));
    } else if func_name.starts_with("make_") {
        ret.push(format!(":return: A {name} step.", name = func_name.replace("make_", "")))
    }
    if let Some(type_) = arg.python_type_hint(hierarchy) {
        ret.push(format!(":rtype: {type_}", type_ = type_));
    }
    if !ret.is_empty() { ret.insert(0, String::new()); }
    ret.join("\n")
}

/// generate the function body, consisting of type args formatters, data converters, and the call
/// - type arg formatters make every type arg a RuntimeType, and construct derived RuntimeTypes
/// - data converters convert from python to c representations according to the formatted type args
/// - the call constructs and retrieves the ffi function name, sets ctypes,
///     makes the call, handles errors, and converts the response to python
fn generate_body(
    module_name: &String,
    func_name: &String, func: &Function,
    typemap: &HashMap<String, String>,
) -> String {
    format!(r#"{flag_checker}{type_arg_formatter}
{data_converter}
{make_call}"#,
            flag_checker = generate_flag_check(&func.features),
            type_arg_formatter = generate_type_arg_formatter(func),
            data_converter = generate_data_converter(func, typemap),
            make_call = generate_call(module_name, func_name, func, typemap))
}

// generate code that checks that a set of feature flags are enabled
fn generate_flag_check(features: &Vec<String>) -> String {
    if features.is_empty() {
        String::default()
    } else {
        format!("assert_features({})\n\n", features.iter()
            .map(|f| format!("\"{}\"", f))
            .collect::<Vec<_>>()
            .join(", "))
    }
}

/// generate code that provides an example of the type of the type_arg
fn generate_public_example(func: &Function, type_arg: &Argument) -> Option<String> {
    // the json has supplied explicit instructions to find an example
    if let Some(example) = &type_arg.example {
        return Some(example.to_python())
    }

    let type_name = type_arg.name.as_ref().unwrap();

    // rewrite args to remove references to derived types
    let mut args = func.args.clone();
    args.iter_mut()
        .filter(|arg| arg.rust_type.is_some())
        .for_each(|arg| arg.rust_type = Some(crate::flatten_runtime_type(
            arg.rust_type.as_ref().unwrap(), &func.derived_types)));

    // code generation
    args.iter()
        .filter_map(|arg| match &arg.rust_type {
            Some(RuntimeType::Name(name)) => (name == type_name).then(|| arg.name()),
            Some(RuntimeType::Raise { origin, args }) =>
                if origin == "Vec" {
                    if let RuntimeType::Name(arg_name) = &*args[0] {
                        if arg_name == type_name {
                            Some(format!("next(iter({name}), None)", name = arg.name()))
                        } else { None }
                    } else { None }
                } else { None }
            _ => None
        })
        .next()
}

/// the generated code ensures every type arg is a RuntimeType, and constructs derived RuntimeTypes
fn generate_type_arg_formatter(func: &Function) -> String {
    let type_arg_formatter: String = func.args.iter()
        .filter(|arg| arg.is_type)
        .map(|type_arg| {
            let name = type_arg.name.as_ref().expect("type args must be named");
            let generics = if type_arg.generics.is_empty() {
                "".to_string()
            } else {
                format!(", generics=[{}]", type_arg.generics.iter()
                    .map(|v| format!("\"{}\"", v))
                    .collect::<Vec<_>>().join(", "))
            };
            if let Some(example) = generate_public_example(func, type_arg) {
                format!(r#"{name} = RuntimeType.parse_or_infer(type_name={name}, public_example={example}{generics})"#,
                        name = name, example = example, generics = generics)
            } else {
                format!(r#"{name} = RuntimeType.parse(type_name={name}{generics})"#,
                        name = name, generics = generics)
            }
        })
        // additional types that are constructed by introspecting existing types
        .chain(func.derived_types.iter()
            .map(|type_spec|
                format!("{name} = {derivation}",
                        name = type_spec.name(),
                        derivation = type_spec.rust_type.as_ref().unwrap().to_python())))
        .chain(func.args.iter()
            .filter(|arg| !arg.generics.is_empty())
            .map(|arg|
                format!("{name} = {name}.substitute({args})",
                        name=arg.name.as_ref().unwrap(),
                        args=arg.generics.iter()
                            .map(|generic| format!("{generic}={generic}", generic = generic))
                            .collect::<Vec<_>>().join(", "))))
        .collect::<Vec<_>>()
        .join("\n");


    if type_arg_formatter.is_empty() {
        "# No type arguments to standardize.".to_string()
    } else {
        format!(r#"# Standardize type arguments.
{formatter}
"#, formatter = type_arg_formatter)
    }
}

impl RuntimeType {
    /// translate the abstract derived_types info into python RuntimeType constructors
    fn to_python(&self) -> String {
        match self {
            Self::Name(name) =>
                name.clone(),
            Self::Lower { root: arg, index } =>
                format!("{}.args[{}]", arg.to_python(), index),
            Self::Function { function, params } =>
                format!("{function}({params})", function = function, params = params.iter()
                    .map(|v| v.to_python())
                    .collect::<Vec<_>>().join(", ")),
            Self::Raise { origin, args } =>
                format!("RuntimeType(origin='{origin}', args=[{args}])",
                        origin = origin,
                        args = args.iter().map(|arg| arg.to_python()).collect::<Vec<_>>().join(", ")),
        }
    }
}

/// the generated code ensures that all arguments have been converted to their c representations
fn generate_data_converter(func: &Function, typemap: &HashMap<String, String>) -> String {
    let data_converter: String = func.args.iter()
        .filter(|arg| !arg.do_not_convert)
        .map(|arg| format!(
            r#"{name} = py_to_c({name}, c_type={c_type}{rust_type_arg})"#,
            name = arg.name(),
            c_type = arg.python_origin_ctype(typemap),
            rust_type_arg = arg.rust_type.as_ref()
                .map(|r_type| format!(", type_name={}", r_type.to_python()))
                .unwrap_or_else(|| "".to_string())))
        .collect::<Vec<_>>()
        .join("\n");

    if data_converter.is_empty() {
        "# No arguments to convert to c types.".to_string()
    } else {
        format!(r#"# Convert arguments to c types.
{converter}
"#, converter = data_converter)
    }
}

/// the generated code
/// - constructs and retrieves the ffi function name
/// - sets argtypes and restype on the ctypes function
/// - makes the call assuming that the arguments have been converted to C
/// - handles errors
/// - converts the response to python
fn generate_call(
    module_name: &String,
    func_name: &String, func: &Function,
    typemap: &HashMap<String, String>,
) -> String {
    let mut call = format!(r#"function({args})"#,
                           args = func.args.iter()
                               // .chain(func.type_args.iter())
                               .map(|arg| arg.name())
                               .collect::<Vec<_>>().join(", "));
    let ctype_restype = func.ret.python_origin_ctype(typemap);
    if ctype_restype == "FfiResult" {
        call = format!(r#"unwrap({call}, {restype})"#,
                       call = call, restype = func.ret.python_unwrapped_ctype(typemap))
    }
    if !func.ret.do_not_convert { call = format!(r#"c_to_py({})"#, call) }
    format!(r#"# Call library function.
function = lib.opendp_{module_name}__{func_name}
function.argtypes = [{ctype_args}]
function.restype = {ctype_restype}

return {call}"#,
            module_name = module_name,
            func_name = func_name,
            ctype_args = func.args.iter()
                .map(|v| v.python_origin_ctype(typemap))
                .collect::<Vec<_>>().join(", "),
            ctype_restype = ctype_restype,
            call = call)
}