pub mod optflow {
	//! # Optical Flow Algorithms
	//!
	//! Dense optical flow algorithms compute motion for each point:
	//!
	//! - cv::optflow::calcOpticalFlowSF
	//! - cv::optflow::createOptFlow_DeepFlow
	//!
	//! Motion templates is alternative technique for detecting motion and computing its direction.
	//! See samples/motempl.py.
	//!
	//! - cv::motempl::updateMotionHistory
	//! - cv::motempl::calcMotionGradient
	//! - cv::motempl::calcGlobalOrientation
	//! - cv::motempl::segmentMotion
	//!
	//! Functions reading and writing .flo files in "Middlebury" format, see: <http://vision.middlebury.edu/flow/code/flow-code/README.txt>
	//!
	//! - cv::optflow::readOpticalFlow
	//! - cv::optflow::writeOpticalFlow
	use crate::mod_prelude::*;
	use crate::{core, sys, types};
	pub mod prelude {
		pub use super::{DenseRLOFOpticalFlowTrait, DenseRLOFOpticalFlowTraitConst, DualTVL1OpticalFlowTrait, DualTVL1OpticalFlowTraitConst, GPCDetailsTrait, GPCDetailsTraitConst, GPCPatchDescriptorTrait, GPCPatchDescriptorTraitConst, GPCPatchSampleTrait, GPCPatchSampleTraitConst, GPCTrainingSamplesTrait, GPCTrainingSamplesTraitConst, GPCTreeTrait, GPCTreeTraitConst, OpticalFlowPCAFlowTrait, OpticalFlowPCAFlowTraitConst, PCAPriorTrait, PCAPriorTraitConst, RLOFOpticalFlowParameterTrait, RLOFOpticalFlowParameterTraitConst, SparseRLOFOpticalFlowTrait, SparseRLOFOpticalFlowTraitConst};
	}
	/// Better quality but slow
	pub const GPC_DESCRIPTOR_DCT: i32 = 0;
	/// Worse quality but much faster
	pub const GPC_DESCRIPTOR_WHT: i32 = 1;
	/// <  Edge-preserving interpolation using ximgproc::EdgeAwareInterpolator, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
	pub const INTERP_EPIC: i32 = 1;
	/// <  Fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016)
	pub const INTERP_GEO: i32 = 0;
	/// <  SLIC based robust interpolation using ximgproc::RICInterpolator, see [Hu2017](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Hu2017).
	pub const INTERP_RIC: i32 = 2;
	/// <  Apply a adaptive support region obtained by cross-based segmentation
	/// as described in [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	pub const SR_CROSS: i32 = 1;
	/// <  Apply a constant support region
	pub const SR_FIXED: i32 = 0;
	/// < Apply optimized iterative refinement based bilinear equation solutions
	/// as described in [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013)
	pub const ST_BILINEAR: i32 = 1;
	/// < Apply standard iterative refinement
	pub const ST_STANDART: i32 = 0;
	/// Descriptor types for the Global Patch Collider.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum GPCDescType {
		/// Better quality but slow
		GPC_DESCRIPTOR_DCT = 0,
		/// Worse quality but much faster
		GPC_DESCRIPTOR_WHT = 1,
	}
	impl TryFrom<i32> for GPCDescType {
		type Error = crate::Error;
		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::GPC_DESCRIPTOR_DCT),
				1 => Ok(Self::GPC_DESCRIPTOR_WHT),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::optflow::GPCDescType"))),
			}
		}
	}
	opencv_type_enum! { crate::optflow::GPCDescType }
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum InterpolationType {
		/// <  Fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016)
		INTERP_GEO = 0,
		/// <  Edge-preserving interpolation using ximgproc::EdgeAwareInterpolator, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
		INTERP_EPIC = 1,
		/// <  SLIC based robust interpolation using ximgproc::RICInterpolator, see [Hu2017](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Hu2017).
		INTERP_RIC = 2,
	}
	impl TryFrom<i32> for InterpolationType {
		type Error = crate::Error;
		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::INTERP_GEO),
				1 => Ok(Self::INTERP_EPIC),
				2 => Ok(Self::INTERP_RIC),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::optflow::InterpolationType"))),
			}
		}
	}
	opencv_type_enum! { crate::optflow::InterpolationType }
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum SolverType {
		/// < Apply standard iterative refinement
		ST_STANDART = 0,
		/// < Apply optimized iterative refinement based bilinear equation solutions
		/// as described in [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013)
		ST_BILINEAR = 1,
	}
	impl TryFrom<i32> for SolverType {
		type Error = crate::Error;
		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::ST_STANDART),
				1 => Ok(Self::ST_BILINEAR),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::optflow::SolverType"))),
			}
		}
	}
	opencv_type_enum! { crate::optflow::SolverType }
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq, Eq)]
	pub enum SupportRegionType {
		/// <  Apply a constant support region
		SR_FIXED = 0,
		/// <  Apply a adaptive support region obtained by cross-based segmentation
		/// as described in [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
		SR_CROSS = 1,
	}
	impl TryFrom<i32> for SupportRegionType {
		type Error = crate::Error;
		fn try_from(value: i32) -> Result<Self, Self::Error> {
			match value {
				0 => Ok(Self::SR_FIXED),
				1 => Ok(Self::SR_CROSS),
				_ => Err(crate::Error::new(crate::core::StsBadArg, format!("Value: {value} is not valid for enum: crate::optflow::SupportRegionType"))),
			}
		}
	}
	opencv_type_enum! { crate::optflow::SupportRegionType }
	pub type GPCSamplesVector = core::Vector<crate::optflow::GPCPatchSample>;
	/// Calculates a global motion orientation in a selected region.
	///
	/// ## Parameters
	/// * orientation: Motion gradient orientation image calculated by the function calcMotionGradient
	/// * mask: Mask image. It may be a conjunction of a valid gradient mask, also calculated by
	/// calcMotionGradient , and the mask of a region whose direction needs to be calculated.
	/// * mhi: Motion history image calculated by updateMotionHistory .
	/// * timestamp: Timestamp passed to updateMotionHistory .
	/// * duration: Maximum duration of a motion track in milliseconds, passed to updateMotionHistory
	///
	/// The function calculates an average motion direction in the selected region and returns the angle
	/// between 0 degrees and 360 degrees. The average direction is computed from the weighted orientation
	/// histogram, where a recent motion has a larger weight and the motion occurred in the past has a
	/// smaller weight, as recorded in mhi .
	#[inline]
	pub fn calc_global_orientation(orientation: &impl ToInputArray, mask: &impl ToInputArray, mhi: &impl ToInputArray, timestamp: f64, duration: f64) -> Result<f64> {
		input_array_arg!(orientation);
		input_array_arg!(mask);
		input_array_arg!(mhi);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_motempl_calcGlobalOrientation_const__InputArrayR_const__InputArrayR_const__InputArrayR_double_double(orientation.as_raw__InputArray(), mask.as_raw__InputArray(), mhi.as_raw__InputArray(), timestamp, duration, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculates a gradient orientation of a motion history image.
	///
	/// ## Parameters
	/// * mhi: Motion history single-channel floating-point image.
	/// * mask: Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-zero
	/// elements mark pixels where the motion gradient data is correct.
	/// * orientation: Output motion gradient orientation image that has the same type and the same
	/// size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees.
	/// * delta1: Minimal (or maximal) allowed difference between mhi values within a pixel
	/// neighborhood.
	/// * delta2: Maximal (or minimal) allowed difference between mhi values within a pixel
	/// neighborhood. That is, the function finds the minimum (  ) and maximum (  ) mhi
	/// values over  neighborhood of each pixel and marks the motion orientation at 
	/// as valid only if
	/// 
	/// * apertureSize: Aperture size of the Sobel operator.
	///
	/// The function calculates a gradient orientation at each pixel  as:
	///
	/// 
	///
	/// In fact, fastAtan2 and phase are used so that the computed angle is measured in degrees and covers
	/// the full range 0..360. Also, the mask is filled to indicate pixels where the computed angle is
	/// valid.
	///
	///
	/// Note:
	///    *   (Python) An example on how to perform a motion template technique can be found at
	///        opencv_source_code/samples/python2/motempl.py
	///
	/// ## Note
	/// This alternative version of [calc_motion_gradient] function uses the following default values for its arguments:
	/// * aperture_size: 3
	#[inline]
	pub fn calc_motion_gradient_def(mhi: &impl ToInputArray, mask: &mut impl ToOutputArray, orientation: &mut impl ToOutputArray, delta1: f64, delta2: f64) -> Result<()> {
		input_array_arg!(mhi);
		output_array_arg!(mask);
		output_array_arg!(orientation);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_motempl_calcMotionGradient_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double(mhi.as_raw__InputArray(), mask.as_raw__OutputArray(), orientation.as_raw__OutputArray(), delta1, delta2, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculates a gradient orientation of a motion history image.
	///
	/// ## Parameters
	/// * mhi: Motion history single-channel floating-point image.
	/// * mask: Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-zero
	/// elements mark pixels where the motion gradient data is correct.
	/// * orientation: Output motion gradient orientation image that has the same type and the same
	/// size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees.
	/// * delta1: Minimal (or maximal) allowed difference between mhi values within a pixel
	/// neighborhood.
	/// * delta2: Maximal (or minimal) allowed difference between mhi values within a pixel
	/// neighborhood. That is, the function finds the minimum (  ) and maximum (  ) mhi
	/// values over  neighborhood of each pixel and marks the motion orientation at 
	/// as valid only if
	/// 
	/// * apertureSize: Aperture size of the Sobel operator.
	///
	/// The function calculates a gradient orientation at each pixel  as:
	///
	/// 
	///
	/// In fact, fastAtan2 and phase are used so that the computed angle is measured in degrees and covers
	/// the full range 0..360. Also, the mask is filled to indicate pixels where the computed angle is
	/// valid.
	///
	///
	/// Note:
	///    *   (Python) An example on how to perform a motion template technique can be found at
	///        opencv_source_code/samples/python2/motempl.py
	///
	/// ## C++ default parameters
	/// * aperture_size: 3
	#[inline]
	pub fn calc_motion_gradient(mhi: &impl ToInputArray, mask: &mut impl ToOutputArray, orientation: &mut impl ToOutputArray, delta1: f64, delta2: f64, aperture_size: i32) -> Result<()> {
		input_array_arg!(mhi);
		output_array_arg!(mask);
		output_array_arg!(orientation);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_motempl_calcMotionGradient_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_double_double_int(mhi.as_raw__InputArray(), mask.as_raw__OutputArray(), orientation.as_raw__OutputArray(), delta1, delta2, aperture_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Splits a motion history image into a few parts corresponding to separate independent motions (for
	/// example, left hand, right hand).
	///
	/// ## Parameters
	/// * mhi: Motion history image.
	/// * segmask: Image where the found mask should be stored, single-channel, 32-bit floating-point.
	/// * boundingRects: Vector containing ROIs of motion connected components.
	/// * timestamp: Current time in milliseconds or other units.
	/// * segThresh: Segmentation threshold that is recommended to be equal to the interval between
	/// motion history "steps" or greater.
	///
	/// The function finds all of the motion segments and marks them in segmask with individual values
	/// (1,2,...). It also computes a vector with ROIs of motion connected components. After that the motion
	/// direction for every component can be calculated with calcGlobalOrientation using the extracted mask
	/// of the particular component.
	#[inline]
	pub fn segment_motion(mhi: &impl ToInputArray, segmask: &mut impl ToOutputArray, bounding_rects: &mut core::Vector<core::Rect>, timestamp: f64, seg_thresh: f64) -> Result<()> {
		input_array_arg!(mhi);
		output_array_arg!(segmask);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_motempl_segmentMotion_const__InputArrayR_const__OutputArrayR_vectorLRectGR_double_double(mhi.as_raw__InputArray(), segmask.as_raw__OutputArray(), bounding_rects.as_raw_mut_VectorOfRect(), timestamp, seg_thresh, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Updates the motion history image by a moving silhouette.
	///
	/// ## Parameters
	/// * silhouette: Silhouette mask that has non-zero pixels where the motion occurs.
	/// * mhi: Motion history image that is updated by the function (single-channel, 32-bit
	/// floating-point).
	/// * timestamp: Current time in milliseconds or other units.
	/// * duration: Maximal duration of the motion track in the same units as timestamp .
	///
	/// The function updates the motion history image as follows:
	///
	/// 
	///
	/// That is, MHI pixels where the motion occurs are set to the current timestamp , while the pixels
	/// where the motion happened last time a long time ago are cleared.
	///
	/// The function, together with calcMotionGradient and calcGlobalOrientation , implements a motion
	/// templates technique described in [Davis97](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Davis97) and [Bradski00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bradski00) .
	#[inline]
	pub fn update_motion_history(silhouette: &impl ToInputArray, mhi: &mut impl ToInputOutputArray, timestamp: f64, duration: f64) -> Result<()> {
		input_array_arg!(silhouette);
		input_output_array_arg!(mhi);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_motempl_updateMotionHistory_const__InputArrayR_const__InputOutputArrayR_double_double(silhouette.as_raw__InputArray(), mhi.as_raw__InputOutputArray(), timestamp, duration, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme.
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016)).
	/// For this scheme the following steps are applied:
	/// -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
	/// -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
	/// with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
	/// of the backward flow.
	/// -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
	///
	/// ## Parameters
	/// * I0: first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * I1: second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * flow: computed flow image that has the same size as I0 and type CV_32FC2.
	/// * rlofParam: see optflow::RLOFOpticalFlowParameter
	/// * forwardBackwardThreshold: Threshold for the forward backward confidence check.
	/// For each grid point  a motion vector  is computed.
	/// If the forward backward error 
	/// is larger than threshold given by this function then the motion vector will not be used by the following
	/// vector field interpolation.  denotes the backward flow. Note, the forward backward test
	///    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
	/// * gridStep: Size of the grid to spawn the motion vectors. For each grid point a motion vector is computed.
	/// Some motion vectors will be removed due to the forwatd backward threshold (if set >0). The rest will be the
	/// base of the vector field interpolation.
	/// * interp_type: interpolation method used to compute the dense optical flow. Two interpolation algorithms are
	/// supported:
	/// - **INTERP_GEO** applies the fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016).
	/// - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
	/// * epicK: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * epicSigma: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * epicLambda: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * ricSPSize: see ximgproc::RICInterpolator sets the respective parameter.
	/// * ricSLICType: see ximgproc::RICInterpolator sets the respective parameter.
	/// * use_post_proc: enables ximgproc::fastGlobalSmootherFilter() parameter.
	/// * fgsLambda: sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
	/// * fgsSigma: sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
	/// * use_variational_refinement: enables VariationalRefinement
	///
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012), [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013), [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014), [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	///
	/// Note: If the grid size is set to (1,1) and the forward backward threshold <= 0 that the dense optical flow field is purely
	/// computed with the RLOF.
	///
	///
	/// Note: SIMD parallelization is only available when compiling with SSE4.1.
	///
	/// Note: Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
	/// ## See also
	/// optflow::DenseRLOFOpticalFlow, optflow::RLOFOpticalFlowParameter
	///
	/// ## Note
	/// This alternative version of [calc_optical_flow_dense_rlof] function uses the following default values for its arguments:
	/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
	/// * forward_backward_threshold: 0
	/// * grid_step: Size(6,6)
	/// * interp_type: InterpolationType::INTERP_EPIC
	/// * epic_k: 128
	/// * epic_sigma: 0.05f
	/// * epic_lambda: 100.f
	/// * ric_sp_size: 15
	/// * ric_slic_type: 100
	/// * use_post_proc: true
	/// * fgs_lambda: 500.0f
	/// * fgs_sigma: 1.5f
	/// * use_variational_refinement: false
	#[inline]
	pub fn calc_optical_flow_dense_rlof_def(i0: &impl ToInputArray, i1: &impl ToInputArray, flow: &mut impl ToInputOutputArray) -> Result<()> {
		input_array_arg!(i0);
		input_array_arg!(i1);
		input_output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowDenseRLOF_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR(i0.as_raw__InputArray(), i1.as_raw__InputArray(), flow.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation scheme.
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016)).
	/// For this scheme the following steps are applied:
	/// -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
	/// -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
	/// with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
	/// of the backward flow.
	/// -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
	///
	/// ## Parameters
	/// * I0: first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * I1: second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * flow: computed flow image that has the same size as I0 and type CV_32FC2.
	/// * rlofParam: see optflow::RLOFOpticalFlowParameter
	/// * forwardBackwardThreshold: Threshold for the forward backward confidence check.
	/// For each grid point  a motion vector  is computed.
	/// If the forward backward error 
	/// is larger than threshold given by this function then the motion vector will not be used by the following
	/// vector field interpolation.  denotes the backward flow. Note, the forward backward test
	///    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
	/// * gridStep: Size of the grid to spawn the motion vectors. For each grid point a motion vector is computed.
	/// Some motion vectors will be removed due to the forwatd backward threshold (if set >0). The rest will be the
	/// base of the vector field interpolation.
	/// * interp_type: interpolation method used to compute the dense optical flow. Two interpolation algorithms are
	/// supported:
	/// - **INTERP_GEO** applies the fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016).
	/// - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
	/// * epicK: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * epicSigma: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * epicLambda: see ximgproc::EdgeAwareInterpolator sets the respective parameter.
	/// * ricSPSize: see ximgproc::RICInterpolator sets the respective parameter.
	/// * ricSLICType: see ximgproc::RICInterpolator sets the respective parameter.
	/// * use_post_proc: enables ximgproc::fastGlobalSmootherFilter() parameter.
	/// * fgsLambda: sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
	/// * fgsSigma: sets the respective ximgproc::fastGlobalSmootherFilter() parameter.
	/// * use_variational_refinement: enables VariationalRefinement
	///
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012), [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013), [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014), [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	///
	/// Note: If the grid size is set to (1,1) and the forward backward threshold <= 0 that the dense optical flow field is purely
	/// computed with the RLOF.
	///
	///
	/// Note: SIMD parallelization is only available when compiling with SSE4.1.
	///
	/// Note: Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
	/// ## See also
	/// optflow::DenseRLOFOpticalFlow, optflow::RLOFOpticalFlowParameter
	///
	/// ## C++ default parameters
	/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
	/// * forward_backward_threshold: 0
	/// * grid_step: Size(6,6)
	/// * interp_type: InterpolationType::INTERP_EPIC
	/// * epic_k: 128
	/// * epic_sigma: 0.05f
	/// * epic_lambda: 100.f
	/// * ric_sp_size: 15
	/// * ric_slic_type: 100
	/// * use_post_proc: true
	/// * fgs_lambda: 500.0f
	/// * fgs_sigma: 1.5f
	/// * use_variational_refinement: false
	#[inline]
	pub fn calc_optical_flow_dense_rlof(i0: &impl ToInputArray, i1: &impl ToInputArray, flow: &mut impl ToInputOutputArray, mut rlof_param: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>, forward_backward_threshold: f32, grid_step: core::Size, interp_type: crate::optflow::InterpolationType, epic_k: i32, epic_sigma: f32, epic_lambda: f32, ric_sp_size: i32, ric_slic_type: i32, use_post_proc: bool, fgs_lambda: f32, fgs_sigma: f32, use_variational_refinement: bool) -> Result<()> {
		input_array_arg!(i0);
		input_array_arg!(i1);
		input_output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowDenseRLOF_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_PtrLRLOFOpticalFlowParameterG_float_Size_InterpolationType_int_float_float_int_int_bool_float_float_bool(i0.as_raw__InputArray(), i1.as_raw__InputArray(), flow.as_raw__InputOutputArray(), rlof_param.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), forward_backward_threshold, &grid_step, interp_type, epic_k, epic_sigma, epic_lambda, ric_sp_size, ric_slic_type, use_post_proc, fgs_lambda, fgs_sigma, use_variational_refinement, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculate an optical flow using "SimpleFlow" algorithm.
	///
	/// ## Parameters
	/// * from: First 8-bit 3-channel image.
	/// * to: Second 8-bit 3-channel image of the same size as prev
	/// * flow: computed flow image that has the same size as prev and type CV_32FC2
	/// * layers: Number of layers
	/// * averaging_block_size: Size of block through which we sum up when calculate cost function
	/// for pixel
	/// * max_flow: maximal flow that we search at each level
	/// * sigma_dist: vector smooth spatial sigma parameter
	/// * sigma_color: vector smooth color sigma parameter
	/// * postprocess_window: window size for postprocess cross bilateral filter
	/// * sigma_dist_fix: spatial sigma for postprocess cross bilateralf filter
	/// * sigma_color_fix: color sigma for postprocess cross bilateral filter
	/// * occ_thr: threshold for detecting occlusions
	/// * upscale_averaging_radius: window size for bilateral upscale operation
	/// * upscale_sigma_dist: spatial sigma for bilateral upscale operation
	/// * upscale_sigma_color: color sigma for bilateral upscale operation
	/// * speed_up_thr: threshold to detect point with irregular flow - where flow should be
	/// recalculated after upscale
	///
	/// See [Tao2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Tao2012) . And site of project - <http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/>.
	///
	///
	/// Note:
	///    *   An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp
	///
	/// ## Overloaded parameters
	#[inline]
	pub fn calc_optical_flow_sf(from: &impl ToInputArray, to: &impl ToInputArray, flow: &mut impl ToOutputArray, layers: i32, averaging_block_size: i32, max_flow: i32) -> Result<()> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSF_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_int_int(from.as_raw__InputArray(), to.as_raw__InputArray(), flow.as_raw__OutputArray(), layers, averaging_block_size, max_flow, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculate an optical flow using "SimpleFlow" algorithm.
	///
	/// ## Parameters
	/// * from: First 8-bit 3-channel image.
	/// * to: Second 8-bit 3-channel image of the same size as prev
	/// * flow: computed flow image that has the same size as prev and type CV_32FC2
	/// * layers: Number of layers
	/// * averaging_block_size: Size of block through which we sum up when calculate cost function
	/// for pixel
	/// * max_flow: maximal flow that we search at each level
	/// * sigma_dist: vector smooth spatial sigma parameter
	/// * sigma_color: vector smooth color sigma parameter
	/// * postprocess_window: window size for postprocess cross bilateral filter
	/// * sigma_dist_fix: spatial sigma for postprocess cross bilateralf filter
	/// * sigma_color_fix: color sigma for postprocess cross bilateral filter
	/// * occ_thr: threshold for detecting occlusions
	/// * upscale_averaging_radius: window size for bilateral upscale operation
	/// * upscale_sigma_dist: spatial sigma for bilateral upscale operation
	/// * upscale_sigma_color: color sigma for bilateral upscale operation
	/// * speed_up_thr: threshold to detect point with irregular flow - where flow should be
	/// recalculated after upscale
	///
	/// See [Tao2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Tao2012) . And site of project - <http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/>.
	///
	///
	/// Note:
	///    *   An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp
	#[inline]
	pub fn calc_optical_flow_sf_1(from: &impl ToInputArray, to: &impl ToInputArray, flow: &mut impl ToOutputArray, layers: i32, averaging_block_size: i32, max_flow: i32, sigma_dist: f64, sigma_color: f64, postprocess_window: i32, sigma_dist_fix: f64, sigma_color_fix: f64, occ_thr: f64, upscale_averaging_radius: i32, upscale_sigma_dist: f64, upscale_sigma_color: f64, speed_up_thr: f64) -> Result<()> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSF_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_int_int_double_double_int_double_double_double_int_double_double_double(from.as_raw__InputArray(), to.as_raw__InputArray(), flow.as_raw__OutputArray(), layers, averaging_block_size, max_flow, sigma_dist, sigma_color, postprocess_window, sigma_dist_fix, sigma_color_fix, occ_thr, upscale_averaging_radius, upscale_sigma_dist, upscale_sigma_color, speed_up_thr, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculates fast optical flow for a sparse feature set using the robust local optical flow (RLOF) similar
	/// to optflow::calcOpticalFlowPyrLK().
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// ## Parameters
	/// * prevImg: first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * nextImg: second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * prevPts: vector of 2D points for which the flow needs to be found; point coordinates must be single-precision
	/// floating-point numbers.
	/// * nextPts: output vector of 2D points (with single-precision floating-point coordinates) containing the calculated
	/// new positions of input features in the second image; when optflow::RLOFOpticalFlowParameter::useInitialFlow variable is true  the vector must
	/// have the same size as in the input and contain the initialization point correspondences.
	/// * status: output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the
	/// corresponding features has passed the forward backward check.
	/// * err: output vector of errors; each element of the vector is set to the forward backward error for the corresponding feature.
	/// * rlofParam: see optflow::RLOFOpticalFlowParameter
	/// * forwardBackwardThreshold: Threshold for the forward backward confidence check. If forewardBackwardThreshold <=0 the forward
	///
	///
	/// Note: SIMD parallelization is only available when compiling with SSE4.1.
	///
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012), [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013), [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014) and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	///
	/// ## Note
	/// This alternative version of [calc_optical_flow_sparse_rlof] function uses the following default values for its arguments:
	/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
	/// * forward_backward_threshold: 0
	#[inline]
	pub fn calc_optical_flow_sparse_rlof_def(prev_img: &impl ToInputArray, next_img: &impl ToInputArray, prev_pts: &impl ToInputArray, next_pts: &mut impl ToInputOutputArray, status: &mut impl ToOutputArray, err: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(prev_img);
		input_array_arg!(next_img);
		input_array_arg!(prev_pts);
		input_output_array_arg!(next_pts);
		output_array_arg!(status);
		output_array_arg!(err);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSparseRLOF_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR(prev_img.as_raw__InputArray(), next_img.as_raw__InputArray(), prev_pts.as_raw__InputArray(), next_pts.as_raw__InputOutputArray(), status.as_raw__OutputArray(), err.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Calculates fast optical flow for a sparse feature set using the robust local optical flow (RLOF) similar
	/// to optflow::calcOpticalFlowPyrLK().
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// ## Parameters
	/// * prevImg: first 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * nextImg: second 8-bit input image. If The cross-based RLOF is used (by selecting optflow::RLOFOpticalFlowParameter::supportRegionType
	/// = SupportRegionType::SR_CROSS) image has to be a 8-bit 3 channel image.
	/// * prevPts: vector of 2D points for which the flow needs to be found; point coordinates must be single-precision
	/// floating-point numbers.
	/// * nextPts: output vector of 2D points (with single-precision floating-point coordinates) containing the calculated
	/// new positions of input features in the second image; when optflow::RLOFOpticalFlowParameter::useInitialFlow variable is true  the vector must
	/// have the same size as in the input and contain the initialization point correspondences.
	/// * status: output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the
	/// corresponding features has passed the forward backward check.
	/// * err: output vector of errors; each element of the vector is set to the forward backward error for the corresponding feature.
	/// * rlofParam: see optflow::RLOFOpticalFlowParameter
	/// * forwardBackwardThreshold: Threshold for the forward backward confidence check. If forewardBackwardThreshold <=0 the forward
	///
	///
	/// Note: SIMD parallelization is only available when compiling with SSE4.1.
	///
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012), [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013), [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014) and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	///
	/// ## C++ default parameters
	/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
	/// * forward_backward_threshold: 0
	#[inline]
	pub fn calc_optical_flow_sparse_rlof(prev_img: &impl ToInputArray, next_img: &impl ToInputArray, prev_pts: &impl ToInputArray, next_pts: &mut impl ToInputOutputArray, status: &mut impl ToOutputArray, err: &mut impl ToOutputArray, mut rlof_param: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>, forward_backward_threshold: f32) -> Result<()> {
		input_array_arg!(prev_img);
		input_array_arg!(next_img);
		input_array_arg!(prev_pts);
		input_output_array_arg!(next_pts);
		output_array_arg!(status);
		output_array_arg!(err);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSparseRLOF_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_PtrLRLOFOpticalFlowParameterG_float(prev_img.as_raw__InputArray(), next_img.as_raw__InputArray(), prev_pts.as_raw__InputArray(), next_pts.as_raw__InputOutputArray(), status.as_raw__OutputArray(), err.as_raw__OutputArray(), rlof_param.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), forward_backward_threshold, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Fast dense optical flow based on PyrLK sparse matches interpolation.
	///
	/// ## Parameters
	/// * from: first 8-bit 3-channel or 1-channel image.
	/// * to: second 8-bit 3-channel or 1-channel image of the same size as from
	/// * flow: computed flow image that has the same size as from and CV_32FC2 type
	/// * grid_step: stride used in sparse match computation. Lower values usually
	///        result in higher quality but slow down the algorithm.
	/// * k: number of nearest-neighbor matches considered, when fitting a locally affine
	///        model. Lower values can make the algorithm noticeably faster at the cost of
	///        some quality degradation.
	/// * sigma: parameter defining how fast the weights decrease in the locally-weighted affine
	///        fitting. Higher values can help preserve fine details, lower values can help to get rid
	///        of the noise in the output flow.
	/// * use_post_proc: defines whether the ximgproc::fastGlobalSmootherFilter() is used
	///        for post-processing after interpolation
	/// * fgs_lambda: see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
	/// * fgs_sigma: see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
	///
	/// ## Note
	/// This alternative version of [calc_optical_flow_sparse_to_dense] function uses the following default values for its arguments:
	/// * grid_step: 8
	/// * k: 128
	/// * sigma: 0.05f
	/// * use_post_proc: true
	/// * fgs_lambda: 500.0f
	/// * fgs_sigma: 1.5f
	#[inline]
	pub fn calc_optical_flow_sparse_to_dense_def(from: &impl ToInputArray, to: &impl ToInputArray, flow: &mut impl ToOutputArray) -> Result<()> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSparseToDense_const__InputArrayR_const__InputArrayR_const__OutputArrayR(from.as_raw__InputArray(), to.as_raw__InputArray(), flow.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Fast dense optical flow based on PyrLK sparse matches interpolation.
	///
	/// ## Parameters
	/// * from: first 8-bit 3-channel or 1-channel image.
	/// * to: second 8-bit 3-channel or 1-channel image of the same size as from
	/// * flow: computed flow image that has the same size as from and CV_32FC2 type
	/// * grid_step: stride used in sparse match computation. Lower values usually
	///        result in higher quality but slow down the algorithm.
	/// * k: number of nearest-neighbor matches considered, when fitting a locally affine
	///        model. Lower values can make the algorithm noticeably faster at the cost of
	///        some quality degradation.
	/// * sigma: parameter defining how fast the weights decrease in the locally-weighted affine
	///        fitting. Higher values can help preserve fine details, lower values can help to get rid
	///        of the noise in the output flow.
	/// * use_post_proc: defines whether the ximgproc::fastGlobalSmootherFilter() is used
	///        for post-processing after interpolation
	/// * fgs_lambda: see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
	/// * fgs_sigma: see the respective parameter of the ximgproc::fastGlobalSmootherFilter()
	///
	/// ## C++ default parameters
	/// * grid_step: 8
	/// * k: 128
	/// * sigma: 0.05f
	/// * use_post_proc: true
	/// * fgs_lambda: 500.0f
	/// * fgs_sigma: 1.5f
	#[inline]
	pub fn calc_optical_flow_sparse_to_dense(from: &impl ToInputArray, to: &impl ToInputArray, flow: &mut impl ToOutputArray, grid_step: i32, k: i32, sigma: f32, use_post_proc: bool, fgs_lambda: f32, fgs_sigma: f32) -> Result<()> {
		input_array_arg!(from);
		input_array_arg!(to);
		output_array_arg!(flow);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_calcOpticalFlowSparseToDense_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_int_float_bool_float_float(from.as_raw__InputArray(), to.as_raw__InputArray(), flow.as_raw__OutputArray(), grid_step, k, sigma, use_post_proc, fgs_lambda, fgs_sigma, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// DeepFlow optical flow algorithm implementation.
	///
	/// The class implements the DeepFlow optical flow algorithm described in [Weinzaepfel2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Weinzaepfel2013) . See
	/// also <http://lear.inrialpes.fr/src/deepmatching/> .
	/// Parameters - class fields - that may be modified after creating a class instance:
	/// *   member float alpha
	/// Smoothness assumption weight
	/// *   member float delta
	/// Color constancy assumption weight
	/// *   member float gamma
	/// Gradient constancy weight
	/// *   member float sigma
	/// Gaussian smoothing parameter
	/// *   member int minSize
	/// Minimal dimension of an image in the pyramid (next, smaller images in the pyramid are generated
	/// until one of the dimensions reaches this size)
	/// *   member float downscaleFactor
	/// Scaling factor in the image pyramid (must be \< 1)
	/// *   member int fixedPointIterations
	/// How many iterations on each level of the pyramid
	/// *   member int sorIterations
	/// Iterations of Succesive Over-Relaxation (solver)
	/// *   member float omega
	/// Relaxation factor in SOR
	#[inline]
	pub fn create_opt_flow_deep_flow() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_DeepFlow(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Additional interface to the Dense RLOF algorithm - optflow::calcOpticalFlowDenseRLOF()
	#[inline]
	pub fn create_opt_flow_dense_rlof() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_DenseRLOF(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Creates instance of cv::DenseOpticalFlow
	#[inline]
	pub fn create_opt_flow_dual_tvl1() -> Result<core::Ptr<crate::optflow::DualTVL1OpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_DualTVL1(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::optflow::DualTVL1OpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback()
	#[inline]
	pub fn create_opt_flow_farneback() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_Farneback(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Creates an instance of PCAFlow
	#[inline]
	pub fn create_opt_flow_pca_flow() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_PCAFlow(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Additional interface to the SimpleFlow algorithm - calcOpticalFlowSF()
	#[inline]
	pub fn create_opt_flow_simple_flow() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_SimpleFlow(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Additional interface to the Sparse RLOF algorithm - optflow::calcOpticalFlowSparseRLOF()
	#[inline]
	pub fn create_opt_flow_sparse_rlof() -> Result<core::Ptr<crate::video::SparseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_SparseRLOF(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::SparseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	/// Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense()
	#[inline]
	pub fn create_opt_flow_sparse_to_dense() -> Result<core::Ptr<crate::video::DenseOpticalFlow>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_optflow_createOptFlow_SparseToDense(ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::video::DenseOpticalFlow>::opencv_from_extern(ret) };
		Ok(ret)
	}
	#[inline]
	pub fn read(fn_: &impl core::FileNodeTraitConst, node: &mut crate::optflow::GPCTree_Node, unnamed: crate::optflow::GPCTree_Node) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_read_const_FileNodeR_NodeR_Node(fn_.as_raw_FileNode(), node, &unnamed, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	#[inline]
	pub fn write(fs: &mut impl core::FileStorageTrait, name: &str, node: crate::optflow::GPCTree_Node) -> Result<()> {
		extern_container_arg!(name);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_write_FileStorageR_const_StringR_const_NodeR(fs.as_raw_mut_FileStorage(), name.opencv_as_extern(), &node, ocvrs_return.as_mut_ptr()) };
		return_receive!(ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	/// Fast dense optical flow computation based on robust local optical flow (RLOF) algorithms and sparse-to-dense interpolation
	/// scheme.
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// The sparse-to-dense interpolation scheme allows for fast computation of dense optical flow using RLOF (see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016)).
	/// For this scheme the following steps are applied:
	/// -# motion vector seeded at a regular sampled grid are computed. The sparsity of this grid can be configured with setGridStep
	/// -# (optinally) errornous motion vectors are filter based on the forward backward confidence. The threshold can be configured
	/// with setForwardBackward. The filter is only applied if the threshold >0 but than the runtime is doubled due to the estimation
	/// of the backward flow.
	/// -# Vector field interpolation is applied to the motion vector set to obtain a dense vector field.
	///
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014) and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	///
	///
	/// Note: If the grid size is set to (1,1) and the forward backward threshold <= 0 than pixelwise dense optical flow field is
	/// computed by RLOF without using interpolation.
	///
	///
	/// Note: Note that in output, if no correspondences are found between \a I0 and \a I1, the \a flow is set to 0.
	/// ## See also
	/// optflow::calcOpticalFlowDenseRLOF(), optflow::RLOFOpticalFlowParameter
	pub struct DenseRLOFOpticalFlow {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { DenseRLOFOpticalFlow }
	impl Drop for DenseRLOFOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_delete(self.as_raw_mut_DenseRLOFOpticalFlow()) };
		}
	}
	unsafe impl Send for DenseRLOFOpticalFlow {}
	impl DenseRLOFOpticalFlow {
		/// Creates instance of optflow::DenseRLOFOpticalFlow
		///
		/// ## Parameters
		/// * rlofParam: see optflow::RLOFOpticalFlowParameter
		/// * forwardBackwardThreshold: see setForwardBackward
		/// * gridStep: see setGridStep
		/// * interp_type: see setInterpolation
		/// * epicK: see setEPICK
		/// * epicSigma: see setEPICSigma
		/// * epicLambda: see setEPICLambda
		/// * ricSPSize: see setRICSPSize
		/// * ricSLICType: see setRICSLICType
		/// * use_post_proc: see setUsePostProc
		/// * fgsLambda: see setFgsLambda
		/// * fgsSigma: see setFgsSigma
		/// * use_variational_refinement: see setUseVariationalRefinement
		///
		/// ## C++ default parameters
		/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
		/// * forward_backward_threshold: 1.f
		/// * grid_step: Size(6,6)
		/// * interp_type: InterpolationType::INTERP_EPIC
		/// * epic_k: 128
		/// * epic_sigma: 0.05f
		/// * epic_lambda: 999.0f
		/// * ric_sp_size: 15
		/// * ric_slic_type: 100
		/// * use_post_proc: true
		/// * fgs_lambda: 500.0f
		/// * fgs_sigma: 1.5f
		/// * use_variational_refinement: false
		#[inline]
		pub fn create(mut rlof_param: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>, forward_backward_threshold: f32, grid_step: core::Size, interp_type: crate::optflow::InterpolationType, epic_k: i32, epic_sigma: f32, epic_lambda: f32, ric_sp_size: i32, ric_slic_type: i32, use_post_proc: bool, fgs_lambda: f32, fgs_sigma: f32, use_variational_refinement: bool) -> Result<core::Ptr<crate::optflow::DenseRLOFOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_create_PtrLRLOFOpticalFlowParameterG_float_Size_InterpolationType_int_float_float_int_int_bool_float_float_bool(rlof_param.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), forward_backward_threshold, &grid_step, interp_type, epic_k, epic_sigma, epic_lambda, ric_sp_size, ric_slic_type, use_post_proc, fgs_lambda, fgs_sigma, use_variational_refinement, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::DenseRLOFOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Creates instance of optflow::DenseRLOFOpticalFlow
		///
		/// ## Parameters
		/// * rlofParam: see optflow::RLOFOpticalFlowParameter
		/// * forwardBackwardThreshold: see setForwardBackward
		/// * gridStep: see setGridStep
		/// * interp_type: see setInterpolation
		/// * epicK: see setEPICK
		/// * epicSigma: see setEPICSigma
		/// * epicLambda: see setEPICLambda
		/// * ricSPSize: see setRICSPSize
		/// * ricSLICType: see setRICSLICType
		/// * use_post_proc: see setUsePostProc
		/// * fgsLambda: see setFgsLambda
		/// * fgsSigma: see setFgsSigma
		/// * use_variational_refinement: see setUseVariationalRefinement
		///
		/// ## Note
		/// This alternative version of [DenseRLOFOpticalFlow::create] function uses the following default values for its arguments:
		/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
		/// * forward_backward_threshold: 1.f
		/// * grid_step: Size(6,6)
		/// * interp_type: InterpolationType::INTERP_EPIC
		/// * epic_k: 128
		/// * epic_sigma: 0.05f
		/// * epic_lambda: 999.0f
		/// * ric_sp_size: 15
		/// * ric_slic_type: 100
		/// * use_post_proc: true
		/// * fgs_lambda: 500.0f
		/// * fgs_sigma: 1.5f
		/// * use_variational_refinement: false
		#[inline]
		pub fn create_def() -> Result<core::Ptr<crate::optflow::DenseRLOFOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::DenseRLOFOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::DenseRLOFOpticalFlow]
	pub trait DenseRLOFOpticalFlowTraitConst: crate::video::DenseOpticalFlowTraitConst {
		fn as_raw_DenseRLOFOpticalFlow(&self) -> *const c_void;
		/// Configuration of the RLOF alogrithm.
		/// ## See also
		/// optflow::RLOFOpticalFlowParameter, getRLOFOpticalFlowParameter
		/// optflow::RLOFOpticalFlowParameter, setRLOFOpticalFlowParameter
		#[inline]
		fn get_rlof_optical_flow_parameter(&self) -> Result<core::Ptr<crate::optflow::RLOFOpticalFlowParameter>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getRLOFOpticalFlowParameter_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::RLOFOpticalFlowParameter>::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Threshold for the forward backward confidence check
		/// For each grid point  a motion vector  is computed.
		///      *     If the forward backward error 
		///      *     is larger than threshold given by this function then the motion vector will not be used by the following
		///      *    vector field interpolation.  denotes the backward flow. Note, the forward backward test
		///      *    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
		///      *    getForwardBackward, setGridStep
		/// ## See also
		/// setForwardBackward
		#[inline]
		fn get_forward_backward(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getForwardBackward_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Size of the grid to spawn the motion vectors.
		/// For each grid point a motion vector is computed. Some motion vectors will be removed due to the forwatd backward
		///      *  threshold (if set >0). The rest will be the base of the vector field interpolation.
		///      *    see also: getForwardBackward, setGridStep
		#[inline]
		fn get_grid_step(&self) -> Result<core::Size> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getGridStep_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Interpolation used to compute the dense optical flow.
		/// Two interpolation algorithms are supported
		///      * - **INTERP_GEO** applies the fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016).
		///      * - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
		///      * ximgproc::EdgeAwareInterpolator, getInterpolation
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, setInterpolation
		#[inline]
		fn get_interpolation(&self) -> Result<crate::optflow::InterpolationType> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getInterpolation_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() K value.
		/// K is a number of nearest-neighbor matches considered, when fitting a locally affine
		///      *    model. Usually it should be around 128. However, lower values would make the interpolation noticeably faster.
		///      *    see also: ximgproc::EdgeAwareInterpolator,  setEPICK
		#[inline]
		fn get_epick(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getEPICK_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() sigma value.
		/// Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
		///      *  fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
		///      *  output flow.
		///      *    see also: ximgproc::EdgeAwareInterpolator, setEPICSigma
		#[inline]
		fn get_epic_sigma(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getEPICSigma_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() lambda value.
		/// Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
		///      *    should be in the range of 0 to 1000.
		///      *    see also: ximgproc::EdgeAwareInterpolator, setEPICSigma
		#[inline]
		fn get_epic_lambda(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getEPICLambda_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator().
		/// Sets the respective fastGlobalSmootherFilter() parameter.
		///      *    see also: ximgproc::EdgeAwareInterpolator, setFgsLambda
		#[inline]
		fn get_fgs_lambda(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getFgsLambda_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator().
		/// Sets the respective fastGlobalSmootherFilter() parameter.
		///      *    see also: ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, setFgsSigma
		#[inline]
		fn get_fgs_sigma(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getFgsSigma_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// enables ximgproc::fastGlobalSmootherFilter
		///
		/// * getUsePostProc
		/// ## See also
		/// ximgproc::fastGlobalSmootherFilter, setUsePostProc
		#[inline]
		fn get_use_post_proc(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getUsePostProc_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// enables VariationalRefinement
		///
		/// * getUseVariationalRefinement
		/// ## See also
		/// ximgproc::fastGlobalSmootherFilter, setUsePostProc
		#[inline]
		fn get_use_variational_refinement(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getUseVariationalRefinement_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Parameter to tune the approximate size of the superpixel used for oversegmentation.
		///
		/// * cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
		/// ## See also
		/// setRICSPSize
		#[inline]
		fn get_ricsp_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getRICSPSize_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Parameter to choose superpixel algorithm variant to use:
		/// - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
		/// - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
		/// - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
		/// ## See also
		/// cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
		/// setRICSLICType
		#[inline]
		fn get_ricslic_type(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_getRICSLICType_const(self.as_raw_DenseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::DenseRLOFOpticalFlow]
	pub trait DenseRLOFOpticalFlowTrait: crate::optflow::DenseRLOFOpticalFlowTraitConst + crate::video::DenseOpticalFlowTrait {
		fn as_raw_mut_DenseRLOFOpticalFlow(&mut self) -> *mut c_void;
		/// Configuration of the RLOF alogrithm.
		/// ## See also
		/// optflow::RLOFOpticalFlowParameter, getRLOFOpticalFlowParameter
		#[inline]
		fn set_rlof_optical_flow_parameter(&mut self, mut val: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setRLOFOpticalFlowParameter_PtrLRLOFOpticalFlowParameterG(self.as_raw_mut_DenseRLOFOpticalFlow(), val.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Threshold for the forward backward confidence check
		/// For each grid point  a motion vector  is computed.
		///      *     If the forward backward error 
		///      *     is larger than threshold given by this function then the motion vector will not be used by the following
		///      *    vector field interpolation.  denotes the backward flow. Note, the forward backward test
		///      *    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
		///      *    see also: getForwardBackward, setGridStep
		#[inline]
		fn set_forward_backward(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setForwardBackward_float(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Size of the grid to spawn the motion vectors.
		/// For each grid point a motion vector is computed. Some motion vectors will be removed due to the forwatd backward
		///      *  threshold (if set >0). The rest will be the base of the vector field interpolation.
		///      *    getForwardBackward, setGridStep
		/// ## See also
		/// getGridStep
		#[inline]
		fn set_grid_step(&mut self, val: core::Size) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setGridStep_Size(self.as_raw_mut_DenseRLOFOpticalFlow(), &val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Interpolation used to compute the dense optical flow.
		/// Two interpolation algorithms are supported
		///      * - **INTERP_GEO** applies the fast geodesic interpolation, see [Geistert2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Geistert2016).
		///      * - **INTERP_EPIC_RESIDUAL** applies the edge-preserving interpolation, see [Revaud2015](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Revaud2015),Geistert2016.
		///      * see also: ximgproc::EdgeAwareInterpolator, getInterpolation
		#[inline]
		fn set_interpolation(&mut self, val: crate::optflow::InterpolationType) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setInterpolation_InterpolationType(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() K value.
		/// K is a number of nearest-neighbor matches considered, when fitting a locally affine
		///      *    model. Usually it should be around 128. However, lower values would make the interpolation noticeably faster.
		///      *    ximgproc::EdgeAwareInterpolator,  setEPICK
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, getEPICK
		#[inline]
		fn set_epick(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setEPICK_int(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() sigma value.
		/// Sigma is a parameter defining how fast the weights decrease in the locally-weighted affine
		///      *  fitting. Higher values can help preserve fine details, lower values can help to get rid of noise in the
		///      *  output flow.
		///      *    ximgproc::EdgeAwareInterpolator, setEPICSigma
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, getEPICSigma
		#[inline]
		fn set_epic_sigma(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setEPICSigma_float(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator() lambda value.
		/// Lambda is a parameter defining the weight of the edge-aware term in geodesic distance,
		///      *    should be in the range of 0 to 1000.
		///      *    ximgproc::EdgeAwareInterpolator, setEPICSigma
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, getEPICLambda
		#[inline]
		fn set_epic_lambda(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setEPICLambda_float(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator().
		/// Sets the respective fastGlobalSmootherFilter() parameter.
		///      *    ximgproc::EdgeAwareInterpolator, setFgsLambda
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsLambda
		#[inline]
		fn set_fgs_lambda(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setFgsLambda_float(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// see ximgproc::EdgeAwareInterpolator().
		/// Sets the respective fastGlobalSmootherFilter() parameter.
		///      *    ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, setFgsSigma
		/// ## See also
		/// ximgproc::EdgeAwareInterpolator, ximgproc::fastGlobalSmootherFilter, getFgsSigma
		#[inline]
		fn set_fgs_sigma(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setFgsSigma_float(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// enables ximgproc::fastGlobalSmootherFilter
		///
		/// * see also: getUsePostProc
		#[inline]
		fn set_use_post_proc(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setUsePostProc_bool(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// enables VariationalRefinement
		///
		/// * see also: getUseVariationalRefinement
		#[inline]
		fn set_use_variational_refinement(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setUseVariationalRefinement_bool(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Parameter to tune the approximate size of the superpixel used for oversegmentation.
		///
		/// * see also: cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
		#[inline]
		fn set_ricsp_size(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setRICSPSize_int(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Parameter to choose superpixel algorithm variant to use:
		/// - cv::ximgproc::SLICType SLIC segments image using a desired region_size (value: 100)
		/// - cv::ximgproc::SLICType SLICO will optimize using adaptive compactness factor (value: 101)
		/// - cv::ximgproc::SLICType MSLIC will optimize using manifold methods resulting in more content-sensitive superpixels (value: 102).
		/// ## See also
		/// cv::ximgproc::createSuperpixelSLIC, cv::ximgproc::RICInterpolator
		#[inline]
		fn set_ricslic_type(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DenseRLOFOpticalFlow_setRICSLICType_int(self.as_raw_mut_DenseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl std::fmt::Debug for DenseRLOFOpticalFlow {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("DenseRLOFOpticalFlow")
				.finish()
		}
	}
	boxed_cast_base! { DenseRLOFOpticalFlow, core::Algorithm, cv_optflow_DenseRLOFOpticalFlow_to_Algorithm }
	boxed_cast_base! { DenseRLOFOpticalFlow, crate::video::DenseOpticalFlow, cv_optflow_DenseRLOFOpticalFlow_to_DenseOpticalFlow }
	impl core::AlgorithmTraitConst for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	impl core::AlgorithmTrait for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DenseRLOFOpticalFlow, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }
	impl crate::video::DenseOpticalFlowTraitConst for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::video::DenseOpticalFlowTrait for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DenseRLOFOpticalFlow, crate::video::DenseOpticalFlowTraitConst, as_raw_DenseOpticalFlow, crate::video::DenseOpticalFlowTrait, as_raw_mut_DenseOpticalFlow }
	impl crate::optflow::DenseRLOFOpticalFlowTraitConst for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_DenseRLOFOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::DenseRLOFOpticalFlowTrait for DenseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_DenseRLOFOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DenseRLOFOpticalFlow, crate::optflow::DenseRLOFOpticalFlowTraitConst, as_raw_DenseRLOFOpticalFlow, crate::optflow::DenseRLOFOpticalFlowTrait, as_raw_mut_DenseRLOFOpticalFlow }
	/// "Dual TV L1" Optical Flow Algorithm.
	///
	/// The class implements the "Dual TV L1" optical flow algorithm described in [Zach2007](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Zach2007) and
	/// [Javier2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Javier2012) .
	/// Here are important members of the class that control the algorithm, which you can set after
	/// constructing the class instance:
	///
	/// *   member double tau
	///    Time step of the numerical scheme.
	///
	/// *   member double lambda
	///    Weight parameter for the data term, attachment parameter. This is the most relevant
	///    parameter, which determines the smoothness of the output. The smaller this parameter is,
	///    the smoother the solutions we obtain. It depends on the range of motions of the images, so
	///    its value should be adapted to each image sequence.
	///
	/// *   member double theta
	///    Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
	///    attachment and the regularization terms. In theory, it should have a small value in order
	///    to maintain both parts in correspondence. The method is stable for a large range of values
	///    of this parameter.
	///
	/// *   member int nscales
	///    Number of scales used to create the pyramid of images.
	///
	/// *   member int warps
	///    Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
	///    I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
	///    method. It also affects the running time, so it is a compromise between speed and
	///    accuracy.
	///
	/// *   member double epsilon
	///    Stopping criterion threshold used in the numerical scheme, which is a trade-off between
	///    precision and running time. A small value will yield more accurate solutions at the
	///    expense of a slower convergence.
	///
	/// *   member int iterations
	///    Stopping criterion iterations number used in the numerical scheme.
	///
	/// C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
	/// Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
	pub struct DualTVL1OpticalFlow {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { DualTVL1OpticalFlow }
	impl Drop for DualTVL1OpticalFlow {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_delete(self.as_raw_mut_DualTVL1OpticalFlow()) };
		}
	}
	unsafe impl Send for DualTVL1OpticalFlow {}
	impl DualTVL1OpticalFlow {
		/// Creates instance of cv::DualTVL1OpticalFlow
		///
		/// ## C++ default parameters
		/// * tau: 0.25
		/// * lambda: 0.15
		/// * theta: 0.3
		/// * nscales: 5
		/// * warps: 5
		/// * epsilon: 0.01
		/// * innner_iterations: 30
		/// * outer_iterations: 10
		/// * scale_step: 0.8
		/// * gamma: 0.0
		/// * median_filtering: 5
		/// * use_initial_flow: false
		#[inline]
		pub fn create(tau: f64, lambda: f64, theta: f64, nscales: i32, warps: i32, epsilon: f64, innner_iterations: i32, outer_iterations: i32, scale_step: f64, gamma: f64, median_filtering: i32, use_initial_flow: bool) -> Result<core::Ptr<crate::optflow::DualTVL1OpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_create_double_double_double_int_int_double_int_int_double_double_int_bool(tau, lambda, theta, nscales, warps, epsilon, innner_iterations, outer_iterations, scale_step, gamma, median_filtering, use_initial_flow, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::DualTVL1OpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Creates instance of cv::DualTVL1OpticalFlow
		///
		/// ## Note
		/// This alternative version of [DualTVL1OpticalFlow::create] function uses the following default values for its arguments:
		/// * tau: 0.25
		/// * lambda: 0.15
		/// * theta: 0.3
		/// * nscales: 5
		/// * warps: 5
		/// * epsilon: 0.01
		/// * innner_iterations: 30
		/// * outer_iterations: 10
		/// * scale_step: 0.8
		/// * gamma: 0.0
		/// * median_filtering: 5
		/// * use_initial_flow: false
		#[inline]
		pub fn create_def() -> Result<core::Ptr<crate::optflow::DualTVL1OpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::DualTVL1OpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::DualTVL1OpticalFlow]
	pub trait DualTVL1OpticalFlowTraitConst: crate::video::DenseOpticalFlowTraitConst {
		fn as_raw_DualTVL1OpticalFlow(&self) -> *const c_void;
		/// Time step of the numerical scheme
		/// ## See also
		/// setTau
		#[inline]
		fn get_tau(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getTau_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Weight parameter for the data term, attachment parameter
		/// ## See also
		/// setLambda
		#[inline]
		fn get_lambda(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getLambda_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Weight parameter for (u - v)^2, tightness parameter
		/// ## See also
		/// setTheta
		#[inline]
		fn get_theta(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getTheta_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// coefficient for additional illumination variation term
		/// ## See also
		/// setGamma
		#[inline]
		fn get_gamma(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getGamma_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Number of scales used to create the pyramid of images
		/// ## See also
		/// setScalesNumber
		#[inline]
		fn get_scales_number(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getScalesNumber_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Number of warpings per scale
		/// ## See also
		/// setWarpingsNumber
		#[inline]
		fn get_warpings_number(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getWarpingsNumber_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
		/// ## See also
		/// setEpsilon
		#[inline]
		fn get_epsilon(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getEpsilon_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Inner iterations (between outlier filtering) used in the numerical scheme
		/// ## See also
		/// setInnerIterations
		#[inline]
		fn get_inner_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getInnerIterations_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Outer iterations (number of inner loops) used in the numerical scheme
		/// ## See also
		/// setOuterIterations
		#[inline]
		fn get_outer_iterations(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getOuterIterations_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Use initial flow
		/// ## See also
		/// setUseInitialFlow
		#[inline]
		fn get_use_initial_flow(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getUseInitialFlow_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Step between scales (<1)
		/// ## See also
		/// setScaleStep
		#[inline]
		fn get_scale_step(&self) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getScaleStep_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Median filter kernel size (1 = no filter) (3 or 5)
		/// ## See also
		/// setMedianFiltering
		#[inline]
		fn get_median_filtering(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_getMedianFiltering_const(self.as_raw_DualTVL1OpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::DualTVL1OpticalFlow]
	pub trait DualTVL1OpticalFlowTrait: crate::optflow::DualTVL1OpticalFlowTraitConst + crate::video::DenseOpticalFlowTrait {
		fn as_raw_mut_DualTVL1OpticalFlow(&mut self) -> *mut c_void;
		/// Time step of the numerical scheme
		/// ## See also
		/// setTau getTau
		#[inline]
		fn set_tau(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setTau_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Weight parameter for the data term, attachment parameter
		/// ## See also
		/// setLambda getLambda
		#[inline]
		fn set_lambda(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setLambda_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Weight parameter for (u - v)^2, tightness parameter
		/// ## See also
		/// setTheta getTheta
		#[inline]
		fn set_theta(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setTheta_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// coefficient for additional illumination variation term
		/// ## See also
		/// setGamma getGamma
		#[inline]
		fn set_gamma(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setGamma_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Number of scales used to create the pyramid of images
		/// ## See also
		/// setScalesNumber getScalesNumber
		#[inline]
		fn set_scales_number(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setScalesNumber_int(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Number of warpings per scale
		/// ## See also
		/// setWarpingsNumber getWarpingsNumber
		#[inline]
		fn set_warpings_number(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setWarpingsNumber_int(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
		/// ## See also
		/// setEpsilon getEpsilon
		#[inline]
		fn set_epsilon(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setEpsilon_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Inner iterations (between outlier filtering) used in the numerical scheme
		/// ## See also
		/// setInnerIterations getInnerIterations
		#[inline]
		fn set_inner_iterations(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setInnerIterations_int(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Outer iterations (number of inner loops) used in the numerical scheme
		/// ## See also
		/// setOuterIterations getOuterIterations
		#[inline]
		fn set_outer_iterations(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setOuterIterations_int(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Use initial flow
		/// ## See also
		/// setUseInitialFlow getUseInitialFlow
		#[inline]
		fn set_use_initial_flow(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setUseInitialFlow_bool(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Step between scales (<1)
		/// ## See also
		/// setScaleStep getScaleStep
		#[inline]
		fn set_scale_step(&mut self, val: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setScaleStep_double(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Median filter kernel size (1 = no filter) (3 or 5)
		/// ## See also
		/// setMedianFiltering getMedianFiltering
		#[inline]
		fn set_median_filtering(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_DualTVL1OpticalFlow_setMedianFiltering_int(self.as_raw_mut_DualTVL1OpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl std::fmt::Debug for DualTVL1OpticalFlow {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("DualTVL1OpticalFlow")
				.finish()
		}
	}
	boxed_cast_base! { DualTVL1OpticalFlow, core::Algorithm, cv_optflow_DualTVL1OpticalFlow_to_Algorithm }
	boxed_cast_base! { DualTVL1OpticalFlow, crate::video::DenseOpticalFlow, cv_optflow_DualTVL1OpticalFlow_to_DenseOpticalFlow }
	impl core::AlgorithmTraitConst for DualTVL1OpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	impl core::AlgorithmTrait for DualTVL1OpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DualTVL1OpticalFlow, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }
	impl crate::video::DenseOpticalFlowTraitConst for DualTVL1OpticalFlow {
		#[inline] fn as_raw_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::video::DenseOpticalFlowTrait for DualTVL1OpticalFlow {
		#[inline] fn as_raw_mut_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DualTVL1OpticalFlow, crate::video::DenseOpticalFlowTraitConst, as_raw_DenseOpticalFlow, crate::video::DenseOpticalFlowTrait, as_raw_mut_DenseOpticalFlow }
	impl crate::optflow::DualTVL1OpticalFlowTraitConst for DualTVL1OpticalFlow {
		#[inline] fn as_raw_DualTVL1OpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::DualTVL1OpticalFlowTrait for DualTVL1OpticalFlow {
		#[inline] fn as_raw_mut_DualTVL1OpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { DualTVL1OpticalFlow, crate::optflow::DualTVL1OpticalFlowTraitConst, as_raw_DualTVL1OpticalFlow, crate::optflow::DualTVL1OpticalFlowTrait, as_raw_mut_DualTVL1OpticalFlow }
	pub struct GPCDetails {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { GPCDetails }
	impl Drop for GPCDetails {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_GPCDetails_delete(self.as_raw_mut_GPCDetails()) };
		}
	}
	unsafe impl Send for GPCDetails {}
	impl GPCDetails {
		/// Creates a default instance of the class by calling the default constructor
		#[inline]
		pub fn default() -> crate::optflow::GPCDetails {
			let ret = unsafe { sys::cv_optflow_GPCDetails_defaultNew_const() };
			let ret = unsafe { crate::optflow::GPCDetails::opencv_from_extern(ret) };
			ret
		}
		#[inline]
		pub fn drop_outliers(corr: &mut core::Vector<core::Tuple<(core::Point2i, core::Point2i)>>) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCDetails_dropOutliers_vectorLpairLcv_Point2i__cv_Point2iGGR(corr.as_raw_mut_VectorOfTupleOfPoint2i_Point2i(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		pub fn get_all_descriptors_for_image(img_ch: &impl core::MatTraitConst, descr: &mut core::Vector<crate::optflow::GPCPatchDescriptor>, mp: crate::optflow::GPCMatchingParams, typ: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCDetails_getAllDescriptorsForImage_const_MatX_vectorLGPCPatchDescriptorGR_const_GPCMatchingParamsR_int(img_ch.as_raw_Mat(), descr.as_raw_mut_VectorOfGPCPatchDescriptor(), &mp, typ, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		pub fn get_coordinates_from_index(index: size_t, sz: core::Size, x: &mut i32, y: &mut i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCDetails_getCoordinatesFromIndex_size_t_Size_intR_intR(index, &sz, x, y, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::GPCDetails]
	pub trait GPCDetailsTraitConst {
		fn as_raw_GPCDetails(&self) -> *const c_void;
	}
	/// Mutable methods for [crate::optflow::GPCDetails]
	pub trait GPCDetailsTrait: crate::optflow::GPCDetailsTraitConst {
		fn as_raw_mut_GPCDetails(&mut self) -> *mut c_void;
	}
	impl Default for GPCDetails {
		#[inline]
		/// Forwards to infallible Self::default()
		fn default() -> Self {
			Self::default()
		}
	}
	impl std::fmt::Debug for GPCDetails {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("GPCDetails")
				.finish()
		}
	}
	impl crate::optflow::GPCDetailsTraitConst for GPCDetails {
		#[inline] fn as_raw_GPCDetails(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::GPCDetailsTrait for GPCDetails {
		#[inline] fn as_raw_mut_GPCDetails(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCDetails, crate::optflow::GPCDetailsTraitConst, as_raw_GPCDetails, crate::optflow::GPCDetailsTrait, as_raw_mut_GPCDetails }
	/// Class encapsulating matching parameters.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq)]
	pub struct GPCMatchingParams {
		/// Whether to use OpenCL to speed up the matching.
		pub use_opencl: bool,
	}
	opencv_type_simple! { crate::optflow::GPCMatchingParams }
	impl GPCMatchingParams {
		/// ## C++ default parameters
		/// * _use_opencl: false
		#[inline]
		pub fn new(_use_opencl: bool) -> Result<crate::optflow::GPCMatchingParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCMatchingParams_GPCMatchingParams_bool(_use_opencl, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// ## Note
		/// This alternative version of [new] function uses the following default values for its arguments:
		/// * _use_opencl: false
		#[inline]
		pub fn new_def() -> Result<crate::optflow::GPCMatchingParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCMatchingParams_GPCMatchingParams(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		pub fn copy(params: crate::optflow::GPCMatchingParams) -> Result<crate::optflow::GPCMatchingParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCMatchingParams_GPCMatchingParams_const_GPCMatchingParamsR(¶ms, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	pub struct GPCPatchDescriptor {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { GPCPatchDescriptor }
	impl Drop for GPCPatchDescriptor {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_GPCPatchDescriptor_delete(self.as_raw_mut_GPCPatchDescriptor()) };
		}
	}
	unsafe impl Send for GPCPatchDescriptor {}
	impl GPCPatchDescriptor {
		/// number of features in a patch descriptor
		pub const nFeatures: u32 = 18;
		/// Creates a default instance of the class by calling the default constructor
		#[inline]
		pub fn default() -> crate::optflow::GPCPatchDescriptor {
			let ret = unsafe { sys::cv_optflow_GPCPatchDescriptor_defaultNew_const() };
			let ret = unsafe { crate::optflow::GPCPatchDescriptor::opencv_from_extern(ret) };
			ret
		}
	}
	/// Constant methods for [crate::optflow::GPCPatchDescriptor]
	pub trait GPCPatchDescriptorTraitConst {
		fn as_raw_GPCPatchDescriptor(&self) -> *const c_void;
		#[inline]
		fn feature(&self) -> core::VecN<f64, 18> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCPatchDescriptor_propFeature_const(self.as_raw_GPCPatchDescriptor(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			ret
		}
		#[inline]
		fn dot(&self, coef: core::VecN<f64, 18>) -> Result<f64> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCPatchDescriptor_dot_const_const_VecLdouble__18GR(self.as_raw_GPCPatchDescriptor(), &coef, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn is_separated(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCPatchDescriptor_isSeparated_const(self.as_raw_GPCPatchDescriptor(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::GPCPatchDescriptor]
	pub trait GPCPatchDescriptorTrait: crate::optflow::GPCPatchDescriptorTraitConst {
		fn as_raw_mut_GPCPatchDescriptor(&mut self) -> *mut c_void;
		#[inline]
		fn set_feature(&mut self, val: core::VecN<f64, 18>) {
			let ret = unsafe { sys::cv_optflow_GPCPatchDescriptor_propFeature_const_VecLdouble__18G(self.as_raw_mut_GPCPatchDescriptor(), &val) };
			ret
		}
		#[inline]
		fn mark_as_separated(&mut self) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCPatchDescriptor_markAsSeparated(self.as_raw_mut_GPCPatchDescriptor(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl Default for GPCPatchDescriptor {
		#[inline]
		/// Forwards to infallible Self::default()
		fn default() -> Self {
			Self::default()
		}
	}
	impl std::fmt::Debug for GPCPatchDescriptor {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("GPCPatchDescriptor")
				.field("feature", &crate::optflow::GPCPatchDescriptorTraitConst::feature(self))
				.finish()
		}
	}
	impl crate::optflow::GPCPatchDescriptorTraitConst for GPCPatchDescriptor {
		#[inline] fn as_raw_GPCPatchDescriptor(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::GPCPatchDescriptorTrait for GPCPatchDescriptor {
		#[inline] fn as_raw_mut_GPCPatchDescriptor(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCPatchDescriptor, crate::optflow::GPCPatchDescriptorTraitConst, as_raw_GPCPatchDescriptor, crate::optflow::GPCPatchDescriptorTrait, as_raw_mut_GPCPatchDescriptor }
	pub struct GPCPatchSample {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { GPCPatchSample }
	impl Drop for GPCPatchSample {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_GPCPatchSample_delete(self.as_raw_mut_GPCPatchSample()) };
		}
	}
	unsafe impl Send for GPCPatchSample {}
	impl GPCPatchSample {
		/// Creates a default instance of the class by calling the default constructor
		#[inline]
		pub fn default() -> crate::optflow::GPCPatchSample {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_defaultNew_const() };
			let ret = unsafe { crate::optflow::GPCPatchSample::opencv_from_extern(ret) };
			ret
		}
	}
	/// Constant methods for [crate::optflow::GPCPatchSample]
	pub trait GPCPatchSampleTraitConst {
		fn as_raw_GPCPatchSample(&self) -> *const c_void;
		#[inline]
		fn ref_(&self) -> crate::optflow::GPCPatchDescriptor {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propRef_const(self.as_raw_GPCPatchSample()) };
			let ret = unsafe { crate::optflow::GPCPatchDescriptor::opencv_from_extern(ret) };
			ret
		}
		#[inline]
		fn pos(&self) -> crate::optflow::GPCPatchDescriptor {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propPos_const(self.as_raw_GPCPatchSample()) };
			let ret = unsafe { crate::optflow::GPCPatchDescriptor::opencv_from_extern(ret) };
			ret
		}
		#[inline]
		fn neg(&self) -> crate::optflow::GPCPatchDescriptor {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propNeg_const(self.as_raw_GPCPatchSample()) };
			let ret = unsafe { crate::optflow::GPCPatchDescriptor::opencv_from_extern(ret) };
			ret
		}
		#[inline]
		fn get_directions(&self, refdir: &mut bool, posdir: &mut bool, negdir: &mut bool, coef: core::VecN<f64, 18>, rhs: f64) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCPatchSample_getDirections_const_boolR_boolR_boolR_const_VecLdouble__18GR_double(self.as_raw_GPCPatchSample(), refdir, posdir, negdir, &coef, rhs, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::GPCPatchSample]
	pub trait GPCPatchSampleTrait: crate::optflow::GPCPatchSampleTraitConst {
		fn as_raw_mut_GPCPatchSample(&mut self) -> *mut c_void;
		#[inline]
		fn set_ref(&mut self, val: crate::optflow::GPCPatchDescriptor) {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propRef_const_GPCPatchDescriptor(self.as_raw_mut_GPCPatchSample(), val.as_raw_GPCPatchDescriptor()) };
			ret
		}
		#[inline]
		fn set_pos(&mut self, val: crate::optflow::GPCPatchDescriptor) {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propPos_const_GPCPatchDescriptor(self.as_raw_mut_GPCPatchSample(), val.as_raw_GPCPatchDescriptor()) };
			ret
		}
		#[inline]
		fn set_neg(&mut self, val: crate::optflow::GPCPatchDescriptor) {
			let ret = unsafe { sys::cv_optflow_GPCPatchSample_propNeg_const_GPCPatchDescriptor(self.as_raw_mut_GPCPatchSample(), val.as_raw_GPCPatchDescriptor()) };
			ret
		}
	}
	impl Default for GPCPatchSample {
		#[inline]
		/// Forwards to infallible Self::default()
		fn default() -> Self {
			Self::default()
		}
	}
	impl std::fmt::Debug for GPCPatchSample {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("GPCPatchSample")
				.field("ref_", &crate::optflow::GPCPatchSampleTraitConst::ref_(self))
				.field("pos", &crate::optflow::GPCPatchSampleTraitConst::pos(self))
				.field("neg", &crate::optflow::GPCPatchSampleTraitConst::neg(self))
				.finish()
		}
	}
	impl crate::optflow::GPCPatchSampleTraitConst for GPCPatchSample {
		#[inline] fn as_raw_GPCPatchSample(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::GPCPatchSampleTrait for GPCPatchSample {
		#[inline] fn as_raw_mut_GPCPatchSample(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCPatchSample, crate::optflow::GPCPatchSampleTraitConst, as_raw_GPCPatchSample, crate::optflow::GPCPatchSampleTrait, as_raw_mut_GPCPatchSample }
	/// Class encapsulating training parameters.
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq)]
	pub struct GPCTrainingParams {
		/// Maximum tree depth to stop partitioning.
		pub max_tree_depth: u32,
		/// Minimum number of samples in the node to stop partitioning.
		pub min_number_of_samples: i32,
		/// Type of descriptors to use.
		pub descriptor_type: i32,
		/// Print progress to stdout.
		pub print_progress: bool,
	}
	opencv_type_simple! { crate::optflow::GPCTrainingParams }
	impl GPCTrainingParams {
		#[inline]
		pub fn check(self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingParams_check_const(&self, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// ## C++ default parameters
		/// * _max_tree_depth: 20
		/// * _min_number_of_samples: 3
		/// * _descriptor_type: GPC_DESCRIPTOR_DCT
		/// * _print_progress: true
		#[inline]
		pub fn new(_max_tree_depth: u32, _min_number_of_samples: i32, _descriptor_type: crate::optflow::GPCDescType, _print_progress: bool) -> Result<crate::optflow::GPCTrainingParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingParams_GPCTrainingParams_unsigned_int_int_GPCDescType_bool(_max_tree_depth, _min_number_of_samples, _descriptor_type, _print_progress, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// ## Note
		/// This alternative version of [new] function uses the following default values for its arguments:
		/// * _max_tree_depth: 20
		/// * _min_number_of_samples: 3
		/// * _descriptor_type: GPC_DESCRIPTOR_DCT
		/// * _print_progress: true
		#[inline]
		pub fn new_def() -> Result<crate::optflow::GPCTrainingParams> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingParams_GPCTrainingParams(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Class encapsulating training samples.
	pub struct GPCTrainingSamples {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { GPCTrainingSamples }
	impl Drop for GPCTrainingSamples {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_GPCTrainingSamples_delete(self.as_raw_mut_GPCTrainingSamples()) };
		}
	}
	unsafe impl Send for GPCTrainingSamples {}
	impl GPCTrainingSamples {
		/// Creates a default instance of the class by calling the default constructor
		#[inline]
		pub fn default() -> crate::optflow::GPCTrainingSamples {
			let ret = unsafe { sys::cv_optflow_GPCTrainingSamples_defaultNew_const() };
			let ret = unsafe { crate::optflow::GPCTrainingSamples::opencv_from_extern(ret) };
			ret
		}
		/// This function can be used to extract samples from a pair of images and a ground truth flow.
		/// Sizes of all the provided vectors must be equal.
		#[inline]
		pub fn create(images_from: &core::Vector<String>, images_to: &core::Vector<String>, gt: &core::Vector<String>, descriptor_type: i32) -> Result<core::Ptr<crate::optflow::GPCTrainingSamples>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingSamples_create_const_vectorLStringGR_const_vectorLStringGR_const_vectorLStringGR_int(images_from.as_raw_VectorOfString(), images_to.as_raw_VectorOfString(), gt.as_raw_VectorOfString(), descriptor_type, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::GPCTrainingSamples>::opencv_from_extern(ret) };
			Ok(ret)
		}
		#[inline]
		pub fn create_1(images_from: &impl ToInputArray, images_to: &impl ToInputArray, gt: &impl ToInputArray, descriptor_type: i32) -> Result<core::Ptr<crate::optflow::GPCTrainingSamples>> {
			input_array_arg!(images_from);
			input_array_arg!(images_to);
			input_array_arg!(gt);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingSamples_create_const__InputArrayR_const__InputArrayR_const__InputArrayR_int(images_from.as_raw__InputArray(), images_to.as_raw__InputArray(), gt.as_raw__InputArray(), descriptor_type, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::GPCTrainingSamples>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::GPCTrainingSamples]
	pub trait GPCTrainingSamplesTraitConst {
		fn as_raw_GPCTrainingSamples(&self) -> *const c_void;
		#[inline]
		fn size(&self) -> Result<size_t> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingSamples_size_const(self.as_raw_GPCTrainingSamples(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn typ(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTrainingSamples_type_const(self.as_raw_GPCTrainingSamples(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::GPCTrainingSamples]
	pub trait GPCTrainingSamplesTrait: crate::optflow::GPCTrainingSamplesTraitConst {
		fn as_raw_mut_GPCTrainingSamples(&mut self) -> *mut c_void;
	}
	impl Default for GPCTrainingSamples {
		#[inline]
		/// Forwards to infallible Self::default()
		fn default() -> Self {
			Self::default()
		}
	}
	impl std::fmt::Debug for GPCTrainingSamples {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("GPCTrainingSamples")
				.finish()
		}
	}
	impl crate::optflow::GPCTrainingSamplesTraitConst for GPCTrainingSamples {
		#[inline] fn as_raw_GPCTrainingSamples(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::GPCTrainingSamplesTrait for GPCTrainingSamples {
		#[inline] fn as_raw_mut_GPCTrainingSamples(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCTrainingSamples, crate::optflow::GPCTrainingSamplesTraitConst, as_raw_GPCTrainingSamples, crate::optflow::GPCTrainingSamplesTrait, as_raw_mut_GPCTrainingSamples }
	/// Class for individual tree.
	pub struct GPCTree {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { GPCTree }
	impl Drop for GPCTree {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_GPCTree_delete(self.as_raw_mut_GPCTree()) };
		}
	}
	unsafe impl Send for GPCTree {}
	impl GPCTree {
		/// Creates a default instance of the class by calling the default constructor
		#[inline]
		pub fn default() -> crate::optflow::GPCTree {
			let ret = unsafe { sys::cv_optflow_GPCTree_defaultNew_const() };
			let ret = unsafe { crate::optflow::GPCTree::opencv_from_extern(ret) };
			ret
		}
		#[inline]
		pub fn create() -> Result<core::Ptr<crate::optflow::GPCTree>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::GPCTree>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::GPCTree]
	pub trait GPCTreeTraitConst: core::AlgorithmTraitConst {
		fn as_raw_GPCTree(&self) -> *const c_void;
		#[inline]
		fn write(&self, fs: &mut impl core::FileStorageTrait) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_write_const_FileStorageR(self.as_raw_GPCTree(), fs.as_raw_mut_FileStorage(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn find_leaf_for_patch(&self, descr: &impl crate::optflow::GPCPatchDescriptorTraitConst) -> Result<u32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_findLeafForPatch_const_const_GPCPatchDescriptorR(self.as_raw_GPCTree(), descr.as_raw_GPCPatchDescriptor(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn equals(&self, t: &impl crate::optflow::GPCTreeTraitConst) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_operatorEQ_const_const_GPCTreeR(self.as_raw_GPCTree(), t.as_raw_GPCTree(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_descriptor_type(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_getDescriptorType_const(self.as_raw_GPCTree(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::GPCTree]
	pub trait GPCTreeTrait: core::AlgorithmTrait + crate::optflow::GPCTreeTraitConst {
		fn as_raw_mut_GPCTree(&mut self) -> *mut c_void;
		/// ## C++ default parameters
		/// * params: GPCTrainingParams()
		#[inline]
		fn train(&mut self, samples: &mut impl crate::optflow::GPCTrainingSamplesTrait, params: crate::optflow::GPCTrainingParams) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_train_GPCTrainingSamplesR_const_GPCTrainingParams(self.as_raw_mut_GPCTree(), samples.as_raw_mut_GPCTrainingSamples(), ¶ms, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// ## Note
		/// This alternative version of [GPCTreeTrait::train] function uses the following default values for its arguments:
		/// * params: GPCTrainingParams()
		#[inline]
		fn train_def(&mut self, samples: &mut impl crate::optflow::GPCTrainingSamplesTrait) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_train_GPCTrainingSamplesR(self.as_raw_mut_GPCTree(), samples.as_raw_mut_GPCTrainingSamples(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn read(&mut self, fn_: &impl core::FileNodeTraitConst) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_read_const_FileNodeR(self.as_raw_mut_GPCTree(), fn_.as_raw_FileNode(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl Default for GPCTree {
		#[inline]
		/// Forwards to infallible Self::default()
		fn default() -> Self {
			Self::default()
		}
	}
	impl std::fmt::Debug for GPCTree {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("GPCTree")
				.finish()
		}
	}
	boxed_cast_base! { GPCTree, core::Algorithm, cv_optflow_GPCTree_to_Algorithm }
	impl core::AlgorithmTraitConst for GPCTree {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	impl core::AlgorithmTrait for GPCTree {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCTree, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }
	impl crate::optflow::GPCTreeTraitConst for GPCTree {
		#[inline] fn as_raw_GPCTree(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::GPCTreeTrait for GPCTree {
		#[inline] fn as_raw_mut_GPCTree(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { GPCTree, crate::optflow::GPCTreeTraitConst, as_raw_GPCTree, crate::optflow::GPCTreeTrait, as_raw_mut_GPCTree }
	#[repr(C)]
	#[derive(Copy, Clone, Debug, PartialEq)]
	pub struct GPCTree_Node {
		/// Hyperplane coefficients
		pub coef: core::VecN<f64, 18>,
		/// Bias term of the hyperplane
		pub rhs: f64,
		pub left: u32,
		pub right: u32,
	}
	opencv_type_simple! { crate::optflow::GPCTree_Node }
	impl GPCTree_Node {
		#[inline]
		pub fn equals(self, n: crate::optflow::GPCTree_Node) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_GPCTree_Node_operatorEQ_const_const_NodeR(&self, &n, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// PCAFlow algorithm.
	pub struct OpticalFlowPCAFlow {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { OpticalFlowPCAFlow }
	impl Drop for OpticalFlowPCAFlow {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_OpticalFlowPCAFlow_delete(self.as_raw_mut_OpticalFlowPCAFlow()) };
		}
	}
	unsafe impl Send for OpticalFlowPCAFlow {}
	impl OpticalFlowPCAFlow {
		/// Creates an instance of PCAFlow algorithm.
		/// ## Parameters
		/// * _prior: Learned prior or no prior (default). see also: cv::optflow::PCAPrior
		/// * _basisSize: Number of basis vectors.
		/// * _sparseRate: Controls density of sparse matches.
		/// * _retainedCornersFraction: Retained corners fraction.
		/// * _occlusionsThreshold: Occlusion threshold.
		/// * _dampingFactor: Regularization term for solving least-squares. It is not related to the prior regularization.
		/// * _claheClip: Clip parameter for CLAHE.
		///
		/// ## C++ default parameters
		/// * _prior: Ptr<constPCAPrior>()
		/// * _basis_size: Size(18,14)
		/// * _sparse_rate: 0.024
		/// * _retained_corners_fraction: 0.2
		/// * _occlusions_threshold: 0.0003
		/// * _damping_factor: 0.00002
		/// * _clahe_clip: 14
		#[inline]
		pub fn new(_prior: core::Ptr<crate::optflow::PCAPrior>, _basis_size: core::Size, _sparse_rate: f32, _retained_corners_fraction: f32, _occlusions_threshold: f32, _damping_factor: f32, _clahe_clip: f32) -> Result<crate::optflow::OpticalFlowPCAFlow> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_OpticalFlowPCAFlow_OpticalFlowPCAFlow_PtrLconst_PCAPriorG_const_Size_float_float_float_float_float(_prior.as_raw_PtrOfPCAPrior(), &_basis_size, _sparse_rate, _retained_corners_fraction, _occlusions_threshold, _damping_factor, _clahe_clip, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::optflow::OpticalFlowPCAFlow::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Creates an instance of PCAFlow algorithm.
		/// ## Parameters
		/// * _prior: Learned prior or no prior (default). see also: cv::optflow::PCAPrior
		/// * _basisSize: Number of basis vectors.
		/// * _sparseRate: Controls density of sparse matches.
		/// * _retainedCornersFraction: Retained corners fraction.
		/// * _occlusionsThreshold: Occlusion threshold.
		/// * _dampingFactor: Regularization term for solving least-squares. It is not related to the prior regularization.
		/// * _claheClip: Clip parameter for CLAHE.
		///
		/// ## Note
		/// This alternative version of [new] function uses the following default values for its arguments:
		/// * _prior: Ptr<constPCAPrior>()
		/// * _basis_size: Size(18,14)
		/// * _sparse_rate: 0.024
		/// * _retained_corners_fraction: 0.2
		/// * _occlusions_threshold: 0.0003
		/// * _damping_factor: 0.00002
		/// * _clahe_clip: 14
		#[inline]
		pub fn new_def() -> Result<crate::optflow::OpticalFlowPCAFlow> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_OpticalFlowPCAFlow_OpticalFlowPCAFlow(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::optflow::OpticalFlowPCAFlow::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::OpticalFlowPCAFlow]
	pub trait OpticalFlowPCAFlowTraitConst: crate::video::DenseOpticalFlowTraitConst {
		fn as_raw_OpticalFlowPCAFlow(&self) -> *const c_void;
	}
	/// Mutable methods for [crate::optflow::OpticalFlowPCAFlow]
	pub trait OpticalFlowPCAFlowTrait: crate::optflow::OpticalFlowPCAFlowTraitConst + crate::video::DenseOpticalFlowTrait {
		fn as_raw_mut_OpticalFlowPCAFlow(&mut self) -> *mut c_void;
		#[inline]
		fn calc(&mut self, i0: &impl ToInputArray, i1: &impl ToInputArray, flow: &mut impl ToInputOutputArray) -> Result<()> {
			input_array_arg!(i0);
			input_array_arg!(i1);
			input_output_array_arg!(flow);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_OpticalFlowPCAFlow_calc_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR(self.as_raw_mut_OpticalFlowPCAFlow(), i0.as_raw__InputArray(), i1.as_raw__InputArray(), flow.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn collect_garbage(&mut self) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_OpticalFlowPCAFlow_collectGarbage(self.as_raw_mut_OpticalFlowPCAFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl std::fmt::Debug for OpticalFlowPCAFlow {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("OpticalFlowPCAFlow")
				.finish()
		}
	}
	boxed_cast_base! { OpticalFlowPCAFlow, core::Algorithm, cv_optflow_OpticalFlowPCAFlow_to_Algorithm }
	boxed_cast_base! { OpticalFlowPCAFlow, crate::video::DenseOpticalFlow, cv_optflow_OpticalFlowPCAFlow_to_DenseOpticalFlow }
	impl core::AlgorithmTraitConst for OpticalFlowPCAFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	impl core::AlgorithmTrait for OpticalFlowPCAFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { OpticalFlowPCAFlow, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }
	impl crate::video::DenseOpticalFlowTraitConst for OpticalFlowPCAFlow {
		#[inline] fn as_raw_DenseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::video::DenseOpticalFlowTrait for OpticalFlowPCAFlow {
		#[inline] fn as_raw_mut_DenseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { OpticalFlowPCAFlow, crate::video::DenseOpticalFlowTraitConst, as_raw_DenseOpticalFlow, crate::video::DenseOpticalFlowTrait, as_raw_mut_DenseOpticalFlow }
	impl crate::optflow::OpticalFlowPCAFlowTraitConst for OpticalFlowPCAFlow {
		#[inline] fn as_raw_OpticalFlowPCAFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::OpticalFlowPCAFlowTrait for OpticalFlowPCAFlow {
		#[inline] fn as_raw_mut_OpticalFlowPCAFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { OpticalFlowPCAFlow, crate::optflow::OpticalFlowPCAFlowTraitConst, as_raw_OpticalFlowPCAFlow, crate::optflow::OpticalFlowPCAFlowTrait, as_raw_mut_OpticalFlowPCAFlow }
	///
	/// This class can be used for imposing a learned prior on the resulting optical flow.
	/// Solution will be regularized according to this prior.
	/// You need to generate appropriate prior file with "learn_prior.py" script beforehand.
	pub struct PCAPrior {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { PCAPrior }
	impl Drop for PCAPrior {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_PCAPrior_delete(self.as_raw_mut_PCAPrior()) };
		}
	}
	unsafe impl Send for PCAPrior {}
	impl PCAPrior {
		#[inline]
		pub fn new(path_to_prior: &str) -> Result<crate::optflow::PCAPrior> {
			extern_container_arg!(path_to_prior);
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_PCAPrior_PCAPrior_const_charX(path_to_prior.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::optflow::PCAPrior::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::PCAPrior]
	pub trait PCAPriorTraitConst {
		fn as_raw_PCAPrior(&self) -> *const c_void;
		#[inline]
		fn get_padding(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_PCAPrior_getPadding_const(self.as_raw_PCAPrior(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_basis_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_PCAPrior_getBasisSize_const(self.as_raw_PCAPrior(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn fill_constraints(&self, a1: &mut f32, a2: &mut f32, b1: &mut f32, b2: &mut f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_PCAPrior_fillConstraints_const_floatX_floatX_floatX_floatX(self.as_raw_PCAPrior(), a1, a2, b1, b2, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::PCAPrior]
	pub trait PCAPriorTrait: crate::optflow::PCAPriorTraitConst {
		fn as_raw_mut_PCAPrior(&mut self) -> *mut c_void;
	}
	impl std::fmt::Debug for PCAPrior {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("PCAPrior")
				.finish()
		}
	}
	impl crate::optflow::PCAPriorTraitConst for PCAPrior {
		#[inline] fn as_raw_PCAPrior(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::PCAPriorTrait for PCAPrior {
		#[inline] fn as_raw_mut_PCAPrior(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { PCAPrior, crate::optflow::PCAPriorTraitConst, as_raw_PCAPrior, crate::optflow::PCAPriorTrait, as_raw_mut_PCAPrior }
	/// This is used store and set up the parameters of the robust local optical flow (RLOF) algoritm.
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	/// This RLOF implementation can be seen as an improved pyramidal iterative Lucas-Kanade and includes
	/// a set of improving modules. The main improvements in respect to the pyramidal iterative Lucas-Kanade
	/// are:
	///  - A more robust redecending M-estimator framework (see [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012)) to improve the accuracy at
	///    motion boundaries and appearing and disappearing pixels.
	///  - an adaptive support region strategies to improve the accuracy at motion boundaries to reduce the
	///    corona effect, i.e oversmoothing of the PLK at motion/object boundaries. The cross-based segementation
	///    strategy (SR_CROSS) proposed in [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014) uses a simple segmenation approach to obtain the optimal
	///    shape of the support region.
	///  - To deal with illumination changes (outdoor sequences and shadow) the intensity constancy assumption
	///    based optical flow equation has been adopt with the Gennert and Negahdaripour illumination model
	///    (see [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016)). This model can be switched on/off with the useIlluminationModel variable.
	///  - By using a global motion prior initialization (see [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016)) of the iterative refinement
	///    the accuracy could be significantly improved for large displacements. This initialization can be
	///    switched on and of with useGlobalMotionPrior variable.
	///
	/// The RLOF can be computed with the SparseOpticalFlow class or function interface to track a set of features
	/// or with the DenseOpticalFlow class or function interface to compute dense optical flow.
	/// ## See also
	/// optflow::DenseRLOFOpticalFlow, optflow::calcOpticalFlowDenseRLOF(), optflow::SparseRLOFOpticalFlow, optflow::calcOpticalFlowSparseRLOF()
	pub struct RLOFOpticalFlowParameter {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { RLOFOpticalFlowParameter }
	impl Drop for RLOFOpticalFlowParameter {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_delete(self.as_raw_mut_RLOFOpticalFlowParameter()) };
		}
	}
	unsafe impl Send for RLOFOpticalFlowParameter {}
	impl RLOFOpticalFlowParameter {
		#[inline]
		pub fn default() -> Result<crate::optflow::RLOFOpticalFlowParameter> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_RLOFOpticalFlowParameter(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { crate::optflow::RLOFOpticalFlowParameter::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Creates instance of optflow::RLOFOpticalFlowParameter
		#[inline]
		pub fn create() -> Result<core::Ptr<crate::optflow::RLOFOpticalFlowParameter>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::RLOFOpticalFlowParameter>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::RLOFOpticalFlowParameter]
	pub trait RLOFOpticalFlowParameterTraitConst {
		fn as_raw_RLOFOpticalFlowParameter(&self) -> *const c_void;
		#[inline]
		fn solver_type(&self) -> crate::optflow::SolverType {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSolverType_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			ret
		}
		#[inline]
		fn support_region_type(&self) -> crate::optflow::SupportRegionType {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSupportRegionType_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			ret
		}
		#[inline]
		fn norm_sigma0(&self) -> f32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propNormSigma0_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn norm_sigma1(&self) -> f32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propNormSigma1_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn small_win_size(&self) -> i32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSmallWinSize_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn large_win_size(&self) -> i32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propLargeWinSize_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn cross_segmentation_threshold(&self) -> i32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propCrossSegmentationThreshold_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn max_level(&self) -> i32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMaxLevel_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn use_initial_flow(&self) -> bool {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseInitialFlow_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn use_illumination_model(&self) -> bool {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseIlluminationModel_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn use_global_motion_prior(&self) -> bool {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseGlobalMotionPrior_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn max_iteration(&self) -> i32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMaxIteration_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn min_eigen_value(&self) -> f32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMinEigenValue_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn global_motion_ransac_threshold(&self) -> f32 {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propGlobalMotionRansacThreshold_const(self.as_raw_RLOFOpticalFlowParameter()) };
			ret
		}
		#[inline]
		fn get_solver_type(&self) -> Result<crate::optflow::SolverType> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getSolverType_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_support_region_type(&self) -> Result<crate::optflow::SupportRegionType> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getSupportRegionType_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_norm_sigma0(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getNormSigma0_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_norm_sigma1(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getNormSigma1_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_small_win_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getSmallWinSize_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_large_win_size(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getLargeWinSize_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_cross_segmentation_threshold(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getCrossSegmentationThreshold_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_max_level(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getMaxLevel_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_use_initial_flow(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getUseInitialFlow_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_use_illumination_model(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getUseIlluminationModel_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_use_global_motion_prior(&self) -> Result<bool> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getUseGlobalMotionPrior_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_max_iteration(&self) -> Result<i32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getMaxIteration_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_min_eigen_value(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getMinEigenValue_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn get_global_motion_ransac_threshold(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_getGlobalMotionRansacThreshold_const(self.as_raw_RLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::RLOFOpticalFlowParameter]
	pub trait RLOFOpticalFlowParameterTrait: crate::optflow::RLOFOpticalFlowParameterTraitConst {
		fn as_raw_mut_RLOFOpticalFlowParameter(&mut self) -> *mut c_void;
		#[inline]
		fn set_solver_type(&mut self, val: crate::optflow::SolverType) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSolverType_const_SolverType(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_support_region_type(&mut self, val: crate::optflow::SupportRegionType) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSupportRegionType_const_SupportRegionType(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_norm_sigma0(&mut self, val: f32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propNormSigma0_const_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_norm_sigma1(&mut self, val: f32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propNormSigma1_const_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_small_win_size(&mut self, val: i32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propSmallWinSize_const_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_large_win_size(&mut self, val: i32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propLargeWinSize_const_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_cross_segmentation_threshold(&mut self, val: i32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propCrossSegmentationThreshold_const_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_max_level(&mut self, val: i32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMaxLevel_const_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_use_initial_flow(&mut self, val: bool) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseInitialFlow_const_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_use_illumination_model(&mut self, val: bool) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseIlluminationModel_const_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_use_global_motion_prior(&mut self, val: bool) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propUseGlobalMotionPrior_const_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_max_iteration(&mut self, val: i32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMaxIteration_const_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_min_eigen_value(&mut self, val: f32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propMinEigenValue_const_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		#[inline]
		fn set_global_motion_ransac_threshold(&mut self, val: f32) {
			let ret = unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_propGlobalMotionRansacThreshold_const_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val) };
			ret
		}
		/// Enable M-estimator or disable and use least-square estimator.
		/// Enables M-estimator by setting sigma parameters to (3.2, 7.0). Disabling M-estimator can reduce
		///      *  runtime, while enabling can improve the accuracy.
		/// ## Parameters
		/// * val: If true M-estimator is used. If false least-square estimator is used.
		///      *    see also: setNormSigma0, setNormSigma1
		#[inline]
		fn set_use_m_estimator(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setUseMEstimator_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_solver_type_1(&mut self, val: crate::optflow::SolverType) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setSolverType_SolverType(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_support_region_type_1(&mut self, val: crate::optflow::SupportRegionType) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setSupportRegionType_SupportRegionType(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_norm_sigma0_1(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setNormSigma0_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_norm_sigma1_1(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setNormSigma1_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_small_win_size_1(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setSmallWinSize_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_large_win_size_1(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setLargeWinSize_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_cross_segmentation_threshold_1(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setCrossSegmentationThreshold_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_max_level_1(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setMaxLevel_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_use_initial_flow_1(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setUseInitialFlow_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_use_illumination_model_1(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setUseIlluminationModel_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_use_global_motion_prior_1(&mut self, val: bool) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setUseGlobalMotionPrior_bool(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_max_iteration_1(&mut self, val: i32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setMaxIteration_int(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_min_eigen_value_1(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setMinEigenValue_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		#[inline]
		fn set_global_motion_ransac_threshold_1(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_RLOFOpticalFlowParameter_setGlobalMotionRansacThreshold_float(self.as_raw_mut_RLOFOpticalFlowParameter(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl std::fmt::Debug for RLOFOpticalFlowParameter {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("RLOFOpticalFlowParameter")
				.field("solver_type", &crate::optflow::RLOFOpticalFlowParameterTraitConst::solver_type(self))
				.field("support_region_type", &crate::optflow::RLOFOpticalFlowParameterTraitConst::support_region_type(self))
				.field("norm_sigma0", &crate::optflow::RLOFOpticalFlowParameterTraitConst::norm_sigma0(self))
				.field("norm_sigma1", &crate::optflow::RLOFOpticalFlowParameterTraitConst::norm_sigma1(self))
				.field("small_win_size", &crate::optflow::RLOFOpticalFlowParameterTraitConst::small_win_size(self))
				.field("large_win_size", &crate::optflow::RLOFOpticalFlowParameterTraitConst::large_win_size(self))
				.field("cross_segmentation_threshold", &crate::optflow::RLOFOpticalFlowParameterTraitConst::cross_segmentation_threshold(self))
				.field("max_level", &crate::optflow::RLOFOpticalFlowParameterTraitConst::max_level(self))
				.field("use_initial_flow", &crate::optflow::RLOFOpticalFlowParameterTraitConst::use_initial_flow(self))
				.field("use_illumination_model", &crate::optflow::RLOFOpticalFlowParameterTraitConst::use_illumination_model(self))
				.field("use_global_motion_prior", &crate::optflow::RLOFOpticalFlowParameterTraitConst::use_global_motion_prior(self))
				.field("max_iteration", &crate::optflow::RLOFOpticalFlowParameterTraitConst::max_iteration(self))
				.field("min_eigen_value", &crate::optflow::RLOFOpticalFlowParameterTraitConst::min_eigen_value(self))
				.field("global_motion_ransac_threshold", &crate::optflow::RLOFOpticalFlowParameterTraitConst::global_motion_ransac_threshold(self))
				.finish()
		}
	}
	impl crate::optflow::RLOFOpticalFlowParameterTraitConst for RLOFOpticalFlowParameter {
		#[inline] fn as_raw_RLOFOpticalFlowParameter(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::RLOFOpticalFlowParameterTrait for RLOFOpticalFlowParameter {
		#[inline] fn as_raw_mut_RLOFOpticalFlowParameter(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { RLOFOpticalFlowParameter, crate::optflow::RLOFOpticalFlowParameterTraitConst, as_raw_RLOFOpticalFlowParameter, crate::optflow::RLOFOpticalFlowParameterTrait, as_raw_mut_RLOFOpticalFlowParameter }
	/// Class used for calculation sparse optical flow and feature tracking with robust local optical flow (RLOF) algorithms.
	///
	/// The RLOF is a fast local optical flow approach described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012) [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013) [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014)
	/// and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016) similar to the pyramidal iterative Lucas-Kanade method as
	/// proposed by [Bouguet00](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Bouguet00). More details and experiments can be found in the following thesis [Senst2019](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2019).
	/// The implementation is derived from optflow::calcOpticalFlowPyrLK().
	///
	/// For the RLOF configuration see optflow::RLOFOpticalFlowParameter for further details.
	/// Parameters have been described in [Senst2012](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2012), [Senst2013](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2013), [Senst2014](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2014) and [Senst2016](https://docs.opencv.org/4.11.0/d0/de3/citelist.html#CITEREF_Senst2016).
	///
	///
	/// Note: SIMD parallelization is only available when compiling with SSE4.1.
	/// ## See also
	/// optflow::calcOpticalFlowSparseRLOF(), optflow::RLOFOpticalFlowParameter
	pub struct SparseRLOFOpticalFlow {
		ptr: *mut c_void,
	}
	opencv_type_boxed! { SparseRLOFOpticalFlow }
	impl Drop for SparseRLOFOpticalFlow {
		#[inline]
		fn drop(&mut self) {
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_delete(self.as_raw_mut_SparseRLOFOpticalFlow()) };
		}
	}
	unsafe impl Send for SparseRLOFOpticalFlow {}
	impl SparseRLOFOpticalFlow {
		/// Creates instance of SparseRLOFOpticalFlow
		///
		/// ## Parameters
		/// * rlofParam: see setRLOFOpticalFlowParameter
		/// * forwardBackwardThreshold: see setForwardBackward
		///
		/// ## C++ default parameters
		/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
		/// * forward_backward_threshold: 1.f
		#[inline]
		pub fn create(mut rlof_param: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>, forward_backward_threshold: f32) -> Result<core::Ptr<crate::optflow::SparseRLOFOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_create_PtrLRLOFOpticalFlowParameterG_float(rlof_param.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), forward_backward_threshold, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::SparseRLOFOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Creates instance of SparseRLOFOpticalFlow
		///
		/// ## Parameters
		/// * rlofParam: see setRLOFOpticalFlowParameter
		/// * forwardBackwardThreshold: see setForwardBackward
		///
		/// ## Note
		/// This alternative version of [SparseRLOFOpticalFlow::create] function uses the following default values for its arguments:
		/// * rlof_param: Ptr<RLOFOpticalFlowParameter>()
		/// * forward_backward_threshold: 1.f
		#[inline]
		pub fn create_def() -> Result<core::Ptr<crate::optflow::SparseRLOFOpticalFlow>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_create(ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::SparseRLOFOpticalFlow>::opencv_from_extern(ret) };
			Ok(ret)
		}
	}
	/// Constant methods for [crate::optflow::SparseRLOFOpticalFlow]
	pub trait SparseRLOFOpticalFlowTraitConst: crate::video::SparseOpticalFlowTraitConst {
		fn as_raw_SparseRLOFOpticalFlow(&self) -> *const c_void;
		/// @copydoc DenseRLOFOpticalFlow::setRLOFOpticalFlowParameter
		/// ## See also
		/// setRLOFOpticalFlowParameter
		#[inline]
		fn get_rlof_optical_flow_parameter(&self) -> Result<core::Ptr<crate::optflow::RLOFOpticalFlowParameter>> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_getRLOFOpticalFlowParameter_const(self.as_raw_SparseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			let ret = unsafe { core::Ptr::<crate::optflow::RLOFOpticalFlowParameter>::opencv_from_extern(ret) };
			Ok(ret)
		}
		/// Threshold for the forward backward confidence check
		/// For each feature point a motion vector  is computed.
		///      *     If the forward backward error 
		///      *     is larger than threshold given by this function then the status  will not be used by the following
		///      *    vector field interpolation.  denotes the backward flow. Note, the forward backward test
		///      *    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
		///      *    setForwardBackward
		/// ## See also
		/// setForwardBackward
		#[inline]
		fn get_forward_backward(&self) -> Result<f32> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_getForwardBackward_const(self.as_raw_SparseRLOFOpticalFlow(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	/// Mutable methods for [crate::optflow::SparseRLOFOpticalFlow]
	pub trait SparseRLOFOpticalFlowTrait: crate::optflow::SparseRLOFOpticalFlowTraitConst + crate::video::SparseOpticalFlowTrait {
		fn as_raw_mut_SparseRLOFOpticalFlow(&mut self) -> *mut c_void;
		/// @copydoc DenseRLOFOpticalFlow::setRLOFOpticalFlowParameter
		#[inline]
		fn set_rlof_optical_flow_parameter(&mut self, mut val: core::Ptr<crate::optflow::RLOFOpticalFlowParameter>) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_setRLOFOpticalFlowParameter_PtrLRLOFOpticalFlowParameterG(self.as_raw_mut_SparseRLOFOpticalFlow(), val.as_raw_mut_PtrOfRLOFOpticalFlowParameter(), ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
		/// Threshold for the forward backward confidence check
		/// For each feature point a motion vector  is computed.
		///      *     If the forward backward error 
		///      *     is larger than threshold given by this function then the status  will not be used by the following
		///      *    vector field interpolation.  denotes the backward flow. Note, the forward backward test
		///      *    will only be applied if the threshold > 0. This may results into a doubled runtime for the motion estimation.
		///      *    see also: setForwardBackward
		#[inline]
		fn set_forward_backward(&mut self, val: f32) -> Result<()> {
			return_send!(via ocvrs_return);
			unsafe { sys::cv_optflow_SparseRLOFOpticalFlow_setForwardBackward_float(self.as_raw_mut_SparseRLOFOpticalFlow(), val, ocvrs_return.as_mut_ptr()) };
			return_receive!(ocvrs_return => ret);
			let ret = ret.into_result()?;
			Ok(ret)
		}
	}
	impl std::fmt::Debug for SparseRLOFOpticalFlow {
		#[inline]
		fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
			f.debug_struct("SparseRLOFOpticalFlow")
				.finish()
		}
	}
	boxed_cast_base! { SparseRLOFOpticalFlow, core::Algorithm, cv_optflow_SparseRLOFOpticalFlow_to_Algorithm }
	boxed_cast_base! { SparseRLOFOpticalFlow, crate::video::SparseOpticalFlow, cv_optflow_SparseRLOFOpticalFlow_to_SparseOpticalFlow }
	impl core::AlgorithmTraitConst for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
	}
	impl core::AlgorithmTrait for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { SparseRLOFOpticalFlow, core::AlgorithmTraitConst, as_raw_Algorithm, core::AlgorithmTrait, as_raw_mut_Algorithm }
	impl crate::video::SparseOpticalFlowTraitConst for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_SparseOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::video::SparseOpticalFlowTrait for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_SparseOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { SparseRLOFOpticalFlow, crate::video::SparseOpticalFlowTraitConst, as_raw_SparseOpticalFlow, crate::video::SparseOpticalFlowTrait, as_raw_mut_SparseOpticalFlow }
	impl crate::optflow::SparseRLOFOpticalFlowTraitConst for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_SparseRLOFOpticalFlow(&self) -> *const c_void { self.as_raw() }
	}
	impl crate::optflow::SparseRLOFOpticalFlowTrait for SparseRLOFOpticalFlow {
		#[inline] fn as_raw_mut_SparseRLOFOpticalFlow(&mut self) -> *mut c_void { self.as_raw_mut() }
	}
	boxed_ref! { SparseRLOFOpticalFlow, crate::optflow::SparseRLOFOpticalFlowTraitConst, as_raw_SparseRLOFOpticalFlow, crate::optflow::SparseRLOFOpticalFlowTrait, as_raw_mut_SparseRLOFOpticalFlow }
}