1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
#![allow(
unused_parens,
clippy::excessive_precision,
clippy::missing_safety_doc,
clippy::should_implement_trait,
clippy::too_many_arguments,
clippy::unused_unit,
clippy::let_unit_value,
clippy::derive_partial_eq_without_eq,
)]
//! # Image Processing
//!
//! This module includes image-processing functions.
//! # Image Filtering
//!
//! Functions and classes described in this section are used to perform various linear or non-linear
//! filtering operations on 2D images (represented as Mat's). It means that for each pixel location
//!  in the source image (normally, rectangular), its neighborhood is considered and used to
//! compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
//! morphological operations, it is the minimum or maximum values, and so on. The computed response is
//! stored in the destination image at the same location . It means that the output image
//! will be of the same size as the input image. Normally, the functions support multi-channel arrays,
//! in which case every channel is processed independently. Therefore, the output image will also have
//! the same number of channels as the input one.
//!
//! Another common feature of the functions and classes described in this section is that, unlike
//! simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
//! example, if you want to smooth an image using a Gaussian  filter, then, when
//! processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
//! of the image. You can let these pixels be the same as the left-most image pixels ("replicated
//! border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
//! border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
//! For details, see #BorderTypes
//!
//! @anchor filter_depths
//! ### Depth combinations
//! Input depth (src.depth()) | Output depth (ddepth)
//! --------------------------|----------------------
//! CV_8U | -1/CV_16S/CV_32F/CV_64F
//! CV_16U/CV_16S | -1/CV_32F/CV_64F
//! CV_32F | -1/CV_32F
//! CV_64F | -1/CV_64F
//!
//!
//! Note: when ddepth=-1, the output image will have the same depth as the source.
//!
//!
//! Note: if you need double floating-point accuracy and using single floating-point input data
//! (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
//! the input data to the desired precision.
//!
//! # Geometric Image Transformations
//!
//! The functions in this section perform various geometrical transformations of 2D images. They do not
//! change the image content but deform the pixel grid and map this deformed grid to the destination
//! image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
//! destination to the source. That is, for each pixel  of the destination image, the
//! functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
//! pixel value:
//!
//! 
//!
//! In case when you specify the forward mapping , the OpenCV functions first compute the corresponding inverse mapping
//!  and then use the above formula.
//!
//! The actual implementations of the geometrical transformations, from the most generic remap and to
//! the simplest and the fastest resize, need to solve two main problems with the above formula:
//!
//! - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
//! previous section, for some , either one of , or , or both
//! of them may fall outside of the image. In this case, an extrapolation method needs to be used.
//! OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
//! addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
//! the destination image will not be modified at all.
//!
//! - Interpolation of pixel values. Usually  and  are floating-point
//! numbers. This means that  can be either an affine or perspective
//! transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
//! coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
//! nearest integer coordinates and the corresponding pixel can be used. This is called a
//! nearest-neighbor interpolation. However, a better result can be achieved by using more
//! sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
//! where a polynomial function is fit into some neighborhood of the computed pixel , and then the value of the polynomial at  is taken as the
//! interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
//! #resize for details.
//!
//!
//! Note: The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
//!
//! # Miscellaneous Image Transformations
//! # Drawing Functions
//!
//! Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
//! rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
//! the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
//! for color images and brightness for grayscale images. For color images, the channel ordering is
//! normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
//! color using the Scalar constructor, it should look like:
//!
//! 
//!
//! If you are using your own image rendering and I/O functions, you can use any channel ordering. The
//! drawing functions process each channel independently and do not depend on the channel order or even
//! on the used color space. The whole image can be converted from BGR to RGB or to a different color
//! space using cvtColor .
//!
//! If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
//! many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
//! that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
//! fractional bits is specified by the shift parameter and the real point coordinates are calculated as
//!  . This feature is
//! especially effective when rendering antialiased shapes.
//!
//!
//! Note: The functions do not support alpha-transparency when the target image is 4-channel. In this
//! case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
//! semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
//! image.
//!
//! # Color Space Conversions
//! # ColorMaps in OpenCV
//!
//! The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
//! sensitive to observing changes between colors, so you often need to recolor your grayscale images to
//! get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
//! computer vision application.
//!
//! In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
//! code reads the path to an image from command line, applies a Jet colormap on it and shows the
//! result:
//!
//! @include snippets/imgproc_applyColorMap.cpp
//! ## See also
//! #ColormapTypes
//!
//! # Planar Subdivision
//!
//! The Subdiv2D class described in this section is used to perform various planar subdivision on
//! a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
//! using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
//! In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
//! diagram with red lines.
//!
//! 
//!
//! The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
//! location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
//!
//! # Histograms
//! # Structural Analysis and Shape Descriptors
//! # Motion Analysis and Object Tracking
//! # Feature Detection
//! # Object Detection
//! # Image Segmentation
//! # C API
//! # Hardware Acceleration Layer
//! # Functions
//! # Interface
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
pub use { super::GeneralizedHoughConst, super::GeneralizedHough, super::GeneralizedHoughBallardConst, super::GeneralizedHoughBallard, super::GeneralizedHoughGuilConst, super::GeneralizedHoughGuil, super::CLAHEConst, super::CLAHE, super::Subdiv2DTraitConst, super::Subdiv2DTrait, super::LineSegmentDetectorConst, super::LineSegmentDetector, super::LineIteratorTraitConst, super::LineIteratorTrait, super::IntelligentScissorsMBTraitConst, super::IntelligentScissorsMBTrait };
}
/// the threshold value  is a weighted sum (cross-correlation with a Gaussian
/// window) of the  neighborhood of 
/// minus C . The default sigma (standard deviation) is used for the specified blockSize . See
/// #getGaussianKernel
pub const ADAPTIVE_THRESH_GAUSSIAN_C: i32 = 1;
/// the threshold value  is a mean of the  neighborhood of  minus C
pub const ADAPTIVE_THRESH_MEAN_C: i32 = 0;
/// Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
pub const CCL_BBDT: i32 = 4;
/// Spaghetti [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019) algorithm for 8-way connectivity, Spaghetti4C [Bolelli2021](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2021) algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for both Spaghetti and Spaghetti4C.
pub const CCL_BOLELLI: i32 = 2;
/// Spaghetti [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019) algorithm for 8-way connectivity, Spaghetti4C [Bolelli2021](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2021) algorithm for 4-way connectivity.
pub const CCL_DEFAULT: i32 = -1;
/// BBDT [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for both BBDT and SAUF.
pub const CCL_GRANA: i32 = 1;
/// Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
pub const CCL_SAUF: i32 = 3;
/// Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
pub const CCL_SPAGHETTI: i32 = 5;
/// SAUF [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for SAUF.
pub const CCL_WU: i32 = 0;
/// The total area (in pixels) of the connected component
pub const CC_STAT_AREA: i32 = 4;
/// The vertical size of the bounding box
pub const CC_STAT_HEIGHT: i32 = 3;
/// The leftmost (x) coordinate which is the inclusive start of the bounding
/// box in the horizontal direction.
pub const CC_STAT_LEFT: i32 = 0;
/// Max enumeration value. Used internally only for memory allocation
pub const CC_STAT_MAX: i32 = 5;
/// The topmost (y) coordinate which is the inclusive start of the bounding
/// box in the vertical direction.
pub const CC_STAT_TOP: i32 = 1;
/// The horizontal size of the bounding box
pub const CC_STAT_WIDTH: i32 = 2;
/// stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
/// (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
/// max(abs(x1-x2),abs(y2-y1))==1.
pub const CHAIN_APPROX_NONE: i32 = 1;
/// compresses horizontal, vertical, and diagonal segments and leaves only their end points.
/// For example, an up-right rectangular contour is encoded with 4 points.
pub const CHAIN_APPROX_SIMPLE: i32 = 2;
/// applies one of the flavors of the Teh-Chin chain approximation algorithm [TehChin89](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_TehChin89)
pub const CHAIN_APPROX_TC89_KCOS: i32 = 4;
/// applies one of the flavors of the Teh-Chin chain approximation algorithm [TehChin89](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_TehChin89)
pub const CHAIN_APPROX_TC89_L1: i32 = 3;
/// 
pub const COLORMAP_AUTUMN: i32 = 0;
/// 
pub const COLORMAP_BONE: i32 = 1;
/// 
pub const COLORMAP_CIVIDIS: i32 = 17;
/// 
pub const COLORMAP_COOL: i32 = 8;
/// 
pub const COLORMAP_DEEPGREEN: i32 = 21;
/// 
pub const COLORMAP_HOT: i32 = 11;
/// 
pub const COLORMAP_HSV: i32 = 9;
/// 
pub const COLORMAP_INFERNO: i32 = 14;
/// 
pub const COLORMAP_JET: i32 = 2;
/// 
pub const COLORMAP_MAGMA: i32 = 13;
/// 
pub const COLORMAP_OCEAN: i32 = 5;
/// 
pub const COLORMAP_PARULA: i32 = 12;
/// 
pub const COLORMAP_PINK: i32 = 10;
/// 
pub const COLORMAP_PLASMA: i32 = 15;
/// 
pub const COLORMAP_RAINBOW: i32 = 4;
/// 
pub const COLORMAP_SPRING: i32 = 7;
/// 
pub const COLORMAP_SUMMER: i32 = 6;
/// 
pub const COLORMAP_TURBO: i32 = 20;
/// 
pub const COLORMAP_TWILIGHT: i32 = 18;
/// 
pub const COLORMAP_TWILIGHT_SHIFTED: i32 = 19;
/// 
pub const COLORMAP_VIRIDIS: i32 = 16;
/// 
pub const COLORMAP_WINTER: i32 = 3;
/// convert between RGB/BGR and BGR555 (16-bit images)
pub const COLOR_BGR2BGR555: i32 = 22;
/// convert between RGB/BGR and BGR565 (16-bit images)
pub const COLOR_BGR2BGR565: i32 = 12;
/// add alpha channel to RGB or BGR image
pub const COLOR_BGR2BGRA: i32 = 0;
/// convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
pub const COLOR_BGR2GRAY: i32 = 6;
/// convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
pub const COLOR_BGR2HLS: i32 = 52;
/// convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
pub const COLOR_BGR2HLS_FULL: i32 = 68;
/// convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
pub const COLOR_BGR2HSV: i32 = 40;
/// convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
pub const COLOR_BGR2HSV_FULL: i32 = 66;
/// convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
pub const COLOR_BGR2Lab: i32 = 44;
/// convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
pub const COLOR_BGR2Luv: i32 = 50;
pub const COLOR_BGR2RGB: i32 = 4;
/// convert between RGB and BGR color spaces (with or without alpha channel)
pub const COLOR_BGR2RGBA: i32 = 2;
/// convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
pub const COLOR_BGR2XYZ: i32 = 32;
/// convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
pub const COLOR_BGR2YCrCb: i32 = 36;
/// convert between RGB/BGR and YUV
pub const COLOR_BGR2YUV: i32 = 82;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGR2YUV_I420: i32 = 128;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGR2YUV_IYUV: i32 = 128;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGR2YUV_YV12: i32 = 132;
pub const COLOR_BGR5552BGR: i32 = 24;
pub const COLOR_BGR5552BGRA: i32 = 28;
pub const COLOR_BGR5552GRAY: i32 = 31;
pub const COLOR_BGR5552RGB: i32 = 25;
pub const COLOR_BGR5552RGBA: i32 = 29;
pub const COLOR_BGR5652BGR: i32 = 14;
pub const COLOR_BGR5652BGRA: i32 = 18;
pub const COLOR_BGR5652GRAY: i32 = 21;
pub const COLOR_BGR5652RGB: i32 = 15;
pub const COLOR_BGR5652RGBA: i32 = 19;
/// remove alpha channel from RGB or BGR image
pub const COLOR_BGRA2BGR: i32 = 1;
pub const COLOR_BGRA2BGR555: i32 = 26;
pub const COLOR_BGRA2BGR565: i32 = 16;
pub const COLOR_BGRA2GRAY: i32 = 10;
pub const COLOR_BGRA2RGB: i32 = 3;
pub const COLOR_BGRA2RGBA: i32 = 5;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGRA2YUV_I420: i32 = 130;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGRA2YUV_IYUV: i32 = 130;
/// RGB to YUV 4:2:0 family
pub const COLOR_BGRA2YUV_YV12: i32 = 134;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2BGR: i32 = 46;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2BGRA: i32 = 139;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2BGR_EA: i32 = 135;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2BGR_VNG: i32 = 62;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2GRAY: i32 = 86;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2RGB: i32 = 48;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2RGBA: i32 = 141;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2RGB_EA: i32 = 137;
/// equivalent to RGGB Bayer pattern
pub const COLOR_BayerBG2RGB_VNG: i32 = 64;
pub const COLOR_BayerBGGR2BGR: i32 = 48;
pub const COLOR_BayerBGGR2BGRA: i32 = 141;
pub const COLOR_BayerBGGR2BGR_EA: i32 = 137;
pub const COLOR_BayerBGGR2BGR_VNG: i32 = 64;
pub const COLOR_BayerBGGR2GRAY: i32 = 88;
pub const COLOR_BayerBGGR2RGB: i32 = 46;
pub const COLOR_BayerBGGR2RGBA: i32 = 139;
pub const COLOR_BayerBGGR2RGB_EA: i32 = 135;
pub const COLOR_BayerBGGR2RGB_VNG: i32 = 62;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2BGR: i32 = 47;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2BGRA: i32 = 140;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2BGR_EA: i32 = 136;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2BGR_VNG: i32 = 63;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2GRAY: i32 = 87;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2RGB: i32 = 49;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2RGBA: i32 = 142;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2RGB_EA: i32 = 138;
/// equivalent to GRBG Bayer pattern
pub const COLOR_BayerGB2RGB_VNG: i32 = 65;
pub const COLOR_BayerGBRG2BGR: i32 = 49;
pub const COLOR_BayerGBRG2BGRA: i32 = 142;
pub const COLOR_BayerGBRG2BGR_EA: i32 = 138;
pub const COLOR_BayerGBRG2BGR_VNG: i32 = 65;
pub const COLOR_BayerGBRG2GRAY: i32 = 89;
pub const COLOR_BayerGBRG2RGB: i32 = 47;
pub const COLOR_BayerGBRG2RGBA: i32 = 140;
pub const COLOR_BayerGBRG2RGB_EA: i32 = 136;
pub const COLOR_BayerGBRG2RGB_VNG: i32 = 63;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2BGR: i32 = 49;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2BGRA: i32 = 142;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2BGR_EA: i32 = 138;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2BGR_VNG: i32 = 65;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2GRAY: i32 = 89;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2RGB: i32 = 47;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2RGBA: i32 = 140;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2RGB_EA: i32 = 136;
/// equivalent to GBRG Bayer pattern
pub const COLOR_BayerGR2RGB_VNG: i32 = 63;
pub const COLOR_BayerGRBG2BGR: i32 = 47;
pub const COLOR_BayerGRBG2BGRA: i32 = 140;
pub const COLOR_BayerGRBG2BGR_EA: i32 = 136;
pub const COLOR_BayerGRBG2BGR_VNG: i32 = 63;
pub const COLOR_BayerGRBG2GRAY: i32 = 87;
pub const COLOR_BayerGRBG2RGB: i32 = 49;
pub const COLOR_BayerGRBG2RGBA: i32 = 142;
pub const COLOR_BayerGRBG2RGB_EA: i32 = 138;
pub const COLOR_BayerGRBG2RGB_VNG: i32 = 65;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2BGR: i32 = 48;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2BGRA: i32 = 141;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2BGR_EA: i32 = 137;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2BGR_VNG: i32 = 64;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2GRAY: i32 = 88;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2RGB: i32 = 46;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2RGBA: i32 = 139;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2RGB_EA: i32 = 135;
/// equivalent to BGGR Bayer pattern
pub const COLOR_BayerRG2RGB_VNG: i32 = 62;
pub const COLOR_BayerRGGB2BGR: i32 = 46;
pub const COLOR_BayerRGGB2BGRA: i32 = 139;
pub const COLOR_BayerRGGB2BGR_EA: i32 = 135;
pub const COLOR_BayerRGGB2BGR_VNG: i32 = 62;
pub const COLOR_BayerRGGB2GRAY: i32 = 86;
pub const COLOR_BayerRGGB2RGB: i32 = 48;
pub const COLOR_BayerRGGB2RGBA: i32 = 141;
pub const COLOR_BayerRGGB2RGB_EA: i32 = 137;
pub const COLOR_BayerRGGB2RGB_VNG: i32 = 64;
pub const COLOR_COLORCVT_MAX: i32 = 143;
pub const COLOR_GRAY2BGR: i32 = 8;
/// convert between grayscale and BGR555 (16-bit images)
pub const COLOR_GRAY2BGR555: i32 = 30;
/// convert between grayscale to BGR565 (16-bit images)
pub const COLOR_GRAY2BGR565: i32 = 20;
pub const COLOR_GRAY2BGRA: i32 = 9;
pub const COLOR_GRAY2RGB: i32 = 8;
pub const COLOR_GRAY2RGBA: i32 = 9;
/// backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
pub const COLOR_HLS2BGR: i32 = 60;
/// backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
pub const COLOR_HLS2BGR_FULL: i32 = 72;
pub const COLOR_HLS2RGB: i32 = 61;
pub const COLOR_HLS2RGB_FULL: i32 = 73;
/// backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
pub const COLOR_HSV2BGR: i32 = 54;
/// backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
pub const COLOR_HSV2BGR_FULL: i32 = 70;
pub const COLOR_HSV2RGB: i32 = 55;
pub const COLOR_HSV2RGB_FULL: i32 = 71;
pub const COLOR_LBGR2Lab: i32 = 74;
pub const COLOR_LBGR2Luv: i32 = 76;
pub const COLOR_LRGB2Lab: i32 = 75;
pub const COLOR_LRGB2Luv: i32 = 77;
pub const COLOR_Lab2BGR: i32 = 56;
pub const COLOR_Lab2LBGR: i32 = 78;
pub const COLOR_Lab2LRGB: i32 = 79;
pub const COLOR_Lab2RGB: i32 = 57;
pub const COLOR_Luv2BGR: i32 = 58;
pub const COLOR_Luv2LBGR: i32 = 80;
pub const COLOR_Luv2LRGB: i32 = 81;
pub const COLOR_Luv2RGB: i32 = 59;
pub const COLOR_RGB2BGR: i32 = 4;
pub const COLOR_RGB2BGR555: i32 = 23;
pub const COLOR_RGB2BGR565: i32 = 13;
pub const COLOR_RGB2BGRA: i32 = 2;
pub const COLOR_RGB2GRAY: i32 = 7;
pub const COLOR_RGB2HLS: i32 = 53;
pub const COLOR_RGB2HLS_FULL: i32 = 69;
pub const COLOR_RGB2HSV: i32 = 41;
pub const COLOR_RGB2HSV_FULL: i32 = 67;
pub const COLOR_RGB2Lab: i32 = 45;
pub const COLOR_RGB2Luv: i32 = 51;
pub const COLOR_RGB2RGBA: i32 = 0;
pub const COLOR_RGB2XYZ: i32 = 33;
pub const COLOR_RGB2YCrCb: i32 = 37;
pub const COLOR_RGB2YUV: i32 = 83;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGB2YUV_I420: i32 = 127;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGB2YUV_IYUV: i32 = 127;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGB2YUV_YV12: i32 = 131;
pub const COLOR_RGBA2BGR: i32 = 3;
pub const COLOR_RGBA2BGR555: i32 = 27;
pub const COLOR_RGBA2BGR565: i32 = 17;
pub const COLOR_RGBA2BGRA: i32 = 5;
pub const COLOR_RGBA2GRAY: i32 = 11;
pub const COLOR_RGBA2RGB: i32 = 1;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGBA2YUV_I420: i32 = 129;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGBA2YUV_IYUV: i32 = 129;
/// RGB to YUV 4:2:0 family
pub const COLOR_RGBA2YUV_YV12: i32 = 133;
/// alpha premultiplication
pub const COLOR_RGBA2mRGBA: i32 = 125;
pub const COLOR_XYZ2BGR: i32 = 34;
pub const COLOR_XYZ2RGB: i32 = 35;
pub const COLOR_YCrCb2BGR: i32 = 38;
pub const COLOR_YCrCb2RGB: i32 = 39;
pub const COLOR_YUV2BGR: i32 = 84;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGRA_I420: i32 = 105;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGRA_IYUV: i32 = 105;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGRA_NV12: i32 = 95;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGRA_NV21: i32 = 97;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_UYNV: i32 = 112;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_UYVY: i32 = 112;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_Y422: i32 = 112;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_YUNV: i32 = 120;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_YUY2: i32 = 120;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_YUYV: i32 = 120;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGRA_YV12: i32 = 103;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGRA_YVYU: i32 = 122;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGR_I420: i32 = 101;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGR_IYUV: i32 = 101;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGR_NV12: i32 = 91;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGR_NV21: i32 = 93;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_UYNV: i32 = 108;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_UYVY: i32 = 108;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_Y422: i32 = 108;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_YUNV: i32 = 116;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_YUY2: i32 = 116;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_YUYV: i32 = 116;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2BGR_YV12: i32 = 99;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2BGR_YVYU: i32 = 118;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_420: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_I420: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_IYUV: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_NV12: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_NV21: i32 = 106;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_UYNV: i32 = 123;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_UYVY: i32 = 123;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_Y422: i32 = 123;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_YUNV: i32 = 124;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_YUY2: i32 = 124;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_YUYV: i32 = 124;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2GRAY_YV12: i32 = 106;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2GRAY_YVYU: i32 = 124;
pub const COLOR_YUV2RGB: i32 = 85;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGBA_I420: i32 = 104;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGBA_IYUV: i32 = 104;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGBA_NV12: i32 = 94;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGBA_NV21: i32 = 96;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_UYNV: i32 = 111;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_UYVY: i32 = 111;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_Y422: i32 = 111;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_YUNV: i32 = 119;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_YUY2: i32 = 119;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_YUYV: i32 = 119;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGBA_YV12: i32 = 102;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGBA_YVYU: i32 = 121;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGB_I420: i32 = 100;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGB_IYUV: i32 = 100;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGB_NV12: i32 = 90;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGB_NV21: i32 = 92;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_UYNV: i32 = 107;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_UYVY: i32 = 107;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_Y422: i32 = 107;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_YUNV: i32 = 115;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_YUY2: i32 = 115;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_YUYV: i32 = 115;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV2RGB_YV12: i32 = 98;
/// YUV 4:2:2 family to RGB
pub const COLOR_YUV2RGB_YVYU: i32 = 117;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420p2BGR: i32 = 99;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420p2BGRA: i32 = 103;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420p2GRAY: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420p2RGB: i32 = 98;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420p2RGBA: i32 = 102;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420sp2BGR: i32 = 93;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420sp2BGRA: i32 = 97;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420sp2GRAY: i32 = 106;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420sp2RGB: i32 = 92;
/// YUV 4:2:0 family to RGB
pub const COLOR_YUV420sp2RGBA: i32 = 96;
/// alpha premultiplication
pub const COLOR_mRGBA2RGBA: i32 = 126;
/// 
pub const CONTOURS_MATCH_I1: i32 = 1;
/// 
pub const CONTOURS_MATCH_I2: i32 = 2;
/// 
pub const CONTOURS_MATCH_I3: i32 = 3;
/// distance = max(|x1-x2|,|y1-y2|)
pub const DIST_C: i32 = 3;
/// distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
pub const DIST_FAIR: i32 = 5;
/// distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
pub const DIST_HUBER: i32 = 7;
/// distance = |x1-x2| + |y1-y2|
pub const DIST_L1: i32 = 1;
/// L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
pub const DIST_L12: i32 = 4;
/// the simple euclidean distance
pub const DIST_L2: i32 = 2;
/// each connected component of zeros in src (as well as all the non-zero pixels closest to the
/// connected component) will be assigned the same label
pub const DIST_LABEL_CCOMP: i32 = 0;
/// each zero pixel (and all the non-zero pixels closest to it) gets its own label.
pub const DIST_LABEL_PIXEL: i32 = 1;
/// mask=3
pub const DIST_MASK_3: i32 = 3;
/// mask=5
pub const DIST_MASK_5: i32 = 5;
pub const DIST_MASK_PRECISE: i32 = 0;
/// User defined distance
pub const DIST_USER: i32 = -1;
/// distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
pub const DIST_WELSCH: i32 = 6;
pub const FILLED: i32 = -1;
pub const FILTER_SCHARR: i32 = -1;
/// If set, the difference between the current pixel and seed pixel is considered. Otherwise,
/// the difference between neighbor pixels is considered (that is, the range is floating).
pub const FLOODFILL_FIXED_RANGE: i32 = 65536;
/// If set, the function does not change the image ( newVal is ignored), and only fills the
/// mask with the value specified in bits 8-16 of flags as described above. This option only make
/// sense in function variants that have the mask parameter.
pub const FLOODFILL_MASK_ONLY: i32 = 131072;
/// normal size serif font
pub const FONT_HERSHEY_COMPLEX: i32 = 3;
/// smaller version of FONT_HERSHEY_COMPLEX
pub const FONT_HERSHEY_COMPLEX_SMALL: i32 = 5;
/// normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
pub const FONT_HERSHEY_DUPLEX: i32 = 2;
/// small size sans-serif font
pub const FONT_HERSHEY_PLAIN: i32 = 1;
/// more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
pub const FONT_HERSHEY_SCRIPT_COMPLEX: i32 = 7;
/// hand-writing style font
pub const FONT_HERSHEY_SCRIPT_SIMPLEX: i32 = 6;
/// normal size sans-serif font
pub const FONT_HERSHEY_SIMPLEX: i32 = 0;
/// normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
pub const FONT_HERSHEY_TRIPLEX: i32 = 4;
/// flag for italic font
pub const FONT_ITALIC: i32 = 16;
/// an obvious background pixels
pub const GC_BGD: i32 = 0;
/// The value means that the algorithm should just resume.
pub const GC_EVAL: i32 = 2;
/// The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model
pub const GC_EVAL_FREEZE_MODEL: i32 = 3;
/// an obvious foreground (object) pixel
pub const GC_FGD: i32 = 1;
/// The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
/// and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
/// automatically initialized with GC_BGD .
pub const GC_INIT_WITH_MASK: i32 = 1;
/// The function initializes the state and the mask using the provided rectangle. After that it
/// runs iterCount iterations of the algorithm.
pub const GC_INIT_WITH_RECT: i32 = 0;
/// a possible background pixel
pub const GC_PR_BGD: i32 = 2;
/// a possible foreground pixel
pub const GC_PR_FGD: i32 = 3;
/// Bhattacharyya distance
/// (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
/// 
pub const HISTCMP_BHATTACHARYYA: i32 = 3;
/// Chi-Square
/// 
pub const HISTCMP_CHISQR: i32 = 1;
/// Alternative Chi-Square
/// 
/// This alternative formula is regularly used for texture comparison. See e.g. [Puzicha1997](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Puzicha1997)
pub const HISTCMP_CHISQR_ALT: i32 = 4;
/// Correlation
/// 
/// where
/// 
/// and  is a total number of histogram bins.
pub const HISTCMP_CORREL: i32 = 0;
/// Synonym for HISTCMP_BHATTACHARYYA
pub const HISTCMP_HELLINGER: i32 = 3;
/// Intersection
/// 
pub const HISTCMP_INTERSECT: i32 = 2;
/// Kullback-Leibler divergence
/// 
pub const HISTCMP_KL_DIV: i32 = 5;
/// basically *21HT*, described in [Yuen90](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Yuen90)
pub const HOUGH_GRADIENT: i32 = 3;
/// variation of HOUGH_GRADIENT to get better accuracy
pub const HOUGH_GRADIENT_ALT: i32 = 4;
/// multi-scale variant of the classical Hough transform. The lines are encoded the same way as
/// HOUGH_STANDARD.
pub const HOUGH_MULTI_SCALE: i32 = 2;
/// probabilistic Hough transform (more efficient in case if the picture contains a few long
/// linear segments). It returns line segments rather than the whole line. Each segment is
/// represented by starting and ending points, and the matrix must be (the created sequence will
/// be) of the CV_32SC4 type.
pub const HOUGH_PROBABILISTIC: i32 = 1;
/// classical or standard Hough transform. Every line is represented by two floating-point
/// numbers  , where  is a distance between (0,0) point and the line,
/// and  is the angle between x-axis and the normal to the line. Thus, the matrix must
/// be (the created sequence will be) of CV_32FC2 type
pub const HOUGH_STANDARD: i32 = 0;
/// One of the rectangle is fully enclosed in the other
pub const INTERSECT_FULL: i32 = 2;
/// No intersection
pub const INTERSECT_NONE: i32 = 0;
/// There is a partial intersection
pub const INTERSECT_PARTIAL: i32 = 1;
/// resampling using pixel area relation. It may be a preferred method for image decimation, as
/// it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
/// method.
pub const INTER_AREA: i32 = 3;
pub const INTER_BITS: i32 = 5;
pub const INTER_BITS2: i32 = 10;
/// bicubic interpolation
pub const INTER_CUBIC: i32 = 2;
/// Lanczos interpolation over 8x8 neighborhood
pub const INTER_LANCZOS4: i32 = 4;
/// bilinear interpolation
pub const INTER_LINEAR: i32 = 1;
/// Bit exact bilinear interpolation
pub const INTER_LINEAR_EXACT: i32 = 5;
/// mask for interpolation codes
pub const INTER_MAX: i32 = 7;
/// nearest neighbor interpolation
pub const INTER_NEAREST: i32 = 0;
/// Bit exact nearest neighbor interpolation. This will produce same results as
/// the nearest neighbor method in PIL, scikit-image or Matlab.
pub const INTER_NEAREST_EXACT: i32 = 6;
pub const INTER_TAB_SIZE: i32 = 32;
pub const INTER_TAB_SIZE2: i32 = 1024;
/// 4-connected line
pub const LINE_4: i32 = 4;
/// 8-connected line
pub const LINE_8: i32 = 8;
/// antialiased line
pub const LINE_AA: i32 = 16;
/// Advanced refinement. Number of false alarms is calculated, lines are
/// refined through increase of precision, decrement in size, etc.
pub const LSD_REFINE_ADV: i32 = 2;
/// No refinement applied
pub const LSD_REFINE_NONE: i32 = 0;
/// Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
pub const LSD_REFINE_STD: i32 = 1;
/// A crosshair marker shape
pub const MARKER_CROSS: i32 = 0;
/// A diamond marker shape
pub const MARKER_DIAMOND: i32 = 3;
/// A square marker shape
pub const MARKER_SQUARE: i32 = 4;
/// A star marker shape, combination of cross and tilted cross
pub const MARKER_STAR: i32 = 2;
/// A 45 degree tilted crosshair marker shape
pub const MARKER_TILTED_CROSS: i32 = 1;
/// A downwards pointing triangle marker shape
pub const MARKER_TRIANGLE_DOWN: i32 = 6;
/// An upwards pointing triangle marker shape
pub const MARKER_TRIANGLE_UP: i32 = 5;
/// "black hat"
/// 
pub const MORPH_BLACKHAT: i32 = 6;
/// a closing operation
/// 
pub const MORPH_CLOSE: i32 = 3;
/// a cross-shaped structuring element:
/// 
pub const MORPH_CROSS: i32 = 1;
/// see #dilate
pub const MORPH_DILATE: i32 = 1;
/// an elliptic structuring element, that is, a filled ellipse inscribed
/// into the rectangle Rect(0, 0, esize.width, 0.esize.height)
pub const MORPH_ELLIPSE: i32 = 2;
/// see #erode
pub const MORPH_ERODE: i32 = 0;
/// a morphological gradient
/// 
pub const MORPH_GRADIENT: i32 = 4;
/// "hit or miss"
/// .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
pub const MORPH_HITMISS: i32 = 7;
/// an opening operation
/// 
pub const MORPH_OPEN: i32 = 2;
/// a rectangular structuring element: 
pub const MORPH_RECT: i32 = 0;
/// "top hat"
/// 
pub const MORPH_TOPHAT: i32 = 5;
/// retrieves all of the contours and organizes them into a two-level hierarchy. At the top
/// level, there are external boundaries of the components. At the second level, there are
/// boundaries of the holes. If there is another contour inside a hole of a connected component, it
/// is still put at the top level.
pub const RETR_CCOMP: i32 = 2;
/// retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
/// all the contours.
pub const RETR_EXTERNAL: i32 = 0;
pub const RETR_FLOODFILL: i32 = 4;
/// retrieves all of the contours without establishing any hierarchical relationships.
pub const RETR_LIST: i32 = 1;
/// retrieves all of the contours and reconstructs a full hierarchy of nested contours.
pub const RETR_TREE: i32 = 3;
pub const Subdiv2D_NEXT_AROUND_DST: i32 = 34;
pub const Subdiv2D_NEXT_AROUND_LEFT: i32 = 19;
pub const Subdiv2D_NEXT_AROUND_ORG: i32 = 0;
pub const Subdiv2D_NEXT_AROUND_RIGHT: i32 = 49;
pub const Subdiv2D_PREV_AROUND_DST: i32 = 51;
pub const Subdiv2D_PREV_AROUND_LEFT: i32 = 32;
pub const Subdiv2D_PREV_AROUND_ORG: i32 = 17;
pub const Subdiv2D_PREV_AROUND_RIGHT: i32 = 2;
/// Point location error
pub const Subdiv2D_PTLOC_ERROR: i32 = -2;
/// Point inside some facet
pub const Subdiv2D_PTLOC_INSIDE: i32 = 0;
/// Point on some edge
pub const Subdiv2D_PTLOC_ON_EDGE: i32 = 2;
/// Point outside the subdivision bounding rect
pub const Subdiv2D_PTLOC_OUTSIDE_RECT: i32 = -1;
/// Point coincides with one of the subdivision vertices
pub const Subdiv2D_PTLOC_VERTEX: i32 = 1;
/// 
pub const THRESH_BINARY: i32 = 0;
/// 
pub const THRESH_BINARY_INV: i32 = 1;
pub const THRESH_MASK: i32 = 7;
/// flag, use Otsu algorithm to choose the optimal threshold value
pub const THRESH_OTSU: i32 = 8;
/// 
pub const THRESH_TOZERO: i32 = 3;
/// 
pub const THRESH_TOZERO_INV: i32 = 4;
/// flag, use Triangle algorithm to choose the optimal threshold value
pub const THRESH_TRIANGLE: i32 = 16;
/// 
pub const THRESH_TRUNC: i32 = 2;
/// !< 
/// where
/// 
/// with mask:
/// 
pub const TM_CCOEFF: i32 = 4;
/// !< 
pub const TM_CCOEFF_NORMED: i32 = 5;
/// !< 
/// with mask:
/// 
pub const TM_CCORR: i32 = 2;
/// !< 
/// with mask:
/// 
pub const TM_CCORR_NORMED: i32 = 3;
/// !< 
/// with mask:
/// 
pub const TM_SQDIFF: i32 = 0;
/// !< 
/// with mask:
/// 
pub const TM_SQDIFF_NORMED: i32 = 1;
/// flag, fills all of the destination image pixels. If some of them correspond to outliers in the
/// source image, they are set to zero
pub const WARP_FILL_OUTLIERS: i32 = 8;
/// flag, inverse transformation
///
/// For example, #linearPolar or #logPolar transforms:
/// - flag is __not__ set: 
/// - flag is set: 
pub const WARP_INVERSE_MAP: i32 = 16;
/// Remaps an image to/from polar space.
pub const WARP_POLAR_LINEAR: i32 = 0;
/// Remaps an image to/from semilog-polar space.
pub const WARP_POLAR_LOG: i32 = 256;
/// adaptive threshold algorithm
/// ## See also
/// adaptiveThreshold
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum AdaptiveThresholdTypes {
/// the threshold value  is a mean of the  neighborhood of  minus C
ADAPTIVE_THRESH_MEAN_C = 0,
/// the threshold value  is a weighted sum (cross-correlation with a Gaussian
/// window) of the  neighborhood of 
/// minus C . The default sigma (standard deviation) is used for the specified blockSize . See
/// #getGaussianKernel
ADAPTIVE_THRESH_GAUSSIAN_C = 1,
}
opencv_type_enum! { crate::imgproc::AdaptiveThresholdTypes }
/// the color conversion codes
/// ## See also
/// @ref imgproc_color_conversions
/// @ingroup imgproc_color_conversions
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ColorConversionCodes {
/// add alpha channel to RGB or BGR image
COLOR_BGR2BGRA = 0,
// Duplicate, use COLOR_BGR2BGRA instead
// COLOR_RGB2RGBA = 0,
/// remove alpha channel from RGB or BGR image
COLOR_BGRA2BGR = 1,
// Duplicate, use COLOR_BGRA2BGR instead
// COLOR_RGBA2RGB = 1,
/// convert between RGB and BGR color spaces (with or without alpha channel)
COLOR_BGR2RGBA = 2,
// Duplicate, use COLOR_BGR2RGBA instead
// COLOR_RGB2BGRA = 2,
COLOR_RGBA2BGR = 3,
// Duplicate, use COLOR_RGBA2BGR instead
// COLOR_BGRA2RGB = 3,
COLOR_BGR2RGB = 4,
// Duplicate, use COLOR_BGR2RGB instead
// COLOR_RGB2BGR = 4,
COLOR_BGRA2RGBA = 5,
// Duplicate, use COLOR_BGRA2RGBA instead
// COLOR_RGBA2BGRA = 5,
/// convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
COLOR_BGR2GRAY = 6,
COLOR_RGB2GRAY = 7,
COLOR_GRAY2BGR = 8,
// Duplicate, use COLOR_GRAY2BGR instead
// COLOR_GRAY2RGB = 8,
COLOR_GRAY2BGRA = 9,
// Duplicate, use COLOR_GRAY2BGRA instead
// COLOR_GRAY2RGBA = 9,
COLOR_BGRA2GRAY = 10,
COLOR_RGBA2GRAY = 11,
/// convert between RGB/BGR and BGR565 (16-bit images)
COLOR_BGR2BGR565 = 12,
COLOR_RGB2BGR565 = 13,
COLOR_BGR5652BGR = 14,
COLOR_BGR5652RGB = 15,
COLOR_BGRA2BGR565 = 16,
COLOR_RGBA2BGR565 = 17,
COLOR_BGR5652BGRA = 18,
COLOR_BGR5652RGBA = 19,
/// convert between grayscale to BGR565 (16-bit images)
COLOR_GRAY2BGR565 = 20,
COLOR_BGR5652GRAY = 21,
/// convert between RGB/BGR and BGR555 (16-bit images)
COLOR_BGR2BGR555 = 22,
COLOR_RGB2BGR555 = 23,
COLOR_BGR5552BGR = 24,
COLOR_BGR5552RGB = 25,
COLOR_BGRA2BGR555 = 26,
COLOR_RGBA2BGR555 = 27,
COLOR_BGR5552BGRA = 28,
COLOR_BGR5552RGBA = 29,
/// convert between grayscale and BGR555 (16-bit images)
COLOR_GRAY2BGR555 = 30,
COLOR_BGR5552GRAY = 31,
/// convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
COLOR_BGR2XYZ = 32,
COLOR_RGB2XYZ = 33,
COLOR_XYZ2BGR = 34,
COLOR_XYZ2RGB = 35,
/// convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
COLOR_BGR2YCrCb = 36,
COLOR_RGB2YCrCb = 37,
COLOR_YCrCb2BGR = 38,
COLOR_YCrCb2RGB = 39,
/// convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
COLOR_BGR2HSV = 40,
COLOR_RGB2HSV = 41,
/// convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
COLOR_BGR2Lab = 44,
COLOR_RGB2Lab = 45,
/// convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
COLOR_BGR2Luv = 50,
COLOR_RGB2Luv = 51,
/// convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
COLOR_BGR2HLS = 52,
COLOR_RGB2HLS = 53,
/// backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
COLOR_HSV2BGR = 54,
COLOR_HSV2RGB = 55,
COLOR_Lab2BGR = 56,
COLOR_Lab2RGB = 57,
COLOR_Luv2BGR = 58,
COLOR_Luv2RGB = 59,
/// backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
COLOR_HLS2BGR = 60,
COLOR_HLS2RGB = 61,
/// convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
COLOR_BGR2HSV_FULL = 66,
COLOR_RGB2HSV_FULL = 67,
/// convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
COLOR_BGR2HLS_FULL = 68,
COLOR_RGB2HLS_FULL = 69,
/// backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
COLOR_HSV2BGR_FULL = 70,
COLOR_HSV2RGB_FULL = 71,
/// backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
COLOR_HLS2BGR_FULL = 72,
COLOR_HLS2RGB_FULL = 73,
COLOR_LBGR2Lab = 74,
COLOR_LRGB2Lab = 75,
COLOR_LBGR2Luv = 76,
COLOR_LRGB2Luv = 77,
COLOR_Lab2LBGR = 78,
COLOR_Lab2LRGB = 79,
COLOR_Luv2LBGR = 80,
COLOR_Luv2LRGB = 81,
/// convert between RGB/BGR and YUV
COLOR_BGR2YUV = 82,
COLOR_RGB2YUV = 83,
COLOR_YUV2BGR = 84,
COLOR_YUV2RGB = 85,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGB_NV12 = 90,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGR_NV12 = 91,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGB_NV21 = 92,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGR_NV21 = 93,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGB_NV21 instead
// COLOR_YUV420sp2RGB = 92,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGR_NV21 instead
// COLOR_YUV420sp2BGR = 93,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGBA_NV12 = 94,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGRA_NV12 = 95,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGBA_NV21 = 96,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGRA_NV21 = 97,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGBA_NV21 instead
// COLOR_YUV420sp2RGBA = 96,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGRA_NV21 instead
// COLOR_YUV420sp2BGRA = 97,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGB_YV12 = 98,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGR_YV12 = 99,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGB_IYUV = 100,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGR_IYUV = 101,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGB_IYUV instead
// COLOR_YUV2RGB_I420 = 100,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGR_IYUV instead
// COLOR_YUV2BGR_I420 = 101,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGB_YV12 instead
// COLOR_YUV420p2RGB = 98,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGR_YV12 instead
// COLOR_YUV420p2BGR = 99,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGBA_YV12 = 102,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGRA_YV12 = 103,
/// YUV 4:2:0 family to RGB
COLOR_YUV2RGBA_IYUV = 104,
/// YUV 4:2:0 family to RGB
COLOR_YUV2BGRA_IYUV = 105,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGBA_IYUV instead
// COLOR_YUV2RGBA_I420 = 104,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGRA_IYUV instead
// COLOR_YUV2BGRA_I420 = 105,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2RGBA_YV12 instead
// COLOR_YUV420p2RGBA = 102,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2BGRA_YV12 instead
// COLOR_YUV420p2BGRA = 103,
/// YUV 4:2:0 family to RGB
COLOR_YUV2GRAY_420 = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_420 instead
// COLOR_YUV2GRAY_NV21 = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_NV21 instead
// COLOR_YUV2GRAY_NV12 = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_NV12 instead
// COLOR_YUV2GRAY_YV12 = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_YV12 instead
// COLOR_YUV2GRAY_IYUV = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_IYUV instead
// COLOR_YUV2GRAY_I420 = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV2GRAY_I420 instead
// COLOR_YUV420sp2GRAY = 106,
// YUV 4:2:0 family to RGB
// Duplicate, use COLOR_YUV420sp2GRAY instead
// COLOR_YUV420p2GRAY = 106,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGB_UYVY = 107,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGR_UYVY = 108,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGB_UYVY instead
// COLOR_YUV2RGB_Y422 = 107,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGR_UYVY instead
// COLOR_YUV2BGR_Y422 = 108,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGB_Y422 instead
// COLOR_YUV2RGB_UYNV = 107,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGR_Y422 instead
// COLOR_YUV2BGR_UYNV = 108,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGBA_UYVY = 111,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGRA_UYVY = 112,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGBA_UYVY instead
// COLOR_YUV2RGBA_Y422 = 111,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGRA_UYVY instead
// COLOR_YUV2BGRA_Y422 = 112,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGBA_Y422 instead
// COLOR_YUV2RGBA_UYNV = 111,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGRA_Y422 instead
// COLOR_YUV2BGRA_UYNV = 112,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGB_YUY2 = 115,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGR_YUY2 = 116,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGB_YVYU = 117,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGR_YVYU = 118,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGB_YUY2 instead
// COLOR_YUV2RGB_YUYV = 115,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGR_YUY2 instead
// COLOR_YUV2BGR_YUYV = 116,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGB_YUYV instead
// COLOR_YUV2RGB_YUNV = 115,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGR_YUYV instead
// COLOR_YUV2BGR_YUNV = 116,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGBA_YUY2 = 119,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGRA_YUY2 = 120,
/// YUV 4:2:2 family to RGB
COLOR_YUV2RGBA_YVYU = 121,
/// YUV 4:2:2 family to RGB
COLOR_YUV2BGRA_YVYU = 122,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGBA_YUY2 instead
// COLOR_YUV2RGBA_YUYV = 119,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGRA_YUY2 instead
// COLOR_YUV2BGRA_YUYV = 120,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2RGBA_YUYV instead
// COLOR_YUV2RGBA_YUNV = 119,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2BGRA_YUYV instead
// COLOR_YUV2BGRA_YUNV = 120,
/// YUV 4:2:2 family to RGB
COLOR_YUV2GRAY_UYVY = 123,
/// YUV 4:2:2 family to RGB
COLOR_YUV2GRAY_YUY2 = 124,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2GRAY_UYVY instead
// COLOR_YUV2GRAY_Y422 = 123,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2GRAY_Y422 instead
// COLOR_YUV2GRAY_UYNV = 123,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2GRAY_YUY2 instead
// COLOR_YUV2GRAY_YVYU = 124,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2GRAY_YVYU instead
// COLOR_YUV2GRAY_YUYV = 124,
// YUV 4:2:2 family to RGB
// Duplicate, use COLOR_YUV2GRAY_YUYV instead
// COLOR_YUV2GRAY_YUNV = 124,
/// alpha premultiplication
COLOR_RGBA2mRGBA = 125,
/// alpha premultiplication
COLOR_mRGBA2RGBA = 126,
/// RGB to YUV 4:2:0 family
COLOR_RGB2YUV_I420 = 127,
/// RGB to YUV 4:2:0 family
COLOR_BGR2YUV_I420 = 128,
// RGB to YUV 4:2:0 family
// Duplicate, use COLOR_RGB2YUV_I420 instead
// COLOR_RGB2YUV_IYUV = 127,
// RGB to YUV 4:2:0 family
// Duplicate, use COLOR_BGR2YUV_I420 instead
// COLOR_BGR2YUV_IYUV = 128,
/// RGB to YUV 4:2:0 family
COLOR_RGBA2YUV_I420 = 129,
/// RGB to YUV 4:2:0 family
COLOR_BGRA2YUV_I420 = 130,
// RGB to YUV 4:2:0 family
// Duplicate, use COLOR_RGBA2YUV_I420 instead
// COLOR_RGBA2YUV_IYUV = 129,
// RGB to YUV 4:2:0 family
// Duplicate, use COLOR_BGRA2YUV_I420 instead
// COLOR_BGRA2YUV_IYUV = 130,
/// RGB to YUV 4:2:0 family
COLOR_RGB2YUV_YV12 = 131,
/// RGB to YUV 4:2:0 family
COLOR_BGR2YUV_YV12 = 132,
/// RGB to YUV 4:2:0 family
COLOR_RGBA2YUV_YV12 = 133,
/// RGB to YUV 4:2:0 family
COLOR_BGRA2YUV_YV12 = 134,
/// equivalent to RGGB Bayer pattern
COLOR_BayerBG2BGR = 46,
/// equivalent to GRBG Bayer pattern
COLOR_BayerGB2BGR = 47,
/// equivalent to BGGR Bayer pattern
COLOR_BayerRG2BGR = 48,
/// equivalent to GBRG Bayer pattern
COLOR_BayerGR2BGR = 49,
// Duplicate, use COLOR_BayerBG2BGR instead
// COLOR_BayerRGGB2BGR = 46,
// Duplicate, use COLOR_BayerGB2BGR instead
// COLOR_BayerGRBG2BGR = 47,
// Duplicate, use COLOR_BayerRG2BGR instead
// COLOR_BayerBGGR2BGR = 48,
// Duplicate, use COLOR_BayerGR2BGR instead
// COLOR_BayerGBRG2BGR = 49,
// Duplicate, use COLOR_BayerBGGR2BGR instead
// COLOR_BayerRGGB2RGB = 48,
// Duplicate, use COLOR_BayerGBRG2BGR instead
// COLOR_BayerGRBG2RGB = 49,
// Duplicate, use COLOR_BayerRGGB2BGR instead
// COLOR_BayerBGGR2RGB = 46,
// Duplicate, use COLOR_BayerGRBG2BGR instead
// COLOR_BayerGBRG2RGB = 47,
// equivalent to RGGB Bayer pattern
// Duplicate, use COLOR_BayerRGGB2RGB instead
// COLOR_BayerBG2RGB = 48,
// equivalent to GRBG Bayer pattern
// Duplicate, use COLOR_BayerGRBG2RGB instead
// COLOR_BayerGB2RGB = 49,
// equivalent to BGGR Bayer pattern
// Duplicate, use COLOR_BayerBGGR2RGB instead
// COLOR_BayerRG2RGB = 46,
// equivalent to GBRG Bayer pattern
// Duplicate, use COLOR_BayerGBRG2RGB instead
// COLOR_BayerGR2RGB = 47,
/// equivalent to RGGB Bayer pattern
COLOR_BayerBG2GRAY = 86,
/// equivalent to GRBG Bayer pattern
COLOR_BayerGB2GRAY = 87,
/// equivalent to BGGR Bayer pattern
COLOR_BayerRG2GRAY = 88,
/// equivalent to GBRG Bayer pattern
COLOR_BayerGR2GRAY = 89,
// Duplicate, use COLOR_BayerBG2GRAY instead
// COLOR_BayerRGGB2GRAY = 86,
// Duplicate, use COLOR_BayerGB2GRAY instead
// COLOR_BayerGRBG2GRAY = 87,
// Duplicate, use COLOR_BayerRG2GRAY instead
// COLOR_BayerBGGR2GRAY = 88,
// Duplicate, use COLOR_BayerGR2GRAY instead
// COLOR_BayerGBRG2GRAY = 89,
/// equivalent to RGGB Bayer pattern
COLOR_BayerBG2BGR_VNG = 62,
/// equivalent to GRBG Bayer pattern
COLOR_BayerGB2BGR_VNG = 63,
/// equivalent to BGGR Bayer pattern
COLOR_BayerRG2BGR_VNG = 64,
/// equivalent to GBRG Bayer pattern
COLOR_BayerGR2BGR_VNG = 65,
// Duplicate, use COLOR_BayerBG2BGR_VNG instead
// COLOR_BayerRGGB2BGR_VNG = 62,
// Duplicate, use COLOR_BayerGB2BGR_VNG instead
// COLOR_BayerGRBG2BGR_VNG = 63,
// Duplicate, use COLOR_BayerRG2BGR_VNG instead
// COLOR_BayerBGGR2BGR_VNG = 64,
// Duplicate, use COLOR_BayerGR2BGR_VNG instead
// COLOR_BayerGBRG2BGR_VNG = 65,
// Duplicate, use COLOR_BayerBGGR2BGR_VNG instead
// COLOR_BayerRGGB2RGB_VNG = 64,
// Duplicate, use COLOR_BayerGBRG2BGR_VNG instead
// COLOR_BayerGRBG2RGB_VNG = 65,
// Duplicate, use COLOR_BayerRGGB2BGR_VNG instead
// COLOR_BayerBGGR2RGB_VNG = 62,
// Duplicate, use COLOR_BayerGRBG2BGR_VNG instead
// COLOR_BayerGBRG2RGB_VNG = 63,
// equivalent to RGGB Bayer pattern
// Duplicate, use COLOR_BayerRGGB2RGB_VNG instead
// COLOR_BayerBG2RGB_VNG = 64,
// equivalent to GRBG Bayer pattern
// Duplicate, use COLOR_BayerGRBG2RGB_VNG instead
// COLOR_BayerGB2RGB_VNG = 65,
// equivalent to BGGR Bayer pattern
// Duplicate, use COLOR_BayerBGGR2RGB_VNG instead
// COLOR_BayerRG2RGB_VNG = 62,
// equivalent to GBRG Bayer pattern
// Duplicate, use COLOR_BayerGBRG2RGB_VNG instead
// COLOR_BayerGR2RGB_VNG = 63,
/// equivalent to RGGB Bayer pattern
COLOR_BayerBG2BGR_EA = 135,
/// equivalent to GRBG Bayer pattern
COLOR_BayerGB2BGR_EA = 136,
/// equivalent to BGGR Bayer pattern
COLOR_BayerRG2BGR_EA = 137,
/// equivalent to GBRG Bayer pattern
COLOR_BayerGR2BGR_EA = 138,
// Duplicate, use COLOR_BayerBG2BGR_EA instead
// COLOR_BayerRGGB2BGR_EA = 135,
// Duplicate, use COLOR_BayerGB2BGR_EA instead
// COLOR_BayerGRBG2BGR_EA = 136,
// Duplicate, use COLOR_BayerRG2BGR_EA instead
// COLOR_BayerBGGR2BGR_EA = 137,
// Duplicate, use COLOR_BayerGR2BGR_EA instead
// COLOR_BayerGBRG2BGR_EA = 138,
// Duplicate, use COLOR_BayerBGGR2BGR_EA instead
// COLOR_BayerRGGB2RGB_EA = 137,
// Duplicate, use COLOR_BayerGBRG2BGR_EA instead
// COLOR_BayerGRBG2RGB_EA = 138,
// Duplicate, use COLOR_BayerRGGB2BGR_EA instead
// COLOR_BayerBGGR2RGB_EA = 135,
// Duplicate, use COLOR_BayerGRBG2BGR_EA instead
// COLOR_BayerGBRG2RGB_EA = 136,
// equivalent to RGGB Bayer pattern
// Duplicate, use COLOR_BayerRGGB2RGB_EA instead
// COLOR_BayerBG2RGB_EA = 137,
// equivalent to GRBG Bayer pattern
// Duplicate, use COLOR_BayerGRBG2RGB_EA instead
// COLOR_BayerGB2RGB_EA = 138,
// equivalent to BGGR Bayer pattern
// Duplicate, use COLOR_BayerBGGR2RGB_EA instead
// COLOR_BayerRG2RGB_EA = 135,
// equivalent to GBRG Bayer pattern
// Duplicate, use COLOR_BayerGBRG2RGB_EA instead
// COLOR_BayerGR2RGB_EA = 136,
/// equivalent to RGGB Bayer pattern
COLOR_BayerBG2BGRA = 139,
/// equivalent to GRBG Bayer pattern
COLOR_BayerGB2BGRA = 140,
/// equivalent to BGGR Bayer pattern
COLOR_BayerRG2BGRA = 141,
/// equivalent to GBRG Bayer pattern
COLOR_BayerGR2BGRA = 142,
// Duplicate, use COLOR_BayerBG2BGRA instead
// COLOR_BayerRGGB2BGRA = 139,
// Duplicate, use COLOR_BayerGB2BGRA instead
// COLOR_BayerGRBG2BGRA = 140,
// Duplicate, use COLOR_BayerRG2BGRA instead
// COLOR_BayerBGGR2BGRA = 141,
// Duplicate, use COLOR_BayerGR2BGRA instead
// COLOR_BayerGBRG2BGRA = 142,
// Duplicate, use COLOR_BayerBGGR2BGRA instead
// COLOR_BayerRGGB2RGBA = 141,
// Duplicate, use COLOR_BayerGBRG2BGRA instead
// COLOR_BayerGRBG2RGBA = 142,
// Duplicate, use COLOR_BayerRGGB2BGRA instead
// COLOR_BayerBGGR2RGBA = 139,
// Duplicate, use COLOR_BayerGRBG2BGRA instead
// COLOR_BayerGBRG2RGBA = 140,
// equivalent to RGGB Bayer pattern
// Duplicate, use COLOR_BayerRGGB2RGBA instead
// COLOR_BayerBG2RGBA = 141,
// equivalent to GRBG Bayer pattern
// Duplicate, use COLOR_BayerGRBG2RGBA instead
// COLOR_BayerGB2RGBA = 142,
// equivalent to BGGR Bayer pattern
// Duplicate, use COLOR_BayerBGGR2RGBA instead
// COLOR_BayerRG2RGBA = 139,
// equivalent to GBRG Bayer pattern
// Duplicate, use COLOR_BayerGBRG2RGBA instead
// COLOR_BayerGR2RGBA = 140,
COLOR_COLORCVT_MAX = 143,
}
opencv_type_enum! { crate::imgproc::ColorConversionCodes }
/// GNU Octave/MATLAB equivalent colormaps
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ColormapTypes {
/// 
COLORMAP_AUTUMN = 0,
/// 
COLORMAP_BONE = 1,
/// 
COLORMAP_JET = 2,
/// 
COLORMAP_WINTER = 3,
/// 
COLORMAP_RAINBOW = 4,
/// 
COLORMAP_OCEAN = 5,
/// 
COLORMAP_SUMMER = 6,
/// 
COLORMAP_SPRING = 7,
/// 
COLORMAP_COOL = 8,
/// 
COLORMAP_HSV = 9,
/// 
COLORMAP_PINK = 10,
/// 
COLORMAP_HOT = 11,
/// 
COLORMAP_PARULA = 12,
/// 
COLORMAP_MAGMA = 13,
/// 
COLORMAP_INFERNO = 14,
/// 
COLORMAP_PLASMA = 15,
/// 
COLORMAP_VIRIDIS = 16,
/// 
COLORMAP_CIVIDIS = 17,
/// 
COLORMAP_TWILIGHT = 18,
/// 
COLORMAP_TWILIGHT_SHIFTED = 19,
/// 
COLORMAP_TURBO = 20,
/// 
COLORMAP_DEEPGREEN = 21,
}
opencv_type_enum! { crate::imgproc::ColormapTypes }
/// connected components algorithm
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ConnectedComponentsAlgorithmsTypes {
/// Spaghetti [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019) algorithm for 8-way connectivity, Spaghetti4C [Bolelli2021](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2021) algorithm for 4-way connectivity.
CCL_DEFAULT = -1,
/// SAUF [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for SAUF.
CCL_WU = 0,
/// BBDT [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for both BBDT and SAUF.
CCL_GRANA = 1,
/// Spaghetti [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019) algorithm for 8-way connectivity, Spaghetti4C [Bolelli2021](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2021) algorithm for 4-way connectivity. The parallel implementation described in [Bolelli2017](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2017) is available for both Spaghetti and Spaghetti4C.
CCL_BOLELLI = 2,
/// Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
CCL_SAUF = 3,
/// Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
CCL_BBDT = 4,
/// Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
CCL_SPAGHETTI = 5,
}
opencv_type_enum! { crate::imgproc::ConnectedComponentsAlgorithmsTypes }
/// connected components statistics
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ConnectedComponentsTypes {
/// The leftmost (x) coordinate which is the inclusive start of the bounding
/// box in the horizontal direction.
CC_STAT_LEFT = 0,
/// The topmost (y) coordinate which is the inclusive start of the bounding
/// box in the vertical direction.
CC_STAT_TOP = 1,
/// The horizontal size of the bounding box
CC_STAT_WIDTH = 2,
/// The vertical size of the bounding box
CC_STAT_HEIGHT = 3,
/// The total area (in pixels) of the connected component
CC_STAT_AREA = 4,
/// Max enumeration value. Used internally only for memory allocation
CC_STAT_MAX = 5,
}
opencv_type_enum! { crate::imgproc::ConnectedComponentsTypes }
/// the contour approximation algorithm
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ContourApproximationModes {
/// stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
/// (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
/// max(abs(x1-x2),abs(y2-y1))==1.
CHAIN_APPROX_NONE = 1,
/// compresses horizontal, vertical, and diagonal segments and leaves only their end points.
/// For example, an up-right rectangular contour is encoded with 4 points.
CHAIN_APPROX_SIMPLE = 2,
/// applies one of the flavors of the Teh-Chin chain approximation algorithm [TehChin89](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_TehChin89)
CHAIN_APPROX_TC89_L1 = 3,
/// applies one of the flavors of the Teh-Chin chain approximation algorithm [TehChin89](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_TehChin89)
CHAIN_APPROX_TC89_KCOS = 4,
}
opencv_type_enum! { crate::imgproc::ContourApproximationModes }
/// distanceTransform algorithm flags
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DistanceTransformLabelTypes {
/// each connected component of zeros in src (as well as all the non-zero pixels closest to the
/// connected component) will be assigned the same label
DIST_LABEL_CCOMP = 0,
/// each zero pixel (and all the non-zero pixels closest to it) gets its own label.
DIST_LABEL_PIXEL = 1,
}
opencv_type_enum! { crate::imgproc::DistanceTransformLabelTypes }
/// Mask size for distance transform
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DistanceTransformMasks {
/// mask=3
DIST_MASK_3 = 3,
/// mask=5
DIST_MASK_5 = 5,
DIST_MASK_PRECISE = 0,
}
opencv_type_enum! { crate::imgproc::DistanceTransformMasks }
/// Distance types for Distance Transform and M-estimators
/// ## See also
/// distanceTransform, fitLine
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DistanceTypes {
/// User defined distance
DIST_USER = -1,
/// distance = |x1-x2| + |y1-y2|
DIST_L1 = 1,
/// the simple euclidean distance
DIST_L2 = 2,
/// distance = max(|x1-x2|,|y1-y2|)
DIST_C = 3,
/// L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
DIST_L12 = 4,
/// distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
DIST_FAIR = 5,
/// distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
DIST_WELSCH = 6,
/// distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
DIST_HUBER = 7,
}
opencv_type_enum! { crate::imgproc::DistanceTypes }
/// floodfill algorithm flags
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum FloodFillFlags {
/// If set, the difference between the current pixel and seed pixel is considered. Otherwise,
/// the difference between neighbor pixels is considered (that is, the range is floating).
FLOODFILL_FIXED_RANGE = 65536,
/// If set, the function does not change the image ( newVal is ignored), and only fills the
/// mask with the value specified in bits 8-16 of flags as described above. This option only make
/// sense in function variants that have the mask parameter.
FLOODFILL_MASK_ONLY = 131072,
}
opencv_type_enum! { crate::imgproc::FloodFillFlags }
/// class of the pixel in GrabCut algorithm
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum GrabCutClasses {
/// an obvious background pixels
GC_BGD = 0,
/// an obvious foreground (object) pixel
GC_FGD = 1,
/// a possible background pixel
GC_PR_BGD = 2,
/// a possible foreground pixel
GC_PR_FGD = 3,
}
opencv_type_enum! { crate::imgproc::GrabCutClasses }
/// GrabCut algorithm flags
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum GrabCutModes {
/// The function initializes the state and the mask using the provided rectangle. After that it
/// runs iterCount iterations of the algorithm.
GC_INIT_WITH_RECT = 0,
/// The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
/// and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
/// automatically initialized with GC_BGD .
GC_INIT_WITH_MASK = 1,
/// The value means that the algorithm should just resume.
GC_EVAL = 2,
/// The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model
GC_EVAL_FREEZE_MODEL = 3,
}
opencv_type_enum! { crate::imgproc::GrabCutModes }
/// Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
/// @ingroup imgproc_draw
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum HersheyFonts {
/// normal size sans-serif font
FONT_HERSHEY_SIMPLEX = 0,
/// small size sans-serif font
FONT_HERSHEY_PLAIN = 1,
/// normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
FONT_HERSHEY_DUPLEX = 2,
/// normal size serif font
FONT_HERSHEY_COMPLEX = 3,
/// normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
FONT_HERSHEY_TRIPLEX = 4,
/// smaller version of FONT_HERSHEY_COMPLEX
FONT_HERSHEY_COMPLEX_SMALL = 5,
/// hand-writing style font
FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
/// more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
FONT_HERSHEY_SCRIPT_COMPLEX = 7,
/// flag for italic font
FONT_ITALIC = 16,
}
opencv_type_enum! { crate::imgproc::HersheyFonts }
/// Histogram comparison methods
/// @ingroup imgproc_hist
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum HistCompMethods {
/// Correlation
/// 
/// where
/// 
/// and  is a total number of histogram bins.
HISTCMP_CORREL = 0,
/// Chi-Square
/// 
HISTCMP_CHISQR = 1,
/// Intersection
/// 
HISTCMP_INTERSECT = 2,
/// Bhattacharyya distance
/// (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
/// 
HISTCMP_BHATTACHARYYA = 3,
// Synonym for HISTCMP_BHATTACHARYYA
// Duplicate, use HISTCMP_BHATTACHARYYA instead
// HISTCMP_HELLINGER = 3,
/// Alternative Chi-Square
/// 
/// This alternative formula is regularly used for texture comparison. See e.g. [Puzicha1997](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Puzicha1997)
HISTCMP_CHISQR_ALT = 4,
/// Kullback-Leibler divergence
/// 
HISTCMP_KL_DIV = 5,
}
opencv_type_enum! { crate::imgproc::HistCompMethods }
/// Variants of a Hough transform
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum HoughModes {
/// classical or standard Hough transform. Every line is represented by two floating-point
/// numbers  , where  is a distance between (0,0) point and the line,
/// and  is the angle between x-axis and the normal to the line. Thus, the matrix must
/// be (the created sequence will be) of CV_32FC2 type
HOUGH_STANDARD = 0,
/// probabilistic Hough transform (more efficient in case if the picture contains a few long
/// linear segments). It returns line segments rather than the whole line. Each segment is
/// represented by starting and ending points, and the matrix must be (the created sequence will
/// be) of the CV_32SC4 type.
HOUGH_PROBABILISTIC = 1,
/// multi-scale variant of the classical Hough transform. The lines are encoded the same way as
/// HOUGH_STANDARD.
HOUGH_MULTI_SCALE = 2,
/// basically *21HT*, described in [Yuen90](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Yuen90)
HOUGH_GRADIENT = 3,
/// variation of HOUGH_GRADIENT to get better accuracy
HOUGH_GRADIENT_ALT = 4,
}
opencv_type_enum! { crate::imgproc::HoughModes }
/// interpolation algorithm
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum InterpolationFlags {
/// nearest neighbor interpolation
INTER_NEAREST = 0,
/// bilinear interpolation
INTER_LINEAR = 1,
/// bicubic interpolation
INTER_CUBIC = 2,
/// resampling using pixel area relation. It may be a preferred method for image decimation, as
/// it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
/// method.
INTER_AREA = 3,
/// Lanczos interpolation over 8x8 neighborhood
INTER_LANCZOS4 = 4,
/// Bit exact bilinear interpolation
INTER_LINEAR_EXACT = 5,
/// Bit exact nearest neighbor interpolation. This will produce same results as
/// the nearest neighbor method in PIL, scikit-image or Matlab.
INTER_NEAREST_EXACT = 6,
/// mask for interpolation codes
INTER_MAX = 7,
/// flag, fills all of the destination image pixels. If some of them correspond to outliers in the
/// source image, they are set to zero
WARP_FILL_OUTLIERS = 8,
/// flag, inverse transformation
///
/// For example, #linearPolar or #logPolar transforms:
/// - flag is __not__ set: 
/// - flag is set: 
WARP_INVERSE_MAP = 16,
}
opencv_type_enum! { crate::imgproc::InterpolationFlags }
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum InterpolationMasks {
INTER_BITS = 5,
INTER_BITS2 = 10,
INTER_TAB_SIZE = 32,
INTER_TAB_SIZE2 = 1024,
}
opencv_type_enum! { crate::imgproc::InterpolationMasks }
/// Variants of Line Segment %Detector
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LineSegmentDetectorModes {
/// No refinement applied
LSD_REFINE_NONE = 0,
/// Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
LSD_REFINE_STD = 1,
/// Advanced refinement. Number of false alarms is calculated, lines are
/// refined through increase of precision, decrement in size, etc.
LSD_REFINE_ADV = 2,
}
opencv_type_enum! { crate::imgproc::LineSegmentDetectorModes }
/// types of line
/// @ingroup imgproc_draw
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LineTypes {
FILLED = -1,
/// 4-connected line
LINE_4 = 4,
/// 8-connected line
LINE_8 = 8,
/// antialiased line
LINE_AA = 16,
}
opencv_type_enum! { crate::imgproc::LineTypes }
/// Possible set of marker types used for the cv::drawMarker function
/// @ingroup imgproc_draw
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum MarkerTypes {
/// A crosshair marker shape
MARKER_CROSS = 0,
/// A 45 degree tilted crosshair marker shape
MARKER_TILTED_CROSS = 1,
/// A star marker shape, combination of cross and tilted cross
MARKER_STAR = 2,
/// A diamond marker shape
MARKER_DIAMOND = 3,
/// A square marker shape
MARKER_SQUARE = 4,
/// An upwards pointing triangle marker shape
MARKER_TRIANGLE_UP = 5,
/// A downwards pointing triangle marker shape
MARKER_TRIANGLE_DOWN = 6,
}
opencv_type_enum! { crate::imgproc::MarkerTypes }
/// shape of the structuring element
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum MorphShapes {
/// a rectangular structuring element: 
MORPH_RECT = 0,
/// a cross-shaped structuring element:
/// 
MORPH_CROSS = 1,
/// an elliptic structuring element, that is, a filled ellipse inscribed
/// into the rectangle Rect(0, 0, esize.width, 0.esize.height)
MORPH_ELLIPSE = 2,
}
opencv_type_enum! { crate::imgproc::MorphShapes }
/// type of morphological operation
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum MorphTypes {
/// see #erode
MORPH_ERODE = 0,
/// see #dilate
MORPH_DILATE = 1,
/// an opening operation
/// 
MORPH_OPEN = 2,
/// a closing operation
/// 
MORPH_CLOSE = 3,
/// a morphological gradient
/// 
MORPH_GRADIENT = 4,
/// "top hat"
/// 
MORPH_TOPHAT = 5,
/// "black hat"
/// 
MORPH_BLACKHAT = 6,
/// "hit or miss"
/// .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
MORPH_HITMISS = 7,
}
opencv_type_enum! { crate::imgproc::MorphTypes }
/// types of intersection between rectangles
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum RectanglesIntersectTypes {
/// No intersection
INTERSECT_NONE = 0,
/// There is a partial intersection
INTERSECT_PARTIAL = 1,
/// One of the rectangle is fully enclosed in the other
INTERSECT_FULL = 2,
}
opencv_type_enum! { crate::imgproc::RectanglesIntersectTypes }
/// mode of the contour retrieval algorithm
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum RetrievalModes {
/// retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
/// all the contours.
RETR_EXTERNAL = 0,
/// retrieves all of the contours without establishing any hierarchical relationships.
RETR_LIST = 1,
/// retrieves all of the contours and organizes them into a two-level hierarchy. At the top
/// level, there are external boundaries of the components. At the second level, there are
/// boundaries of the holes. If there is another contour inside a hole of a connected component, it
/// is still put at the top level.
RETR_CCOMP = 2,
/// retrieves all of the contours and reconstructs a full hierarchy of nested contours.
RETR_TREE = 3,
RETR_FLOODFILL = 4,
}
opencv_type_enum! { crate::imgproc::RetrievalModes }
/// Shape matching methods
///
///  denotes object1, denotes object2
///
/// 
///
/// and  are the Hu moments of  and  , respectively.
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ShapeMatchModes {
/// 
CONTOURS_MATCH_I1 = 1,
/// 
CONTOURS_MATCH_I2 = 2,
/// 
CONTOURS_MATCH_I3 = 3,
}
opencv_type_enum! { crate::imgproc::ShapeMatchModes }
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum SpecialFilter {
FILTER_SCHARR = -1,
}
opencv_type_enum! { crate::imgproc::SpecialFilter }
/// type of the template matching operation
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum TemplateMatchModes {
/// !< 
/// with mask:
/// 
TM_SQDIFF = 0,
/// !< 
/// with mask:
/// 
TM_SQDIFF_NORMED = 1,
/// !< 
/// with mask:
/// 
TM_CCORR = 2,
/// !< 
/// with mask:
/// 
TM_CCORR_NORMED = 3,
/// !< 
/// where
/// 
/// with mask:
/// 
TM_CCOEFF = 4,
/// !< 
TM_CCOEFF_NORMED = 5,
}
opencv_type_enum! { crate::imgproc::TemplateMatchModes }
/// type of the threshold operation
/// 
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ThresholdTypes {
/// 
THRESH_BINARY = 0,
/// 
THRESH_BINARY_INV = 1,
/// 
THRESH_TRUNC = 2,
/// 
THRESH_TOZERO = 3,
/// 
THRESH_TOZERO_INV = 4,
THRESH_MASK = 7,
/// flag, use Otsu algorithm to choose the optimal threshold value
THRESH_OTSU = 8,
/// flag, use Triangle algorithm to choose the optimal threshold value
THRESH_TRIANGLE = 16,
}
opencv_type_enum! { crate::imgproc::ThresholdTypes }
/// \brief Specify the polar mapping mode
/// ## See also
/// warpPolar
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum WarpPolarMode {
/// Remaps an image to/from polar space.
WARP_POLAR_LINEAR = 0,
/// Remaps an image to/from semilog-polar space.
WARP_POLAR_LOG = 256,
}
opencv_type_enum! { crate::imgproc::WarpPolarMode }
/// \overload
///
/// Finds edges in an image using the Canny algorithm with custom image gradient.
///
/// ## Parameters
/// * dx: 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
/// * dy: 16-bit y derivative of input image (same type as dx).
/// * edges: output edge map; single channels 8-bit image, which has the same size as image .
/// * threshold1: first threshold for the hysteresis procedure.
/// * threshold2: second threshold for the hysteresis procedure.
/// * L2gradient: a flag, indicating whether a more accurate  norm
///  should be used to calculate the image gradient magnitude (
/// L2gradient=true ), or whether the default  norm  is enough (
/// L2gradient=false ).
///
/// ## C++ default parameters
/// * l2gradient: false
#[inline]
pub fn canny_derivative(dx: &dyn core::ToInputArray, dy: &dyn core::ToInputArray, edges: &mut dyn core::ToOutputArray, threshold1: f64, threshold2: f64, l2gradient: bool) -> Result<()> {
input_array_arg!(dx);
input_array_arg!(dy);
output_array_arg!(edges);
return_send!(via ocvrs_return);
unsafe { sys::cv_Canny_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_double_bool(dx.as_raw__InputArray(), dy.as_raw__InputArray(), edges.as_raw__OutputArray(), threshold1, threshold2, l2gradient, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds edges in an image using the Canny algorithm [Canny86](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Canny86) .
///
/// The function finds edges in the input image and marks them in the output map edges using the
/// Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
/// largest value is used to find initial segments of strong edges. See
/// <http://en.wikipedia.org/wiki/Canny_edge_detector>
///
/// ## Parameters
/// * image: 8-bit input image.
/// * edges: output edge map; single channels 8-bit image, which has the same size as image .
/// * threshold1: first threshold for the hysteresis procedure.
/// * threshold2: second threshold for the hysteresis procedure.
/// * apertureSize: aperture size for the Sobel operator.
/// * L2gradient: a flag, indicating whether a more accurate  norm
///  should be used to calculate the image gradient magnitude (
/// L2gradient=true ), or whether the default  norm  is enough (
/// L2gradient=false ).
///
/// ## C++ default parameters
/// * aperture_size: 3
/// * l2gradient: false
#[inline]
pub fn canny(image: &dyn core::ToInputArray, edges: &mut dyn core::ToOutputArray, threshold1: f64, threshold2: f64, aperture_size: i32, l2gradient: bool) -> Result<()> {
input_array_arg!(image);
output_array_arg!(edges);
return_send!(via ocvrs_return);
unsafe { sys::cv_Canny_const__InputArrayR_const__OutputArrayR_double_double_int_bool(image.as_raw__InputArray(), edges.as_raw__OutputArray(), threshold1, threshold2, aperture_size, l2gradient, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Computes the "minimal work" distance between two weighted point configurations.
///
/// The function computes the earth mover distance and/or a lower boundary of the distance between the
/// two weighted point configurations. One of the applications described in [RubnerSept98](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_RubnerSept98),
/// [Rubner2000](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Rubner2000) is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
/// problem that is solved using some modification of a simplex algorithm, thus the complexity is
/// exponential in the worst case, though, on average it is much faster. In the case of a real metric
/// the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
/// to determine roughly whether the two signatures are far enough so that they cannot relate to the
/// same object.
///
/// ## Parameters
/// * signature1: First signature, a  floating-point matrix.
/// Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
/// a single column (weights only) if the user-defined cost matrix is used. The weights must be
/// non-negative and have at least one non-zero value.
/// * signature2: Second signature of the same format as signature1 , though the number of rows
/// may be different. The total weights may be different. In this case an extra "dummy" point is added
/// to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
/// value.
/// * distType: Used metric. See #DistanceTypes.
/// * cost: User-defined  cost matrix. Also, if a cost matrix
/// is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
/// * lowerBound: Optional input/output parameter: lower boundary of a distance between the two
/// signatures that is a distance between mass centers. The lower boundary may not be calculated if
/// the user-defined cost matrix is used, the total weights of point configurations are not equal, or
/// if the signatures consist of weights only (the signature matrices have a single column). You
/// **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
/// equal to \*lowerBound (it means that the signatures are far enough), the function does not
/// calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
/// return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
/// should be set to 0.
/// * flow: Resultant  flow matrix:  is
/// a flow from  -th point of signature1 to  -th point of signature2 .
///
/// ## C++ default parameters
/// * cost: noArray()
/// * lower_bound: 0
/// * flow: noArray()
#[inline]
pub fn emd(signature1: &dyn core::ToInputArray, signature2: &dyn core::ToInputArray, dist_type: i32, cost: &dyn core::ToInputArray, lower_bound: Option<&mut f32>, flow: &mut dyn core::ToOutputArray) -> Result<f32> {
input_array_arg!(signature1);
input_array_arg!(signature2);
input_array_arg!(cost);
output_array_arg!(flow);
return_send!(via ocvrs_return);
unsafe { sys::cv_EMD_const__InputArrayR_const__InputArrayR_int_const__InputArrayR_floatX_const__OutputArrayR(signature1.as_raw__InputArray(), signature2.as_raw__InputArray(), dist_type, cost.as_raw__InputArray(), lower_bound.map_or(::core::ptr::null_mut(), |lower_bound| lower_bound as *mut _), flow.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image using a Gaussian filter.
///
/// The function convolves the source image with the specified Gaussian kernel. In-place filtering is
/// supported.
///
/// ## Parameters
/// * src: input image; the image can have any number of channels, which are processed
/// independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
/// * dst: output image of the same size and type as src.
/// * ksize: Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
/// positive and odd. Or, they can be zero's and then they are computed from sigma.
/// * sigmaX: Gaussian kernel standard deviation in X direction.
/// * sigmaY: Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
/// equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
/// respectively (see #getGaussianKernel for details); to fully control the result regardless of
/// possible future modifications of all this semantics, it is recommended to specify all of ksize,
/// sigmaX, and sigmaY.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
///
/// ## C++ default parameters
/// * sigma_y: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn gaussian_blur(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ksize: core::Size, sigma_x: f64, sigma_y: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_GaussianBlur_const__InputArrayR_const__OutputArrayR_Size_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ksize.opencv_as_extern(), sigma_x, sigma_y, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds circles in a grayscale image using the Hough transform.
///
/// The function finds circles in a grayscale image using a modification of the Hough transform.
///
/// Example: :
/// @include snippets/imgproc_HoughLinesCircles.cpp
///
///
/// Note: Usually the function detects the centers of circles well. However, it may fail to find correct
/// radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
/// you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
/// to return centers only without radius search, and find the correct radius using an additional procedure.
///
/// It also helps to smooth image a bit unless it's already soft. For example,
/// GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
///
/// ## Parameters
/// * image: 8-bit, single-channel, grayscale input image.
/// * circles: Output vector of found circles. Each vector is encoded as 3 or 4 element
/// floating-point vector  or  .
/// * method: Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
/// * dp: Inverse ratio of the accumulator resolution to the image resolution. For example, if
/// dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
/// half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
/// unless some small very circles need to be detected.
/// * minDist: Minimum distance between the centers of the detected circles. If the parameter is
/// too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
/// too large, some circles may be missed.
/// * param1: First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
/// it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
/// Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
/// shough normally be higher, such as 300 or normally exposed and contrasty images.
/// * param2: Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
/// accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
/// false circles may be detected. Circles, corresponding to the larger accumulator values, will be
/// returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
/// The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
/// If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
/// But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
/// * minRadius: Minimum circle radius.
/// * maxRadius: Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
/// centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
/// ## See also
/// fitEllipse, minEnclosingCircle
///
/// ## C++ default parameters
/// * param1: 100
/// * param2: 100
/// * min_radius: 0
/// * max_radius: 0
#[inline]
pub fn hough_circles(image: &dyn core::ToInputArray, circles: &mut dyn core::ToOutputArray, method: i32, dp: f64, min_dist: f64, param1: f64, param2: f64, min_radius: i32, max_radius: i32) -> Result<()> {
input_array_arg!(image);
output_array_arg!(circles);
return_send!(via ocvrs_return);
unsafe { sys::cv_HoughCircles_const__InputArrayR_const__OutputArrayR_int_double_double_double_double_int_int(image.as_raw__InputArray(), circles.as_raw__OutputArray(), method, dp, min_dist, param1, param2, min_radius, max_radius, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds line segments in a binary image using the probabilistic Hough transform.
///
/// The function implements the probabilistic Hough transform algorithm for line detection, described
/// in [Matas00](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Matas00)
///
/// See the line detection example below:
/// @include snippets/imgproc_HoughLinesP.cpp
/// This is a sample picture the function parameters have been tuned for:
///
/// 
///
/// And this is the output of the above program in case of the probabilistic Hough transform:
///
/// 
///
/// ## Parameters
/// * image: 8-bit, single-channel binary source image. The image may be modified by the function.
/// * lines: Output vector of lines. Each line is represented by a 4-element vector
///  , where  and  are the ending points of each detected
/// line segment.
/// * rho: Distance resolution of the accumulator in pixels.
/// * theta: Angle resolution of the accumulator in radians.
/// * threshold: %Accumulator threshold parameter. Only those lines are returned that get enough
/// votes (  ).
/// * minLineLength: Minimum line length. Line segments shorter than that are rejected.
/// * maxLineGap: Maximum allowed gap between points on the same line to link them.
/// ## See also
/// LineSegmentDetector
///
/// ## C++ default parameters
/// * min_line_length: 0
/// * max_line_gap: 0
#[inline]
pub fn hough_lines_p(image: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray, rho: f64, theta: f64, threshold: i32, min_line_length: f64, max_line_gap: f64) -> Result<()> {
input_array_arg!(image);
output_array_arg!(lines);
return_send!(via ocvrs_return);
unsafe { sys::cv_HoughLinesP_const__InputArrayR_const__OutputArrayR_double_double_int_double_double(image.as_raw__InputArray(), lines.as_raw__OutputArray(), rho, theta, threshold, min_line_length, max_line_gap, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds lines in a set of points using the standard Hough transform.
///
/// The function finds lines in a set of points using a modification of the Hough transform.
/// @include snippets/imgproc_HoughLinesPointSet.cpp
/// ## Parameters
/// * point: Input vector of points. Each vector must be encoded as a Point vector . Type must be CV_32FC2 or CV_32SC2.
/// * lines: Output vector of found lines. Each vector is encoded as a vector<Vec3d> .
/// The larger the value of 'votes', the higher the reliability of the Hough line.
/// * lines_max: Max count of Hough lines.
/// * threshold: %Accumulator threshold parameter. Only those lines are returned that get enough
/// votes (  ).
/// * min_rho: Minimum value for  for the accumulator (Note:  can be negative. The absolute value  is the distance of a line to the origin.).
/// * max_rho: Maximum value for  for the accumulator.
/// * rho_step: Distance resolution of the accumulator.
/// * min_theta: Minimum angle value of the accumulator in radians.
/// * max_theta: Upper bound for the angle value of the accumulator in radians. The actual maximum
/// angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
/// * theta_step: Angle resolution of the accumulator in radians.
#[inline]
pub fn hough_lines_point_set(point: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray, lines_max: i32, threshold: i32, min_rho: f64, max_rho: f64, rho_step: f64, min_theta: f64, max_theta: f64, theta_step: f64) -> Result<()> {
input_array_arg!(point);
output_array_arg!(lines);
return_send!(via ocvrs_return);
unsafe { sys::cv_HoughLinesPointSet_const__InputArrayR_const__OutputArrayR_int_int_double_double_double_double_double_double(point.as_raw__InputArray(), lines.as_raw__OutputArray(), lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds lines in a binary image using the standard Hough transform.
///
/// The function implements the standard or standard multi-scale Hough transform algorithm for line
/// detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
/// transform.
///
/// ## Parameters
/// * image: 8-bit, single-channel binary source image. The image may be modified by the function.
/// * lines: Output vector of lines. Each line is represented by a 2 or 3 element vector
///  or , where  is the distance from
/// the coordinate origin  (top-left corner of the image),  is the line rotation
/// angle in radians (  ), and
///  is the value of accumulator.
/// * rho: Distance resolution of the accumulator in pixels.
/// * theta: Angle resolution of the accumulator in radians.
/// * threshold: %Accumulator threshold parameter. Only those lines are returned that get enough
/// votes (  ).
/// * srn: For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
/// The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
/// rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
/// parameters should be positive.
/// * stn: For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
/// * min_theta: For standard and multi-scale Hough transform, minimum angle to check for lines.
/// Must fall between 0 and max_theta.
/// * max_theta: For standard and multi-scale Hough transform, an upper bound for the angle.
/// Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
/// less than max_theta, depending on the parameters min_theta and theta.
///
/// ## C++ default parameters
/// * srn: 0
/// * stn: 0
/// * min_theta: 0
/// * max_theta: CV_PI
#[inline]
pub fn hough_lines(image: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray, rho: f64, theta: f64, threshold: i32, srn: f64, stn: f64, min_theta: f64, max_theta: f64) -> Result<()> {
input_array_arg!(image);
output_array_arg!(lines);
return_send!(via ocvrs_return);
unsafe { sys::cv_HoughLines_const__InputArrayR_const__OutputArrayR_double_double_int_double_double_double_double(image.as_raw__InputArray(), lines.as_raw__OutputArray(), rho, theta, threshold, srn, stn, min_theta, max_theta, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates seven Hu invariants.
///
/// The function calculates seven Hu invariants (introduced in [Hu62](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Hu62); see also
/// <http://en.wikipedia.org/wiki/Image_moment>) defined as:
///
/// 
///
/// where  stands for  .
///
/// These values are proved to be invariants to the image scale, rotation, and reflection except the
/// seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
/// infinite image resolution. In case of raster images, the computed Hu invariants for the original and
/// transformed images are a bit different.
///
/// ## Parameters
/// * moments: Input moments computed with moments .
/// * hu: Output Hu invariants.
/// ## See also
/// matchShapes
///
/// ## Overloaded parameters
#[inline]
pub fn hu_moments_1(m: core::Moments, hu: &mut dyn core::ToOutputArray) -> Result<()> {
output_array_arg!(hu);
return_send!(via ocvrs_return);
unsafe { sys::cv_HuMoments_const_MomentsR_const__OutputArrayR(&m, hu.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates seven Hu invariants.
///
/// The function calculates seven Hu invariants (introduced in [Hu62](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Hu62); see also
/// <http://en.wikipedia.org/wiki/Image_moment>) defined as:
///
/// 
///
/// where  stands for  .
///
/// These values are proved to be invariants to the image scale, rotation, and reflection except the
/// seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
/// infinite image resolution. In case of raster images, the computed Hu invariants for the original and
/// transformed images are a bit different.
///
/// ## Parameters
/// * moments: Input moments computed with moments .
/// * hu: Output Hu invariants.
/// ## See also
/// matchShapes
#[inline]
pub fn hu_moments(moments: core::Moments, hu: &mut [f64; 7]) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_HuMoments_const_MomentsR_doubleXX(&moments, hu, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the Laplacian of an image.
///
/// The function calculates the Laplacian of the source image by adding up the second x and y
/// derivatives calculated using the Sobel operator:
///
/// 
///
/// This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
/// with the following  aperture:
///
/// 
///
/// ## Parameters
/// * src: Source image.
/// * dst: Destination image of the same size and the same number of channels as src .
/// * ddepth: Desired depth of the destination image, see @ref filter_depths "combinations".
/// * ksize: Aperture size used to compute the second-derivative filters. See #getDerivKernels for
/// details. The size must be positive and odd.
/// * scale: Optional scale factor for the computed Laplacian values. By default, no scaling is
/// applied. See #getDerivKernels for details.
/// * delta: Optional delta value that is added to the results prior to storing them in dst .
/// * borderType: Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// Sobel, Scharr
///
/// ## C++ default parameters
/// * ksize: 1
/// * scale: 1
/// * delta: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn laplacian(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, ksize: i32, scale: f64, delta: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_Laplacian_const__InputArrayR_const__OutputArrayR_int_int_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, ksize, scale, delta, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the first x- or y- image derivative using Scharr operator.
///
/// The function computes the first x- or y- spatial image derivative using the Scharr operator. The
/// call
///
/// 
///
/// is equivalent to
///
/// 
///
/// ## Parameters
/// * src: input image.
/// * dst: output image of the same size and the same number of channels as src.
/// * ddepth: output image depth, see @ref filter_depths "combinations"
/// * dx: order of the derivative x.
/// * dy: order of the derivative y.
/// * scale: optional scale factor for the computed derivative values; by default, no scaling is
/// applied (see #getDerivKernels for details).
/// * delta: optional delta value that is added to the results prior to storing them in dst.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// cartToPolar
///
/// ## C++ default parameters
/// * scale: 1
/// * delta: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn scharr(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, dx: i32, dy: i32, scale: f64, delta: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_Scharr_const__InputArrayR_const__OutputArrayR_int_int_int_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, dx, dy, scale, delta, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
///
/// In all cases except one, the  separable kernel is used to
/// calculate the derivative. When , the  or 
/// kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
/// or the second x- or y- derivatives.
///
/// There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the  Scharr
/// filter that may give more accurate results than the  Sobel. The Scharr aperture is
///
/// 
///
/// for the x-derivative, or transposed for the y-derivative.
///
/// The function calculates an image derivative by convolving the image with the appropriate kernel:
///
/// 
///
/// The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
/// resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
/// or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
/// case corresponds to a kernel of:
///
/// 
///
/// The second case corresponds to a kernel of:
///
/// 
///
/// ## Parameters
/// * src: input image.
/// * dst: output image of the same size and the same number of channels as src .
/// * ddepth: output image depth, see @ref filter_depths "combinations"; in the case of
/// 8-bit input images it will result in truncated derivatives.
/// * dx: order of the derivative x.
/// * dy: order of the derivative y.
/// * ksize: size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
/// * scale: optional scale factor for the computed derivative values; by default, no scaling is
/// applied (see #getDerivKernels for details).
/// * delta: optional delta value that is added to the results prior to storing them in dst.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
///
/// ## C++ default parameters
/// * ksize: 3
/// * scale: 1
/// * delta: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn sobel(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, dx: i32, dy: i32, ksize: i32, scale: f64, delta: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_Sobel_const__InputArrayR_const__OutputArrayR_int_int_int_int_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, dx, dy, ksize, scale, delta, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Adds the per-element product of two input images to the accumulator image.
///
/// The function adds the product of two images or their selected regions to the accumulator dst :
///
/// 
///
/// The function supports multi-channel images. Each channel is processed independently.
///
/// ## Parameters
/// * src1: First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
/// * src2: Second input image of the same type and the same size as src1 .
/// * dst: %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
/// floating-point.
/// * mask: Optional operation mask.
/// ## See also
/// accumulate, accumulateSquare, accumulateWeighted
///
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn accumulate_product(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToInputOutputArray, mask: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(src1);
input_array_arg!(src2);
input_output_array_arg!(dst);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_accumulateProduct_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__InputOutputArray(), mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Adds the square of a source image to the accumulator image.
///
/// The function adds the input image src or its selected region, raised to a power of 2, to the
/// accumulator dst :
///
/// 
///
/// The function supports multi-channel images. Each channel is processed independently.
///
/// ## Parameters
/// * src: Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
/// * dst: %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
/// floating-point.
/// * mask: Optional operation mask.
/// ## See also
/// accumulateSquare, accumulateProduct, accumulateWeighted
///
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn accumulate_square(src: &dyn core::ToInputArray, dst: &mut dyn core::ToInputOutputArray, mask: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(src);
input_output_array_arg!(dst);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_accumulateSquare_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__InputOutputArray(), mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Updates a running average.
///
/// The function calculates the weighted sum of the input image src and the accumulator dst so that dst
/// becomes a running average of a frame sequence:
///
/// 
///
/// That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
/// The function supports multi-channel images. Each channel is processed independently.
///
/// ## Parameters
/// * src: Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
/// * dst: %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
/// floating-point.
/// * alpha: Weight of the input image.
/// * mask: Optional operation mask.
/// ## See also
/// accumulate, accumulateSquare, accumulateProduct
///
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn accumulate_weighted(src: &dyn core::ToInputArray, dst: &mut dyn core::ToInputOutputArray, alpha: f64, mask: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(src);
input_output_array_arg!(dst);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_accumulateWeighted_const__InputArrayR_const__InputOutputArrayR_double_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__InputOutputArray(), alpha, mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Adds an image to the accumulator image.
///
/// The function adds src or some of its elements to dst :
///
/// 
///
/// The function supports multi-channel images. Each channel is processed independently.
///
/// The function cv::accumulate can be used, for example, to collect statistics of a scene background
/// viewed by a still camera and for the further foreground-background segmentation.
///
/// ## Parameters
/// * src: Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
/// * dst: %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
/// * mask: Optional operation mask.
/// ## See also
/// accumulateSquare, accumulateProduct, accumulateWeighted
///
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn accumulate(src: &dyn core::ToInputArray, dst: &mut dyn core::ToInputOutputArray, mask: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(src);
input_output_array_arg!(dst);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_accumulate_const__InputArrayR_const__InputOutputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__InputOutputArray(), mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies an adaptive threshold to an array.
///
/// The function transforms a grayscale image to a binary image according to the formulae:
/// * **THRESH_BINARY**
/// 
/// * **THRESH_BINARY_INV**
/// 
/// where  is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
///
/// The function can process the image in-place.
///
/// ## Parameters
/// * src: Source 8-bit single-channel image.
/// * dst: Destination image of the same size and the same type as src.
/// * maxValue: Non-zero value assigned to the pixels for which the condition is satisfied
/// * adaptiveMethod: Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
/// The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
/// * thresholdType: Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
/// see #ThresholdTypes.
/// * blockSize: Size of a pixel neighborhood that is used to calculate a threshold value for the
/// pixel: 3, 5, 7, and so on.
/// * C: Constant subtracted from the mean or weighted mean (see the details below). Normally, it
/// is positive but may be zero or negative as well.
/// ## See also
/// threshold, blur, GaussianBlur
#[inline]
pub fn adaptive_threshold(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, max_value: f64, adaptive_method: i32, threshold_type: i32, block_size: i32, c: f64) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_adaptiveThreshold_const__InputArrayR_const__OutputArrayR_double_int_int_int_double(src.as_raw__InputArray(), dst.as_raw__OutputArray(), max_value, adaptive_method, threshold_type, block_size, c, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a user colormap on a given image.
///
/// ## Parameters
/// * src: The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
/// * dst: The result is the colormapped source image. Note: Mat::create is called on dst.
/// * userColor: The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
#[inline]
pub fn apply_color_map_user(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, user_color: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(user_color);
return_send!(via ocvrs_return);
unsafe { sys::cv_applyColorMap_const__InputArrayR_const__OutputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), user_color.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a GNU Octave/MATLAB equivalent colormap on a given image.
///
/// ## Parameters
/// * src: The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
/// * dst: The result is the colormapped source image. Note: Mat::create is called on dst.
/// * colormap: The colormap to apply, see #ColormapTypes
#[inline]
pub fn apply_color_map(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, colormap: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_applyColorMap_const__InputArrayR_const__OutputArrayR_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), colormap, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Approximates a polygonal curve(s) with the specified precision.
///
/// The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
/// vertices so that the distance between them is less or equal to the specified precision. It uses the
/// Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
///
/// ## Parameters
/// * curve: Input vector of a 2D point stored in std::vector or Mat
/// * approxCurve: Result of the approximation. The type should match the type of the input curve.
/// * epsilon: Parameter specifying the approximation accuracy. This is the maximum distance
/// between the original curve and its approximation.
/// * closed: If true, the approximated curve is closed (its first and last vertices are
/// connected). Otherwise, it is not closed.
#[inline]
pub fn approx_poly_dp(curve: &dyn core::ToInputArray, approx_curve: &mut dyn core::ToOutputArray, epsilon: f64, closed: bool) -> Result<()> {
input_array_arg!(curve);
output_array_arg!(approx_curve);
return_send!(via ocvrs_return);
unsafe { sys::cv_approxPolyDP_const__InputArrayR_const__OutputArrayR_double_bool(curve.as_raw__InputArray(), approx_curve.as_raw__OutputArray(), epsilon, closed, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates a contour perimeter or a curve length.
///
/// The function computes a curve length or a closed contour perimeter.
///
/// ## Parameters
/// * curve: Input vector of 2D points, stored in std::vector or Mat.
/// * closed: Flag indicating whether the curve is closed or not.
#[inline]
pub fn arc_length(curve: &dyn core::ToInputArray, closed: bool) -> Result<f64> {
input_array_arg!(curve);
return_send!(via ocvrs_return);
unsafe { sys::cv_arcLength_const__InputArrayR_bool(curve.as_raw__InputArray(), closed, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws an arrow segment pointing from the first point to the second one.
///
/// The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
///
/// ## Parameters
/// * img: Image.
/// * pt1: The point the arrow starts from.
/// * pt2: The point the arrow points to.
/// * color: Line color.
/// * thickness: Line thickness.
/// * line_type: Type of the line. See #LineTypes
/// * shift: Number of fractional bits in the point coordinates.
/// * tipLength: The length of the arrow tip in relation to the arrow length
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: 8
/// * shift: 0
/// * tip_length: 0.1
#[inline]
pub fn arrowed_line(img: &mut dyn core::ToInputOutputArray, pt1: core::Point, pt2: core::Point, color: core::Scalar, thickness: i32, line_type: i32, shift: i32, tip_length: f64) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_arrowedLine_const__InputOutputArrayR_Point_Point_const_ScalarR_int_int_int_double(img.as_raw__InputOutputArray(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), &color, thickness, line_type, shift, tip_length, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies the bilateral filter to an image.
///
/// The function applies bilateral filtering to the input image, as described in
/// http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
/// bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
/// very slow compared to most filters.
///
/// _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
/// 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
/// strong effect, making the image look "cartoonish".
///
/// _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
/// applications, and perhaps d=9 for offline applications that need heavy noise filtering.
///
/// This filter does not work inplace.
/// ## Parameters
/// * src: Source 8-bit or floating-point, 1-channel or 3-channel image.
/// * dst: Destination image of the same size and type as src .
/// * d: Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
/// it is computed from sigmaSpace.
/// * sigmaColor: Filter sigma in the color space. A larger value of the parameter means that
/// farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
/// in larger areas of semi-equal color.
/// * sigmaSpace: Filter sigma in the coordinate space. A larger value of the parameter means that
/// farther pixels will influence each other as long as their colors are close enough (see sigmaColor
/// ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
/// proportional to sigmaSpace.
/// * borderType: border mode used to extrapolate pixels outside of the image, see #BorderTypes
///
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn bilateral_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, d: i32, sigma_color: f64, sigma_space: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_bilateralFilter_const__InputArrayR_const__OutputArrayR_int_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), d, sigma_color, sigma_space, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs linear blending of two images:
/// 
/// ## Parameters
/// * src1: It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
/// * src2: It has the same type and size as src1.
/// * weights1: It has a type of CV_32FC1 and the same size with src1.
/// * weights2: It has a type of CV_32FC1 and the same size with src1.
/// * dst: It is created if it does not have the same size and type with src1.
#[inline]
pub fn blend_linear(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, weights1: &dyn core::ToInputArray, weights2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(src1);
input_array_arg!(src2);
input_array_arg!(weights1);
input_array_arg!(weights2);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_blendLinear_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), weights1.as_raw__InputArray(), weights2.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image using the normalized box filter.
///
/// The function smooths an image using the kernel:
///
/// 
///
/// The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
/// anchor, true, borderType)`.
///
/// ## Parameters
/// * src: input image; it can have any number of channels, which are processed independently, but
/// the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
/// * dst: output image of the same size and type as src.
/// * ksize: blurring kernel size.
/// * anchor: anchor point; default value Point(-1,-1) means that the anchor is at the kernel
/// center.
/// * borderType: border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// boxFilter, bilateralFilter, GaussianBlur, medianBlur
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn blur(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ksize: core::Size, anchor: core::Point, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_blur_const__InputArrayR_const__OutputArrayR_Size_Point_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ksize.opencv_as_extern(), anchor.opencv_as_extern(), border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
///
/// The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
/// non-zero pixels of gray-scale image.
///
/// ## Parameters
/// * array: Input gray-scale image or 2D point set, stored in std::vector or Mat.
#[inline]
pub fn bounding_rect(array: &dyn core::ToInputArray) -> Result<core::Rect> {
input_array_arg!(array);
return_send!(via ocvrs_return);
unsafe { sys::cv_boundingRect_const__InputArrayR(array.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image using the box filter.
///
/// The function smooths an image using the kernel:
///
/// 
///
/// where
///
/// 
///
/// Unnormalized box filter is useful for computing various integral characteristics over each pixel
/// neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
/// algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image of the same size and type as src.
/// * ddepth: the output image depth (-1 to use src.depth()).
/// * ksize: blurring kernel size.
/// * anchor: anchor point; default value Point(-1,-1) means that the anchor is at the kernel
/// center.
/// * normalize: flag, specifying whether the kernel is normalized by its area or not.
/// * borderType: border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// blur, bilateralFilter, GaussianBlur, medianBlur, integral
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * normalize: true
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn box_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, ksize: core::Size, anchor: core::Point, normalize: bool, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_boxFilter_const__InputArrayR_const__OutputArrayR_int_Size_Point_bool_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, ksize.opencv_as_extern(), anchor.opencv_as_extern(), normalize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
///
/// The function finds the four vertices of a rotated rectangle. This function is useful to draw the
/// rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
/// visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
///
/// ## Parameters
/// * box: The input rotated rectangle. It may be the output of
/// * points: The output array of four vertices of rectangles.
#[inline]
pub fn box_points(mut box_: core::RotatedRect, points: &mut dyn core::ToOutputArray) -> Result<()> {
output_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_boxPoints_RotatedRect_const__OutputArrayR(box_.as_raw_mut_RotatedRect(), points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Constructs the Gaussian pyramid for an image.
///
/// The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
/// pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
///
/// ## Parameters
/// * src: Source image. Check pyrDown for the list of supported types.
/// * dst: Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
/// same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
/// * maxlevel: 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
/// * borderType: Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
///
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn build_pyramid(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, maxlevel: i32, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_buildPyramid_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), maxlevel, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the back projection of a histogram.
///
/// The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
/// #calcHist , at each location (x, y) the function collects the values from the selected channels
/// in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
/// function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
/// statistics, the function computes probability of each element value in respect with the empirical
/// probability distribution represented by the histogram. See how, for example, you can find and track
/// a bright-colored object in a scene:
///
/// - Before tracking, show the object to the camera so that it covers almost the whole frame.
/// Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
/// colors in the object.
///
/// - When tracking, calculate a back projection of a hue plane of each input video frame using that
/// pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
/// sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
///
/// - Find connected components in the resulting picture and choose, for example, the largest
/// component.
///
/// This is an approximate algorithm of the CamShift color object tracker.
///
/// ## Parameters
/// * images: Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
/// size. Each of them can have an arbitrary number of channels.
/// * nimages: Number of source images.
/// * channels: The list of channels used to compute the back projection. The number of channels
/// must match the histogram dimensionality. The first array channels are numerated from 0 to
/// images[0].channels()-1 , the second array channels are counted from images[0].channels() to
/// images[0].channels() + images[1].channels()-1, and so on.
/// * hist: Input histogram that can be dense or sparse.
/// * backProject: Destination back projection array that is a single-channel array of the same
/// size and depth as images[0] .
/// * ranges: Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
/// * scale: Optional scale factor for the output back projection.
/// * uniform: Flag indicating whether the histogram is uniform or not (see above).
/// ## See also
/// calcHist, compareHist
///
/// ## Overloaded parameters
#[inline]
pub fn calc_back_project(images: &dyn core::ToInputArray, channels: &core::Vector<i32>, hist: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ranges: &core::Vector<f32>, scale: f64) -> Result<()> {
input_array_arg!(images);
input_array_arg!(hist);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_calcBackProject_const__InputArrayR_const_vectorLintGR_const__InputArrayR_const__OutputArrayR_const_vectorLfloatGR_double(images.as_raw__InputArray(), channels.as_raw_VectorOfi32(), hist.as_raw__InputArray(), dst.as_raw__OutputArray(), ranges.as_raw_VectorOff32(), scale, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates a histogram of a set of arrays.
///
/// The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
/// to increment a histogram bin are taken from the corresponding input arrays at the same location. The
/// sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
/// @include snippets/imgproc_calcHist.cpp
///
/// ## Parameters
/// * images: Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
/// size. Each of them can have an arbitrary number of channels.
/// * nimages: Number of source images.
/// * channels: List of the dims channels used to compute the histogram. The first array channels
/// are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
/// images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
/// * mask: Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
/// as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
/// * hist: Output histogram, which is a dense or sparse dims -dimensional array.
/// * dims: Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
/// (equal to 32 in the current OpenCV version).
/// * histSize: Array of histogram sizes in each dimension.
/// * ranges: Array of the dims arrays of the histogram bin boundaries in each dimension. When the
/// histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
/// (inclusive) boundary  of the 0-th histogram bin and the upper (exclusive) boundary
///  for the last histogram bin histSize[i]-1 . That is, in case of a
/// uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
/// uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
/// 
/// . The array elements, that are not between  and  , are not
/// counted in the histogram.
/// * uniform: Flag indicating whether the histogram is uniform or not (see above).
/// * accumulate: Accumulation flag. If it is set, the histogram is not cleared in the beginning
/// when it is allocated. This feature enables you to compute a single histogram from several sets of
/// arrays, or to update the histogram in time.
///
/// ## Overloaded parameters
///
///
/// this variant supports only uniform histograms.
///
/// ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
/// (histSize.size() element pairs). The first and second elements of each pair specify the lower and
/// upper boundaries.
///
/// ## C++ default parameters
/// * accumulate: false
#[inline]
pub fn calc_hist(images: &dyn core::ToInputArray, channels: &core::Vector<i32>, mask: &dyn core::ToInputArray, hist: &mut dyn core::ToOutputArray, hist_size: &core::Vector<i32>, ranges: &core::Vector<f32>, accumulate: bool) -> Result<()> {
input_array_arg!(images);
input_array_arg!(mask);
output_array_arg!(hist);
return_send!(via ocvrs_return);
unsafe { sys::cv_calcHist_const__InputArrayR_const_vectorLintGR_const__InputArrayR_const__OutputArrayR_const_vectorLintGR_const_vectorLfloatGR_bool(images.as_raw__InputArray(), channels.as_raw_VectorOfi32(), mask.as_raw__InputArray(), hist.as_raw__OutputArray(), hist_size.as_raw_VectorOfi32(), ranges.as_raw_VectorOff32(), accumulate, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a circle.
///
/// The function cv::circle draws a simple or filled circle with a given center and radius.
/// ## Parameters
/// * img: Image where the circle is drawn.
/// * center: Center of the circle.
/// * radius: Radius of the circle.
/// * color: Circle color.
/// * thickness: Thickness of the circle outline, if positive. Negative values, like #FILLED,
/// mean that a filled circle is to be drawn.
/// * lineType: Type of the circle boundary. See #LineTypes
/// * shift: Number of fractional bits in the coordinates of the center and in the radius value.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn circle(img: &mut dyn core::ToInputOutputArray, center: core::Point, radius: i32, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_circle_const__InputOutputArrayR_Point_int_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), center.opencv_as_extern(), radius, &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Clips the line against the image rectangle.
///
/// The function cv::clipLine calculates a part of the line segment that is entirely within the specified
/// rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
/// it returns true .
/// ## Parameters
/// * imgSize: Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
/// * pt1: First line point.
/// * pt2: Second line point.
///
/// ## Overloaded parameters
///
/// * imgRect: Image rectangle.
/// * pt1: First line point.
/// * pt2: Second line point.
#[inline]
pub fn clip_line(img_rect: core::Rect, pt1: &mut core::Point, pt2: &mut core::Point) -> Result<bool> {
return_send!(via ocvrs_return);
unsafe { sys::cv_clipLine_Rect_PointR_PointR(img_rect.opencv_as_extern(), pt1, pt2, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Clips the line against the image rectangle.
///
/// The function cv::clipLine calculates a part of the line segment that is entirely within the specified
/// rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
/// it returns true .
/// ## Parameters
/// * imgSize: Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
/// * pt1: First line point.
/// * pt2: Second line point.
///
/// ## Overloaded parameters
///
/// * imgSize: Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
/// * pt1: First line point.
/// * pt2: Second line point.
#[inline]
pub fn clip_line_size_i64(img_size: core::Size2l, pt1: &mut core::Point2l, pt2: &mut core::Point2l) -> Result<bool> {
return_send!(via ocvrs_return);
unsafe { sys::cv_clipLine_Size2l_Point2lR_Point2lR(img_size.opencv_as_extern(), pt1, pt2, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Clips the line against the image rectangle.
///
/// The function cv::clipLine calculates a part of the line segment that is entirely within the specified
/// rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
/// it returns true .
/// ## Parameters
/// * imgSize: Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
/// * pt1: First line point.
/// * pt2: Second line point.
#[inline]
pub fn clip_line_size(img_size: core::Size, pt1: &mut core::Point, pt2: &mut core::Point) -> Result<bool> {
return_send!(via ocvrs_return);
unsafe { sys::cv_clipLine_Size_PointR_PointR(img_size.opencv_as_extern(), pt1, pt2, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Compares two histograms.
///
/// The function cv::compareHist compares two dense or two sparse histograms using the specified method.
///
/// The function returns  .
///
/// While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
/// for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
/// problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
/// or more general sparse configurations of weighted points, consider using the #EMD function.
///
/// ## Parameters
/// * H1: First compared histogram.
/// * H2: Second compared histogram of the same size as H1 .
/// * method: Comparison method, see #HistCompMethods
///
/// ## Overloaded parameters
#[inline]
pub fn compare_hist_1(h1: &core::SparseMat, h2: &core::SparseMat, method: i32) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_compareHist_const_SparseMatR_const_SparseMatR_int(h1.as_raw_SparseMat(), h2.as_raw_SparseMat(), method, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Compares two histograms.
///
/// The function cv::compareHist compares two dense or two sparse histograms using the specified method.
///
/// The function returns  .
///
/// While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
/// for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
/// problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
/// or more general sparse configurations of weighted points, consider using the #EMD function.
///
/// ## Parameters
/// * H1: First compared histogram.
/// * H2: Second compared histogram of the same size as H1 .
/// * method: Comparison method, see #HistCompMethods
#[inline]
pub fn compare_hist(h1: &dyn core::ToInputArray, h2: &dyn core::ToInputArray, method: i32) -> Result<f64> {
input_array_arg!(h1);
input_array_arg!(h2);
return_send!(via ocvrs_return);
unsafe { sys::cv_compareHist_const__InputArrayR_const__InputArrayR_int(h1.as_raw__InputArray(), h2.as_raw__InputArray(), method, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// computes the connected components labeled image of boolean image and also produces a statistics output for each label
///
/// image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
/// represents the background label. ltype specifies the output label image type, an important
/// consideration based on the total number of labels or alternatively the total number of pixels in
/// the source image. ccltype specifies the connected components labeling algorithm to use, currently
/// Bolelli (Spaghetti) [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019), Grana (BBDT) [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) and Wu's (SAUF) [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithms
/// are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
/// a row major ordering of labels while Spaghetti and BBDT do not.
/// This function uses parallel version of the algorithms (statistics included) if at least one allowed
/// parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
///
/// ## Parameters
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * stats: statistics output for each label, including the background label.
/// Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
/// #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
/// * centroids: centroid output for each label, including the background label. Centroids are
/// accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
/// * ccltype: connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
///
/// ## Overloaded parameters
///
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * stats: statistics output for each label, including the background label.
/// Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
/// #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
/// * centroids: centroid output for each label, including the background label. Centroids are
/// accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
///
/// ## C++ default parameters
/// * connectivity: 8
/// * ltype: CV_32S
#[inline]
pub fn connected_components_with_stats(image: &dyn core::ToInputArray, labels: &mut dyn core::ToOutputArray, stats: &mut dyn core::ToOutputArray, centroids: &mut dyn core::ToOutputArray, connectivity: i32, ltype: i32) -> Result<i32> {
input_array_arg!(image);
output_array_arg!(labels);
output_array_arg!(stats);
output_array_arg!(centroids);
return_send!(via ocvrs_return);
unsafe { sys::cv_connectedComponentsWithStats_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_int(image.as_raw__InputArray(), labels.as_raw__OutputArray(), stats.as_raw__OutputArray(), centroids.as_raw__OutputArray(), connectivity, ltype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// computes the connected components labeled image of boolean image and also produces a statistics output for each label
///
/// image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
/// represents the background label. ltype specifies the output label image type, an important
/// consideration based on the total number of labels or alternatively the total number of pixels in
/// the source image. ccltype specifies the connected components labeling algorithm to use, currently
/// Bolelli (Spaghetti) [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019), Grana (BBDT) [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) and Wu's (SAUF) [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithms
/// are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
/// a row major ordering of labels while Spaghetti and BBDT do not.
/// This function uses parallel version of the algorithms (statistics included) if at least one allowed
/// parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
///
/// ## Parameters
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * stats: statistics output for each label, including the background label.
/// Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
/// #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
/// * centroids: centroid output for each label, including the background label. Centroids are
/// accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
/// * ccltype: connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
#[inline]
pub fn connected_components_with_stats_with_algorithm(image: &dyn core::ToInputArray, labels: &mut dyn core::ToOutputArray, stats: &mut dyn core::ToOutputArray, centroids: &mut dyn core::ToOutputArray, connectivity: i32, ltype: i32, ccltype: i32) -> Result<i32> {
input_array_arg!(image);
output_array_arg!(labels);
output_array_arg!(stats);
output_array_arg!(centroids);
return_send!(via ocvrs_return);
unsafe { sys::cv_connectedComponentsWithStats_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_int_int(image.as_raw__InputArray(), labels.as_raw__OutputArray(), stats.as_raw__OutputArray(), centroids.as_raw__OutputArray(), connectivity, ltype, ccltype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// computes the connected components labeled image of boolean image
///
/// image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
/// represents the background label. ltype specifies the output label image type, an important
/// consideration based on the total number of labels or alternatively the total number of pixels in
/// the source image. ccltype specifies the connected components labeling algorithm to use, currently
/// Bolelli (Spaghetti) [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019), Grana (BBDT) [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) and Wu's (SAUF) [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithms
/// are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
/// a row major ordering of labels while Spaghetti and BBDT do not.
/// This function uses parallel version of the algorithms if at least one allowed
/// parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
///
/// ## Parameters
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
/// * ccltype: connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
///
/// ## Overloaded parameters
///
///
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
///
/// ## C++ default parameters
/// * connectivity: 8
/// * ltype: CV_32S
#[inline]
pub fn connected_components(image: &dyn core::ToInputArray, labels: &mut dyn core::ToOutputArray, connectivity: i32, ltype: i32) -> Result<i32> {
input_array_arg!(image);
output_array_arg!(labels);
return_send!(via ocvrs_return);
unsafe { sys::cv_connectedComponents_const__InputArrayR_const__OutputArrayR_int_int(image.as_raw__InputArray(), labels.as_raw__OutputArray(), connectivity, ltype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// computes the connected components labeled image of boolean image
///
/// image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
/// represents the background label. ltype specifies the output label image type, an important
/// consideration based on the total number of labels or alternatively the total number of pixels in
/// the source image. ccltype specifies the connected components labeling algorithm to use, currently
/// Bolelli (Spaghetti) [Bolelli2019](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Bolelli2019), Grana (BBDT) [Grana2010](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Grana2010) and Wu's (SAUF) [Wu2009](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Wu2009) algorithms
/// are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
/// a row major ordering of labels while Spaghetti and BBDT do not.
/// This function uses parallel version of the algorithms if at least one allowed
/// parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
///
/// ## Parameters
/// * image: the 8-bit single-channel image to be labeled
/// * labels: destination labeled image
/// * connectivity: 8 or 4 for 8-way or 4-way connectivity respectively
/// * ltype: output image label type. Currently CV_32S and CV_16U are supported.
/// * ccltype: connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
#[inline]
pub fn connected_components_with_algorithm(image: &dyn core::ToInputArray, labels: &mut dyn core::ToOutputArray, connectivity: i32, ltype: i32, ccltype: i32) -> Result<i32> {
input_array_arg!(image);
output_array_arg!(labels);
return_send!(via ocvrs_return);
unsafe { sys::cv_connectedComponents_const__InputArrayR_const__OutputArrayR_int_int_int(image.as_raw__InputArray(), labels.as_raw__OutputArray(), connectivity, ltype, ccltype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates a contour area.
///
/// The function computes a contour area. Similarly to moments , the area is computed using the Green
/// formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
/// #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
/// results for contours with self-intersections.
///
/// Example:
/// ```ignore
/// vector<Point> contour;
/// contour.push_back(Point2f(0, 0));
/// contour.push_back(Point2f(10, 0));
/// contour.push_back(Point2f(10, 10));
/// contour.push_back(Point2f(5, 4));
///
/// double area0 = contourArea(contour);
/// vector<Point> approx;
/// approxPolyDP(contour, approx, 5, true);
/// double area1 = contourArea(approx);
///
/// cout << "area0 =" << area0 << endl <<
/// "area1 =" << area1 << endl <<
/// "approx poly vertices" << approx.size() << endl;
/// ```
///
/// ## Parameters
/// * contour: Input vector of 2D points (contour vertices), stored in std::vector or Mat.
/// * oriented: Oriented area flag. If it is true, the function returns a signed area value,
/// depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
/// determine orientation of a contour by taking the sign of an area. By default, the parameter is
/// false, which means that the absolute value is returned.
///
/// ## C++ default parameters
/// * oriented: false
#[inline]
pub fn contour_area(contour: &dyn core::ToInputArray, oriented: bool) -> Result<f64> {
input_array_arg!(contour);
return_send!(via ocvrs_return);
unsafe { sys::cv_contourArea_const__InputArrayR_bool(contour.as_raw__InputArray(), oriented, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Converts image transformation maps from one representation to another.
///
/// The function converts a pair of maps for remap from one representation to another. The following
/// options ( (map1.type(), map2.type())  (dstmap1.type(), dstmap2.type()) ) are
/// supported:
///
/// - . This is the
/// most frequently used conversion operation, in which the original floating-point maps (see #remap)
/// are converted to a more compact and much faster fixed-point representation. The first output array
/// contains the rounded coordinates and the second array (created only when nninterpolation=false )
/// contains indices in the interpolation tables.
///
/// - . The same as above but
/// the original maps are stored in one 2-channel matrix.
///
/// - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
/// as the originals.
///
/// ## Parameters
/// * map1: The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
/// * map2: The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
/// respectively.
/// * dstmap1: The first output map that has the type dstmap1type and the same size as src .
/// * dstmap2: The second output map.
/// * dstmap1type: Type of the first output map that should be CV_16SC2, CV_32FC1, or
/// CV_32FC2 .
/// * nninterpolation: Flag indicating whether the fixed-point maps are used for the
/// nearest-neighbor or for a more complex interpolation.
/// ## See also
/// remap, undistort, initUndistortRectifyMap
///
/// ## C++ default parameters
/// * nninterpolation: false
#[inline]
pub fn convert_maps(map1: &dyn core::ToInputArray, map2: &dyn core::ToInputArray, dstmap1: &mut dyn core::ToOutputArray, dstmap2: &mut dyn core::ToOutputArray, dstmap1type: i32, nninterpolation: bool) -> Result<()> {
input_array_arg!(map1);
input_array_arg!(map2);
output_array_arg!(dstmap1);
output_array_arg!(dstmap2);
return_send!(via ocvrs_return);
unsafe { sys::cv_convertMaps_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int_bool(map1.as_raw__InputArray(), map2.as_raw__InputArray(), dstmap1.as_raw__OutputArray(), dstmap2.as_raw__OutputArray(), dstmap1type, nninterpolation, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds the convex hull of a point set.
///
/// The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm [Sklansky82](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Sklansky82)
/// that has *O(N logN)* complexity in the current implementation.
///
/// ## Parameters
/// * points: Input 2D point set, stored in std::vector or Mat.
/// * hull: Output convex hull. It is either an integer vector of indices or vector of points. In
/// the first case, the hull elements are 0-based indices of the convex hull points in the original
/// array (since the set of convex hull points is a subset of the original point set). In the second
/// case, hull elements are the convex hull points themselves.
/// * clockwise: Orientation flag. If it is true, the output convex hull is oriented clockwise.
/// Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
/// to the right, and its Y axis pointing upwards.
/// * returnPoints: Operation flag. In case of a matrix, when the flag is true, the function
/// returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
/// output array is std::vector, the flag is ignored, and the output depends on the type of the
/// vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
/// returnPoints=true.
///
///
/// Note: `points` and `hull` should be different arrays, inplace processing isn't supported.
///
/// Check @ref tutorial_hull "the corresponding tutorial" for more details.
///
/// useful links:
///
/// https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
///
/// ## C++ default parameters
/// * clockwise: false
/// * return_points: true
#[inline]
pub fn convex_hull(points: &dyn core::ToInputArray, hull: &mut dyn core::ToOutputArray, clockwise: bool, return_points: bool) -> Result<()> {
input_array_arg!(points);
output_array_arg!(hull);
return_send!(via ocvrs_return);
unsafe { sys::cv_convexHull_const__InputArrayR_const__OutputArrayR_bool_bool(points.as_raw__InputArray(), hull.as_raw__OutputArray(), clockwise, return_points, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds the convexity defects of a contour.
///
/// The figure below displays convexity defects of a hand contour:
///
/// 
///
/// ## Parameters
/// * contour: Input contour.
/// * convexhull: Convex hull obtained using convexHull that should contain indices of the contour
/// points that make the hull.
/// * convexityDefects: The output vector of convexity defects. In C++ and the new Python/Java
/// interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
/// (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
/// in the original contour of the convexity defect beginning, end and the farthest point, and
/// fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
/// farthest contour point and the hull. That is, to get the floating-point value of the depth will be
/// fixpt_depth/256.0.
#[inline]
pub fn convexity_defects(contour: &dyn core::ToInputArray, convexhull: &dyn core::ToInputArray, convexity_defects: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(contour);
input_array_arg!(convexhull);
output_array_arg!(convexity_defects);
return_send!(via ocvrs_return);
unsafe { sys::cv_convexityDefects_const__InputArrayR_const__InputArrayR_const__OutputArrayR(contour.as_raw__InputArray(), convexhull.as_raw__InputArray(), convexity_defects.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates eigenvalues and eigenvectors of image blocks for corner detection.
///
/// For every pixel  , the function cornerEigenValsAndVecs considers a blockSize  blockSize
/// neighborhood  . It calculates the covariation matrix of derivatives over the neighborhood as:
///
/// 
///
/// where the derivatives are computed using the Sobel operator.
///
/// After that, it finds eigenvectors and eigenvalues of  and stores them in the destination image as
///  where
///
/// *  are the non-sorted eigenvalues of 
/// *  are the eigenvectors corresponding to 
/// *  are the eigenvectors corresponding to 
///
/// The output of the function can be used for robust edge or corner detection.
///
/// ## Parameters
/// * src: Input single-channel 8-bit or floating-point image.
/// * dst: Image to store the results. It has the same size as src and the type CV_32FC(6) .
/// * blockSize: Neighborhood size (see details below).
/// * ksize: Aperture parameter for the Sobel operator.
/// * borderType: Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// cornerMinEigenVal, cornerHarris, preCornerDetect
///
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn corner_eigen_vals_and_vecs(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, block_size: i32, ksize: i32, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_cornerEigenValsAndVecs_const__InputArrayR_const__OutputArrayR_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), block_size, ksize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Harris corner detector.
///
/// The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
/// cornerEigenValsAndVecs , for each pixel  it calculates a  gradient covariance
/// matrix  over a  neighborhood. Then, it
/// computes the following characteristic:
///
/// 
///
/// Corners in the image can be found as the local maxima of this response map.
///
/// ## Parameters
/// * src: Input single-channel 8-bit or floating-point image.
/// * dst: Image to store the Harris detector responses. It has the type CV_32FC1 and the same
/// size as src .
/// * blockSize: Neighborhood size (see the details on #cornerEigenValsAndVecs ).
/// * ksize: Aperture parameter for the Sobel operator.
/// * k: Harris detector free parameter. See the formula above.
/// * borderType: Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
///
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn corner_harris(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, block_size: i32, ksize: i32, k: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_cornerHarris_const__InputArrayR_const__OutputArrayR_int_int_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), block_size, ksize, k, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the minimal eigenvalue of gradient matrices for corner detection.
///
/// The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
/// eigenvalue of the covariance matrix of derivatives, that is,  in terms
/// of the formulae in the cornerEigenValsAndVecs description.
///
/// ## Parameters
/// * src: Input single-channel 8-bit or floating-point image.
/// * dst: Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
/// src .
/// * blockSize: Neighborhood size (see the details on #cornerEigenValsAndVecs ).
/// * ksize: Aperture parameter for the Sobel operator.
/// * borderType: Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
///
/// ## C++ default parameters
/// * ksize: 3
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn corner_min_eigen_val(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, block_size: i32, ksize: i32, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_cornerMinEigenVal_const__InputArrayR_const__OutputArrayR_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), block_size, ksize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Refines the corner locations.
///
/// The function iterates to find the sub-pixel accurate location of corners or radial saddle
/// points as described in [forstner1987fast](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_forstner1987fast), and as shown on the figure below.
///
/// 
///
/// Sub-pixel accurate corner locator is based on the observation that every vector from the center 
/// to a point  located within a neighborhood of  is orthogonal to the image gradient at 
/// subject to image and measurement noise. Consider the expression:
///
/// 
///
/// where  is an image gradient at one of the points  in a neighborhood of  . The
/// value of  is to be found so that  is minimized. A system of equations may be set up
/// with  set to zero:
///
/// 
///
/// where the gradients are summed within a neighborhood ("search window") of  . Calling the first
/// gradient term  and the second gradient term  gives:
///
/// 
///
/// The algorithm sets the center of the neighborhood window at this new center  and then iterates
/// until the center stays within a set threshold.
///
/// ## Parameters
/// * image: Input single-channel, 8-bit or float image.
/// * corners: Initial coordinates of the input corners and refined coordinates provided for
/// output.
/// * winSize: Half of the side length of the search window. For example, if winSize=Size(5,5) ,
/// then a  search window is used.
/// * zeroZone: Half of the size of the dead region in the middle of the search zone over which
/// the summation in the formula below is not done. It is used sometimes to avoid possible
/// singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
/// a size.
/// * criteria: Criteria for termination of the iterative process of corner refinement. That is,
/// the process of corner position refinement stops either after criteria.maxCount iterations or when
/// the corner position moves by less than criteria.epsilon on some iteration.
#[inline]
pub fn corner_sub_pix(image: &dyn core::ToInputArray, corners: &mut dyn core::ToInputOutputArray, win_size: core::Size, zero_zone: core::Size, criteria: core::TermCriteria) -> Result<()> {
input_array_arg!(image);
input_output_array_arg!(corners);
return_send!(via ocvrs_return);
unsafe { sys::cv_cornerSubPix_const__InputArrayR_const__InputOutputArrayR_Size_Size_TermCriteria(image.as_raw__InputArray(), corners.as_raw__InputOutputArray(), win_size.opencv_as_extern(), zero_zone.opencv_as_extern(), criteria.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Creates a smart pointer to a cv::CLAHE class and initializes it.
///
/// ## Parameters
/// * clipLimit: Threshold for contrast limiting.
/// * tileGridSize: Size of grid for histogram equalization. Input image will be divided into
/// equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
///
/// ## C++ default parameters
/// * clip_limit: 40.0
/// * tile_grid_size: Size(8,8)
#[inline]
pub fn create_clahe(clip_limit: f64, tile_grid_size: core::Size) -> Result<core::Ptr<dyn crate::imgproc::CLAHE>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_createCLAHE_double_Size(clip_limit, tile_grid_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<dyn crate::imgproc::CLAHE>::opencv_from_extern(ret) };
Ok(ret)
}
/// Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
#[inline]
pub fn create_generalized_hough_ballard() -> Result<core::Ptr<dyn crate::imgproc::GeneralizedHoughBallard>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_createGeneralizedHoughBallard(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<dyn crate::imgproc::GeneralizedHoughBallard>::opencv_from_extern(ret) };
Ok(ret)
}
/// Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
#[inline]
pub fn create_generalized_hough_guil() -> Result<core::Ptr<dyn crate::imgproc::GeneralizedHoughGuil>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_createGeneralizedHoughGuil(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<dyn crate::imgproc::GeneralizedHoughGuil>::opencv_from_extern(ret) };
Ok(ret)
}
/// This function computes a Hanning window coefficients in two dimensions.
///
/// See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
/// for more information.
///
/// An example is shown below:
/// ```ignore
/// // create hanning window of size 100x100 and type CV_32F
/// Mat hann;
/// createHanningWindow(hann, Size(100, 100), CV_32F);
/// ```
///
/// ## Parameters
/// * dst: Destination array to place Hann coefficients in
/// * winSize: The window size specifications (both width and height must be > 1)
/// * type: Created array type
#[inline]
pub fn create_hanning_window(dst: &mut dyn core::ToOutputArray, win_size: core::Size, typ: i32) -> Result<()> {
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_createHanningWindow_const__OutputArrayR_Size_int(dst.as_raw__OutputArray(), win_size.opencv_as_extern(), typ, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Creates a smart pointer to a LineSegmentDetector object and initializes it.
///
/// The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
/// to edit those, as to tailor it for their own application.
///
/// ## Parameters
/// * refine: The way found lines will be refined, see #LineSegmentDetectorModes
/// * scale: The scale of the image that will be used to find the lines. Range (0..1].
/// * sigma_scale: Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
/// * quant: Bound to the quantization error on the gradient norm.
/// * ang_th: Gradient angle tolerance in degrees.
/// * log_eps: Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
/// * density_th: Minimal density of aligned region points in the enclosing rectangle.
/// * n_bins: Number of bins in pseudo-ordering of gradient modulus.
///
/// ## C++ default parameters
/// * refine: LSD_REFINE_STD
/// * scale: 0.8
/// * sigma_scale: 0.6
/// * quant: 2.0
/// * ang_th: 22.5
/// * log_eps: 0
/// * density_th: 0.7
/// * n_bins: 1024
#[inline]
pub fn create_line_segment_detector(refine: i32, scale: f64, sigma_scale: f64, quant: f64, ang_th: f64, log_eps: f64, density_th: f64, n_bins: i32) -> Result<core::Ptr<dyn crate::imgproc::LineSegmentDetector>> {
return_send!(via ocvrs_return);
unsafe { sys::cv_createLineSegmentDetector_int_double_double_double_double_double_double_int(refine, scale, sigma_scale, quant, ang_th, log_eps, density_th, n_bins, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Ptr::<dyn crate::imgproc::LineSegmentDetector>::opencv_from_extern(ret) };
Ok(ret)
}
/// Converts an image from one color space to another where the source image is
/// stored in two planes.
///
/// This function only supports YUV420 to RGB conversion as of now.
///
/// ## Parameters
/// * src1: : 8-bit image (#CV_8U) of the Y plane.
/// * src2: : image containing interleaved U/V plane.
/// * dst: : output image.
/// * code: : Specifies the type of conversion. It can take any of the following values:
/// - #COLOR_YUV2BGR_NV12
/// - #COLOR_YUV2RGB_NV12
/// - #COLOR_YUV2BGRA_NV12
/// - #COLOR_YUV2RGBA_NV12
/// - #COLOR_YUV2BGR_NV21
/// - #COLOR_YUV2RGB_NV21
/// - #COLOR_YUV2BGRA_NV21
/// - #COLOR_YUV2RGBA_NV21
#[inline]
pub fn cvt_color_two_plane(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, code: i32) -> Result<()> {
input_array_arg!(src1);
input_array_arg!(src2);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_cvtColorTwoPlane_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), code, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Converts an image from one color space to another.
///
/// The function converts an input image from one color space to another. In case of a transformation
/// to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
/// that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
/// bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
/// component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
/// sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
///
/// The conventional ranges for R, G, and B channel values are:
/// * 0 to 255 for CV_8U images
/// * 0 to 65535 for CV_16U images
/// * 0 to 1 for CV_32F images
///
/// In case of linear transformations, the range does not matter. But in case of a non-linear
/// transformation, an input RGB image should be normalized to the proper value range to get the correct
/// results, for example, for RGB  L\*u\*v\* transformation. For example, if you have a
/// 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
/// have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
/// you need first to scale the image down:
/// ```ignore
/// img *= 1./255;
/// cvtColor(img, img, COLOR_BGR2Luv);
/// ```
///
/// If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
/// applications, this will not be noticeable but it is recommended to use 32-bit images in applications
/// that need the full range of colors or that convert an image before an operation and then convert
/// back.
///
/// If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
/// range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
///
/// ## Parameters
/// * src: input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
/// floating-point.
/// * dst: output image of the same size and depth as src.
/// * code: color space conversion code (see #ColorConversionCodes).
/// * dstCn: number of channels in the destination image; if the parameter is 0, the number of the
/// channels is derived automatically from src and code.
/// ## See also
/// @ref imgproc_color_conversions
///
/// ## C++ default parameters
/// * dst_cn: 0
#[inline]
pub fn cvt_color(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, code: i32, dst_cn: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_cvtColor_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), code, dst_cn, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// main function for all demosaicing processes
///
/// ## Parameters
/// * src: input image: 8-bit unsigned or 16-bit unsigned.
/// * dst: output image of the same size and depth as src.
/// * code: Color space conversion code (see the description below).
/// * dstCn: number of channels in the destination image; if the parameter is 0, the number of the
/// channels is derived automatically from src and code.
///
/// The function can do the following transformations:
///
/// * Demosaicing using bilinear interpolation
///
/// #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
///
/// #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
///
/// * Demosaicing using Variable Number of Gradients.
///
/// #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
///
/// * Edge-Aware Demosaicing.
///
/// #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
///
/// * Demosaicing with alpha channel
///
/// #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
/// ## See also
/// cvtColor
///
/// ## C++ default parameters
/// * dst_cn: 0
#[inline]
pub fn demosaicing(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, code: i32, dst_cn: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_demosaicing_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), code, dst_cn, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Dilates an image by using a specific structuring element.
///
/// The function dilates the source image using the specified structuring element that determines the
/// shape of a pixel neighborhood over which the maximum is taken:
/// 
///
/// The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
/// case of multi-channel images, each channel is processed independently.
///
/// ## Parameters
/// * src: input image; the number of channels can be arbitrary, but the depth should be one of
/// CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
/// * dst: output image of the same size and type as src.
/// * kernel: structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
/// structuring element is used. Kernel can be created using #getStructuringElement
/// * anchor: position of the anchor within the element; default value (-1, -1) means that the
/// anchor is at the element center.
/// * iterations: number of times dilation is applied.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
/// * borderValue: border value in case of a constant border
/// ## See also
/// erode, morphologyEx, getStructuringElement
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * iterations: 1
/// * border_type: BORDER_CONSTANT
/// * border_value: morphologyDefaultBorderValue()
#[inline]
pub fn dilate(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, kernel: &dyn core::ToInputArray, anchor: core::Point, iterations: i32, border_type: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(kernel);
return_send!(via ocvrs_return);
unsafe { sys::cv_dilate_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Point_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), kernel.as_raw__InputArray(), anchor.opencv_as_extern(), iterations, border_type, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the distance to the closest zero pixel for each pixel of the source image.
///
/// The function cv::distanceTransform calculates the approximate or precise distance from every binary
/// image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
///
/// When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
/// algorithm described in [Felzenszwalb04](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Felzenszwalb04) . This algorithm is parallelized with the TBB library.
///
/// In other cases, the algorithm [Borgefors86](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Borgefors86) is used. This means that for a pixel the function
/// finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
/// diagonal, or knight's move (the latest is available for a  mask). The overall
/// distance is calculated as a sum of these basic distances. Since the distance function should be
/// symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
/// the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
/// same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
/// precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
/// relative error (a  mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
/// uses the values suggested in the original paper:
/// - DIST_L1: `a = 1, b = 2`
/// - DIST_L2:
/// - `3 x 3`: `a=0.955, b=1.3693`
/// - `5 x 5`: `a=1, b=1.4, c=2.1969`
/// - DIST_C: `a = 1, b = 1`
///
/// Typically, for a fast, coarse distance estimation #DIST_L2, a  mask is used. For a
/// more accurate distance estimation #DIST_L2, a  mask or the precise algorithm is used.
/// Note that both the precise and the approximate algorithms are linear on the number of pixels.
///
/// This variant of the function does not only compute the minimum distance for each pixel 
/// but also identifies the nearest connected component consisting of zero pixels
/// (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
/// component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
/// automatically finds connected components of zero pixels in the input image and marks them with
/// distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
/// marks all the zero pixels with distinct labels.
///
/// In this mode, the complexity is still linear. That is, the function provides a very fast way to
/// compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
/// approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
/// yet.
///
/// ## Parameters
/// * src: 8-bit, single-channel (binary) source image.
/// * dst: Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
/// single-channel image of the same size as src.
/// * labels: Output 2D array of labels (the discrete Voronoi diagram). It has the type
/// CV_32SC1 and the same size as src.
/// * distanceType: Type of distance, see #DistanceTypes
/// * maskSize: Size of the distance transform mask, see #DistanceTransformMasks.
/// #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
/// the parameter is forced to 3 because a  mask gives the same result as  or any larger aperture.
/// * labelType: Type of the label array to build, see #DistanceTransformLabelTypes.
///
/// ## C++ default parameters
/// * label_type: DIST_LABEL_CCOMP
#[inline]
pub fn distance_transform_with_labels(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, labels: &mut dyn core::ToOutputArray, distance_type: i32, mask_size: i32, label_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
output_array_arg!(labels);
return_send!(via ocvrs_return);
unsafe { sys::cv_distanceTransform_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), labels.as_raw__OutputArray(), distance_type, mask_size, label_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the distance to the closest zero pixel for each pixel of the source image.
///
/// The function cv::distanceTransform calculates the approximate or precise distance from every binary
/// image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
///
/// When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
/// algorithm described in [Felzenszwalb04](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Felzenszwalb04) . This algorithm is parallelized with the TBB library.
///
/// In other cases, the algorithm [Borgefors86](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Borgefors86) is used. This means that for a pixel the function
/// finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
/// diagonal, or knight's move (the latest is available for a  mask). The overall
/// distance is calculated as a sum of these basic distances. Since the distance function should be
/// symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
/// the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
/// same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
/// precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
/// relative error (a  mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
/// uses the values suggested in the original paper:
/// - DIST_L1: `a = 1, b = 2`
/// - DIST_L2:
/// - `3 x 3`: `a=0.955, b=1.3693`
/// - `5 x 5`: `a=1, b=1.4, c=2.1969`
/// - DIST_C: `a = 1, b = 1`
///
/// Typically, for a fast, coarse distance estimation #DIST_L2, a  mask is used. For a
/// more accurate distance estimation #DIST_L2, a  mask or the precise algorithm is used.
/// Note that both the precise and the approximate algorithms are linear on the number of pixels.
///
/// This variant of the function does not only compute the minimum distance for each pixel 
/// but also identifies the nearest connected component consisting of zero pixels
/// (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
/// component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
/// automatically finds connected components of zero pixels in the input image and marks them with
/// distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
/// marks all the zero pixels with distinct labels.
///
/// In this mode, the complexity is still linear. That is, the function provides a very fast way to
/// compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
/// approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
/// yet.
///
/// ## Parameters
/// * src: 8-bit, single-channel (binary) source image.
/// * dst: Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
/// single-channel image of the same size as src.
/// * labels: Output 2D array of labels (the discrete Voronoi diagram). It has the type
/// CV_32SC1 and the same size as src.
/// * distanceType: Type of distance, see #DistanceTypes
/// * maskSize: Size of the distance transform mask, see #DistanceTransformMasks.
/// #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
/// the parameter is forced to 3 because a  mask gives the same result as  or any larger aperture.
/// * labelType: Type of the label array to build, see #DistanceTransformLabelTypes.
///
/// ## Overloaded parameters
///
/// * src: 8-bit, single-channel (binary) source image.
/// * dst: Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
/// single-channel image of the same size as src .
/// * distanceType: Type of distance, see #DistanceTypes
/// * maskSize: Size of the distance transform mask, see #DistanceTransformMasks. In case of the
/// #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a  mask gives
/// the same result as  or any larger aperture.
/// * dstType: Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
/// the first variant of the function and distanceType == #DIST_L1.
///
/// ## C++ default parameters
/// * dst_type: CV_32F
#[inline]
pub fn distance_transform(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, distance_type: i32, mask_size: i32, dst_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_distanceTransform_const__InputArrayR_const__OutputArrayR_int_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), distance_type, mask_size, dst_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
///
/// The function cv::divSpectrums performs the per-element division of the first array by the second array.
/// The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
///
/// ## Parameters
/// * a: first input array.
/// * b: second input array of the same size and type as src1 .
/// * c: output array of the same size and type as src1 .
/// * flags: operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
/// each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
/// * conjB: optional flag that conjugates the second input array before the multiplication (true)
/// or not (false).
///
/// ## C++ default parameters
/// * conj_b: false
#[inline]
pub fn div_spectrums(a: &dyn core::ToInputArray, b: &dyn core::ToInputArray, c: &mut dyn core::ToOutputArray, flags: i32, conj_b: bool) -> Result<()> {
input_array_arg!(a);
input_array_arg!(b);
output_array_arg!(c);
return_send!(via ocvrs_return);
unsafe { sys::cv_divSpectrums_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_bool(a.as_raw__InputArray(), b.as_raw__InputArray(), c.as_raw__OutputArray(), flags, conj_b, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws contours outlines or filled contours.
///
/// The function draws contour outlines in the image if  or fills the area
/// bounded by the contours if  . The example below shows how to retrieve
/// connected components from the binary image and label them: :
/// @include snippets/imgproc_drawContours.cpp
///
/// ## Parameters
/// * image: Destination image.
/// * contours: All the input contours. Each contour is stored as a point vector.
/// * contourIdx: Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
/// * color: Color of the contours.
/// * thickness: Thickness of lines the contours are drawn with. If it is negative (for example,
/// thickness=#FILLED ), the contour interiors are drawn.
/// * lineType: Line connectivity. See #LineTypes
/// * hierarchy: Optional information about hierarchy. It is only needed if you want to draw only
/// some of the contours (see maxLevel ).
/// * maxLevel: Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
/// If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
/// draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
/// parameter is only taken into account when there is hierarchy available.
/// * offset: Optional contour shift parameter. Shift all the drawn contours by the specified
///  .
///
/// Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
/// even when no hierarchy data is provided. This is done by analyzing all the outlines together
/// using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
/// contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
/// of contours, or iterate over the collection using contourIdx parameter.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * hierarchy: noArray()
/// * max_level: INT_MAX
/// * offset: Point()
#[inline]
pub fn draw_contours(image: &mut dyn core::ToInputOutputArray, contours: &dyn core::ToInputArray, contour_idx: i32, color: core::Scalar, thickness: i32, line_type: i32, hierarchy: &dyn core::ToInputArray, max_level: i32, offset: core::Point) -> Result<()> {
input_output_array_arg!(image);
input_array_arg!(contours);
input_array_arg!(hierarchy);
return_send!(via ocvrs_return);
unsafe { sys::cv_drawContours_const__InputOutputArrayR_const__InputArrayR_int_const_ScalarR_int_int_const__InputArrayR_int_Point(image.as_raw__InputOutputArray(), contours.as_raw__InputArray(), contour_idx, &color, thickness, line_type, hierarchy.as_raw__InputArray(), max_level, offset.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a marker on a predefined position in an image.
///
/// The function cv::drawMarker draws a marker on a given position in the image. For the moment several
/// marker types are supported, see #MarkerTypes for more information.
///
/// ## Parameters
/// * img: Image.
/// * position: The point where the crosshair is positioned.
/// * color: Line color.
/// * markerType: The specific type of marker you want to use, see #MarkerTypes
/// * thickness: Line thickness.
/// * line_type: Type of the line, See #LineTypes
/// * markerSize: The length of the marker axis [default = 20 pixels]
///
/// ## C++ default parameters
/// * marker_type: MARKER_CROSS
/// * marker_size: 20
/// * thickness: 1
/// * line_type: 8
#[inline]
pub fn draw_marker(img: &mut dyn core::ToInputOutputArray, position: core::Point, color: core::Scalar, marker_type: i32, marker_size: i32, thickness: i32, line_type: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_drawMarker_const__InputOutputArrayR_Point_const_ScalarR_int_int_int_int(img.as_raw__InputOutputArray(), position.opencv_as_extern(), &color, marker_type, marker_size, thickness, line_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Approximates an elliptic arc with a polyline.
///
/// The function ellipse2Poly computes the vertices of a polyline that approximates the specified
/// elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
///
/// ## Parameters
/// * center: Center of the arc.
/// * axes: Half of the size of the ellipse main axes. See #ellipse for details.
/// * angle: Rotation angle of the ellipse in degrees. See #ellipse for details.
/// * arcStart: Starting angle of the elliptic arc in degrees.
/// * arcEnd: Ending angle of the elliptic arc in degrees.
/// * delta: Angle between the subsequent polyline vertices. It defines the approximation
/// accuracy.
/// * pts: Output vector of polyline vertices.
///
/// ## Overloaded parameters
///
/// * center: Center of the arc.
/// * axes: Half of the size of the ellipse main axes. See #ellipse for details.
/// * angle: Rotation angle of the ellipse in degrees. See #ellipse for details.
/// * arcStart: Starting angle of the elliptic arc in degrees.
/// * arcEnd: Ending angle of the elliptic arc in degrees.
/// * delta: Angle between the subsequent polyline vertices. It defines the approximation accuracy.
/// * pts: Output vector of polyline vertices.
#[inline]
pub fn ellipse_2_poly_f64(center: core::Point2d, axes: core::Size2d, angle: i32, arc_start: i32, arc_end: i32, delta: i32, pts: &mut core::Vector<core::Point2d>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_ellipse2Poly_Point2d_Size2d_int_int_int_int_vectorLPoint2dGR(center.opencv_as_extern(), axes.opencv_as_extern(), angle, arc_start, arc_end, delta, pts.as_raw_mut_VectorOfPoint2d(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Approximates an elliptic arc with a polyline.
///
/// The function ellipse2Poly computes the vertices of a polyline that approximates the specified
/// elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
///
/// ## Parameters
/// * center: Center of the arc.
/// * axes: Half of the size of the ellipse main axes. See #ellipse for details.
/// * angle: Rotation angle of the ellipse in degrees. See #ellipse for details.
/// * arcStart: Starting angle of the elliptic arc in degrees.
/// * arcEnd: Ending angle of the elliptic arc in degrees.
/// * delta: Angle between the subsequent polyline vertices. It defines the approximation
/// accuracy.
/// * pts: Output vector of polyline vertices.
#[inline]
pub fn ellipse_2_poly(center: core::Point, axes: core::Size, angle: i32, arc_start: i32, arc_end: i32, delta: i32, pts: &mut core::Vector<core::Point>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_ellipse2Poly_Point_Size_int_int_int_int_vectorLPointGR(center.opencv_as_extern(), axes.opencv_as_extern(), angle, arc_start, arc_end, delta, pts.as_raw_mut_VectorOfPoint(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a simple or thick elliptic arc or fills an ellipse sector.
///
/// The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
/// arc, or a filled ellipse sector. The drawing code uses general parametric form.
/// A piecewise-linear curve is used to approximate the elliptic arc
/// boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
/// #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
/// variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
/// `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
/// the meaning of the parameters to draw the blue arc.
///
/// 
///
/// ## Parameters
/// * img: Image.
/// * center: Center of the ellipse.
/// * axes: Half of the size of the ellipse main axes.
/// * angle: Ellipse rotation angle in degrees.
/// * startAngle: Starting angle of the elliptic arc in degrees.
/// * endAngle: Ending angle of the elliptic arc in degrees.
/// * color: Ellipse color.
/// * thickness: Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
/// a filled ellipse sector is to be drawn.
/// * lineType: Type of the ellipse boundary. See #LineTypes
/// * shift: Number of fractional bits in the coordinates of the center and values of axes.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn ellipse(img: &mut dyn core::ToInputOutputArray, center: core::Point, axes: core::Size, angle: f64, start_angle: f64, end_angle: f64, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_ellipse_const__InputOutputArrayR_Point_Size_double_double_double_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), center.opencv_as_extern(), axes.opencv_as_extern(), angle, start_angle, end_angle, &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a simple or thick elliptic arc or fills an ellipse sector.
///
/// The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
/// arc, or a filled ellipse sector. The drawing code uses general parametric form.
/// A piecewise-linear curve is used to approximate the elliptic arc
/// boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
/// #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
/// variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
/// `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
/// the meaning of the parameters to draw the blue arc.
///
/// 
///
/// ## Parameters
/// * img: Image.
/// * center: Center of the ellipse.
/// * axes: Half of the size of the ellipse main axes.
/// * angle: Ellipse rotation angle in degrees.
/// * startAngle: Starting angle of the elliptic arc in degrees.
/// * endAngle: Ending angle of the elliptic arc in degrees.
/// * color: Ellipse color.
/// * thickness: Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
/// a filled ellipse sector is to be drawn.
/// * lineType: Type of the ellipse boundary. See #LineTypes
/// * shift: Number of fractional bits in the coordinates of the center and values of axes.
///
/// ## Overloaded parameters
///
/// * img: Image.
/// * box: Alternative ellipse representation via RotatedRect. This means that the function draws
/// an ellipse inscribed in the rotated rectangle.
/// * color: Ellipse color.
/// * thickness: Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
/// a filled ellipse sector is to be drawn.
/// * lineType: Type of the ellipse boundary. See #LineTypes
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
#[inline]
pub fn ellipse_rotated_rect(img: &mut dyn core::ToInputOutputArray, box_: &core::RotatedRect, color: core::Scalar, thickness: i32, line_type: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_ellipse_const__InputOutputArrayR_const_RotatedRectR_const_ScalarR_int_int(img.as_raw__InputOutputArray(), box_.as_raw_RotatedRect(), &color, thickness, line_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Equalizes the histogram of a grayscale image.
///
/// The function equalizes the histogram of the input image using the following algorithm:
///
/// - Calculate the histogram  for src .
/// - Normalize the histogram so that the sum of histogram bins is 255.
/// - Compute the integral of the histogram:
/// 
/// - Transform the image using  as a look-up table: 
///
/// The algorithm normalizes the brightness and increases the contrast of the image.
///
/// ## Parameters
/// * src: Source 8-bit single channel image.
/// * dst: Destination image of the same size and type as src .
#[inline]
pub fn equalize_hist(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_equalizeHist_const__InputArrayR_const__OutputArrayR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Erodes an image by using a specific structuring element.
///
/// The function erodes the source image using the specified structuring element that determines the
/// shape of a pixel neighborhood over which the minimum is taken:
///
/// 
///
/// The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
/// case of multi-channel images, each channel is processed independently.
///
/// ## Parameters
/// * src: input image; the number of channels can be arbitrary, but the depth should be one of
/// CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
/// * dst: output image of the same size and type as src.
/// * kernel: structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
/// structuring element is used. Kernel can be created using #getStructuringElement.
/// * anchor: position of the anchor within the element; default value (-1, -1) means that the
/// anchor is at the element center.
/// * iterations: number of times erosion is applied.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// * borderValue: border value in case of a constant border
/// ## See also
/// dilate, morphologyEx, getStructuringElement
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * iterations: 1
/// * border_type: BORDER_CONSTANT
/// * border_value: morphologyDefaultBorderValue()
#[inline]
pub fn erode(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, kernel: &dyn core::ToInputArray, anchor: core::Point, iterations: i32, border_type: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(kernel);
return_send!(via ocvrs_return);
unsafe { sys::cv_erode_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Point_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), kernel.as_raw__InputArray(), anchor.opencv_as_extern(), iterations, border_type, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Fills a convex polygon.
///
/// The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
/// function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
/// self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
/// twice at the most (though, its top-most and/or the bottom edge could be horizontal).
///
/// ## Parameters
/// * img: Image.
/// * points: Polygon vertices.
/// * color: Polygon color.
/// * lineType: Type of the polygon boundaries. See #LineTypes
/// * shift: Number of fractional bits in the vertex coordinates.
///
/// ## C++ default parameters
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn fill_convex_poly(img: &mut dyn core::ToInputOutputArray, points: &dyn core::ToInputArray, color: core::Scalar, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_fillConvexPoly_const__InputOutputArrayR_const__InputArrayR_const_ScalarR_int_int(img.as_raw__InputOutputArray(), points.as_raw__InputArray(), &color, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Fills the area bounded by one or more polygons.
///
/// The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
/// complex areas, for example, areas with holes, contours with self-intersections (some of their
/// parts), and so forth.
///
/// ## Parameters
/// * img: Image.
/// * pts: Array of polygons where each polygon is represented as an array of points.
/// * color: Polygon color.
/// * lineType: Type of the polygon boundaries. See #LineTypes
/// * shift: Number of fractional bits in the vertex coordinates.
/// * offset: Optional offset of all points of the contours.
///
/// ## C++ default parameters
/// * line_type: LINE_8
/// * shift: 0
/// * offset: Point()
#[inline]
pub fn fill_poly(img: &mut dyn core::ToInputOutputArray, pts: &dyn core::ToInputArray, color: core::Scalar, line_type: i32, shift: i32, offset: core::Point) -> Result<()> {
input_output_array_arg!(img);
input_array_arg!(pts);
return_send!(via ocvrs_return);
unsafe { sys::cv_fillPoly_const__InputOutputArrayR_const__InputArrayR_const_ScalarR_int_int_Point(img.as_raw__InputOutputArray(), pts.as_raw__InputArray(), &color, line_type, shift, offset.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Convolves an image with the kernel.
///
/// The function applies an arbitrary linear filter to an image. In-place operation is supported. When
/// the aperture is partially outside the image, the function interpolates outlier pixel values
/// according to the specified border mode.
///
/// The function does actually compute correlation, not the convolution:
///
/// 
///
/// That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
/// the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
/// anchor.y - 1)`.
///
/// The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
/// larger) and the direct algorithm for small kernels.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image of the same size and the same number of channels as src.
/// * ddepth: desired depth of the destination image, see @ref filter_depths "combinations"
/// * kernel: convolution kernel (or rather a correlation kernel), a single-channel floating point
/// matrix; if you want to apply different kernels to different channels, split the image into
/// separate color planes using split and process them individually.
/// * anchor: anchor of the kernel that indicates the relative position of a filtered point within
/// the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
/// is at the kernel center.
/// * delta: optional value added to the filtered pixels before storing them in dst.
/// * borderType: pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// sepFilter2D, dft, matchTemplate
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * delta: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn filter_2d(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, kernel: &dyn core::ToInputArray, anchor: core::Point, delta: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(kernel);
return_send!(via ocvrs_return);
unsafe { sys::cv_filter2D_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR_Point_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, kernel.as_raw__InputArray(), anchor.opencv_as_extern(), delta, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds contours in a binary image.
///
/// The function retrieves contours from the binary image using the algorithm [Suzuki85](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Suzuki85) . The contours
/// are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
/// OpenCV sample directory.
///
/// Note: Since opencv 3.2 source image is not modified by this function.
///
/// ## Parameters
/// * image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
/// pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
/// #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
/// If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
/// * contours: Detected contours. Each contour is stored as a vector of points (e.g.
/// std::vector<std::vector<cv::Point> >).
/// * hierarchy: Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
/// as many elements as the number of contours. For each i-th contour contours[i], the elements
/// hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
/// in contours of the next and previous contours at the same hierarchical level, the first child
/// contour and the parent contour, respectively. If for the contour i there are no next, previous,
/// parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
///
/// Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
/// * mode: Contour retrieval mode, see #RetrievalModes
/// * method: Contour approximation method, see #ContourApproximationModes
/// * offset: Optional offset by which every contour point is shifted. This is useful if the
/// contours are extracted from the image ROI and then they should be analyzed in the whole image
/// context.
///
/// ## C++ default parameters
/// * offset: Point()
#[inline]
pub fn find_contours_with_hierarchy(image: &dyn core::ToInputArray, contours: &mut dyn core::ToOutputArray, hierarchy: &mut dyn core::ToOutputArray, mode: i32, method: i32, offset: core::Point) -> Result<()> {
input_array_arg!(image);
output_array_arg!(contours);
output_array_arg!(hierarchy);
return_send!(via ocvrs_return);
unsafe { sys::cv_findContours_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int_int_Point(image.as_raw__InputArray(), contours.as_raw__OutputArray(), hierarchy.as_raw__OutputArray(), mode, method, offset.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds contours in a binary image.
///
/// The function retrieves contours from the binary image using the algorithm [Suzuki85](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Suzuki85) . The contours
/// are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
/// OpenCV sample directory.
///
/// Note: Since opencv 3.2 source image is not modified by this function.
///
/// ## Parameters
/// * image: Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
/// pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
/// #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
/// If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
/// * contours: Detected contours. Each contour is stored as a vector of points (e.g.
/// std::vector<std::vector<cv::Point> >).
/// * hierarchy: Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
/// as many elements as the number of contours. For each i-th contour contours[i], the elements
/// hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
/// in contours of the next and previous contours at the same hierarchical level, the first child
/// contour and the parent contour, respectively. If for the contour i there are no next, previous,
/// parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
///
/// Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
/// * mode: Contour retrieval mode, see #RetrievalModes
/// * method: Contour approximation method, see #ContourApproximationModes
/// * offset: Optional offset by which every contour point is shifted. This is useful if the
/// contours are extracted from the image ROI and then they should be analyzed in the whole image
/// context.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * offset: Point()
#[inline]
pub fn find_contours(image: &dyn core::ToInputArray, contours: &mut dyn core::ToOutputArray, mode: i32, method: i32, offset: core::Point) -> Result<()> {
input_array_arg!(image);
output_array_arg!(contours);
return_send!(via ocvrs_return);
unsafe { sys::cv_findContours_const__InputArrayR_const__OutputArrayR_int_int_Point(image.as_raw__InputArray(), contours.as_raw__OutputArray(), mode, method, offset.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Fits an ellipse around a set of 2D points.
///
/// The function calculates the ellipse that fits a set of 2D points.
/// It returns the rotated rectangle in which the ellipse is inscribed.
/// The Approximate Mean Square (AMS) proposed by [Taubin1991](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Taubin1991) is used.
///
/// For an ellipse, this basis set is ,
/// which is a set of six free coefficients .
/// However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths ,
/// the position , and the orientation . This is because the basis set includes lines,
/// quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
/// If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
/// The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
/// by imposing the condition that  where
/// the matrices  and  are the partial derivatives of the design matrix  with
/// respect to x and y. The matrices are formed row by row applying the following to
/// each of the points in the set:
/// \f{align*}{
/// D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
/// D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
/// D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
/// \f}
/// The AMS method minimizes the cost function
/// \f{equation*}{
/// \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T }
/// \f}
///
/// The minimum cost is found by solving the generalized eigenvalue problem.
///
/// \f{equation*}{
/// D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A
/// \f}
///
/// ## Parameters
/// * points: Input 2D point set, stored in std::vector\<\> or Mat
#[inline]
pub fn fit_ellipse_ams(points: &dyn core::ToInputArray) -> Result<core::RotatedRect> {
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_fitEllipseAMS_const__InputArrayR(points.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::RotatedRect::opencv_from_extern(ret) };
Ok(ret)
}
/// Fits an ellipse around a set of 2D points.
///
/// The function calculates the ellipse that fits a set of 2D points.
/// It returns the rotated rectangle in which the ellipse is inscribed.
/// The Direct least square (Direct) method by [Fitzgibbon1999](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Fitzgibbon1999) is used.
///
/// For an ellipse, this basis set is ,
/// which is a set of six free coefficients .
/// However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths ,
/// the position , and the orientation . This is because the basis set includes lines,
/// quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
/// The Direct method confines the fit to ellipses by ensuring that .
/// The condition imposed is that  which satisfies the inequality
/// and as the coefficients can be arbitrarily scaled is not overly restrictive.
///
/// \f{equation*}{
/// \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
/// 0 & 0 & 2 & 0 & 0 & 0 \\
/// 0 & -1 & 0 & 0 & 0 & 0 \\
/// 2 & 0 & 0 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & 0 & 0 & 0 \\
/// 0 & 0 & 0 & 0 & 0 & 0
/// \end{matrix} \right)
/// \f}
///
/// The minimum cost is found by solving the generalized eigenvalue problem.
///
/// \f{equation*}{
/// D^T D A = \lambda \left( C\right) A
/// \f}
///
/// The system produces only one positive eigenvalue  which is chosen as the solution
/// with its eigenvector . These are used to find the coefficients
///
/// \f{equation*}{
/// A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u}
/// \f}
/// The scaling factor guarantees that .
///
/// ## Parameters
/// * points: Input 2D point set, stored in std::vector\<\> or Mat
#[inline]
pub fn fit_ellipse_direct(points: &dyn core::ToInputArray) -> Result<core::RotatedRect> {
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_fitEllipseDirect_const__InputArrayR(points.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::RotatedRect::opencv_from_extern(ret) };
Ok(ret)
}
/// Fits an ellipse around a set of 2D points.
///
/// The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
/// all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by [Fitzgibbon95](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Fitzgibbon95)
/// is used. Developer should keep in mind that it is possible that the returned
/// ellipse/rotatedRect data contains negative indices, due to the data points being close to the
/// border of the containing Mat element.
///
/// ## Parameters
/// * points: Input 2D point set, stored in std::vector\<\> or Mat
#[inline]
pub fn fit_ellipse(points: &dyn core::ToInputArray) -> Result<core::RotatedRect> {
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_fitEllipse_const__InputArrayR(points.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::RotatedRect::opencv_from_extern(ret) };
Ok(ret)
}
/// Fits a line to a 2D or 3D point set.
///
/// The function fitLine fits a line to a 2D or 3D point set by minimizing  where
///  is a distance between the  point, the line and  is a distance function, one
/// of the following:
/// * DIST_L2
/// 
/// - DIST_L1
/// 
/// - DIST_L12
/// 
/// - DIST_FAIR
/// 
/// - DIST_WELSCH
/// 
/// - DIST_HUBER
/// 
///
/// The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
/// that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
/// weights  are adjusted to be inversely proportional to  .
///
/// ## Parameters
/// * points: Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
/// * line: Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
/// (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
/// (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
/// Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
/// and (x0, y0, z0) is a point on the line.
/// * distType: Distance used by the M-estimator, see #DistanceTypes
/// * param: Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
/// is chosen.
/// * reps: Sufficient accuracy for the radius (distance between the coordinate origin and the line).
/// * aeps: Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
#[inline]
pub fn fit_line(points: &dyn core::ToInputArray, line: &mut dyn core::ToOutputArray, dist_type: i32, param: f64, reps: f64, aeps: f64) -> Result<()> {
input_array_arg!(points);
output_array_arg!(line);
return_send!(via ocvrs_return);
unsafe { sys::cv_fitLine_const__InputArrayR_const__OutputArrayR_int_double_double_double(points.as_raw__InputArray(), line.as_raw__OutputArray(), dist_type, param, reps, aeps, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Fills a connected component with the given color.
///
/// The function cv::floodFill fills a connected component starting from the seed point with the specified
/// color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
/// pixel at  is considered to belong to the repainted domain if:
///
/// - in case of a grayscale image and floating range
/// 
///
///
/// - in case of a grayscale image and fixed range
/// 
///
///
/// - in case of a color image and floating range
/// 
/// 
/// and
/// 
///
///
/// - in case of a color image and fixed range
/// 
/// 
/// and
/// 
///
///
/// where  is the value of one of pixel neighbors that is already known to belong to the
/// component. That is, to be added to the connected component, a color/brightness of the pixel should
/// be close enough to:
/// - Color/brightness of one of its neighbors that already belong to the connected component in case
/// of a floating range.
/// - Color/brightness of the seed point in case of a fixed range.
///
/// Use these functions to either mark a connected component with the specified color in-place, or build
/// a mask and then extract the contour, or copy the region to another image, and so on.
///
/// ## Parameters
/// * image: Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
/// function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
/// the details below.
/// * mask: Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
/// taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
/// input and output parameter, you must take responsibility of initializing it.
/// Flood-filling cannot go across non-zero pixels in the input mask. For example,
/// an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
/// mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
/// as described below. Additionally, the function fills the border of the mask with ones to simplify
/// internal processing. It is therefore possible to use the same mask in multiple calls to the function
/// to make sure the filled areas do not overlap.
/// * seedPoint: Starting point.
/// * newVal: New value of the repainted domain pixels.
/// * loDiff: Maximal lower brightness/color difference between the currently observed pixel and
/// one of its neighbors belonging to the component, or a seed pixel being added to the component.
/// * upDiff: Maximal upper brightness/color difference between the currently observed pixel and
/// one of its neighbors belonging to the component, or a seed pixel being added to the component.
/// * rect: Optional output parameter set by the function to the minimum bounding rectangle of the
/// repainted domain.
/// * flags: Operation flags. The first 8 bits contain a connectivity value. The default value of
/// 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
/// connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
/// will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
/// the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
/// neighbours and fill the mask with a value of 255. The following additional options occupy higher
/// bits and therefore may be further combined with the connectivity and mask fill values using
/// bit-wise or (|), see #FloodFillFlags.
///
///
/// Note: Since the mask is larger than the filled image, a pixel  in image corresponds to the
/// pixel  in the mask .
/// ## See also
/// findContours
///
/// ## Overloaded parameters
///
///
/// variant without `mask` parameter
///
/// ## C++ default parameters
/// * rect: 0
/// * lo_diff: Scalar()
/// * up_diff: Scalar()
/// * flags: 4
#[inline]
pub fn flood_fill(image: &mut dyn core::ToInputOutputArray, seed_point: core::Point, new_val: core::Scalar, rect: &mut core::Rect, lo_diff: core::Scalar, up_diff: core::Scalar, flags: i32) -> Result<i32> {
input_output_array_arg!(image);
return_send!(via ocvrs_return);
unsafe { sys::cv_floodFill_const__InputOutputArrayR_Point_Scalar_RectX_Scalar_Scalar_int(image.as_raw__InputOutputArray(), seed_point.opencv_as_extern(), new_val.opencv_as_extern(), rect, lo_diff.opencv_as_extern(), up_diff.opencv_as_extern(), flags, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Fills a connected component with the given color.
///
/// The function cv::floodFill fills a connected component starting from the seed point with the specified
/// color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
/// pixel at  is considered to belong to the repainted domain if:
///
/// - in case of a grayscale image and floating range
/// 
///
///
/// - in case of a grayscale image and fixed range
/// 
///
///
/// - in case of a color image and floating range
/// 
/// 
/// and
/// 
///
///
/// - in case of a color image and fixed range
/// 
/// 
/// and
/// 
///
///
/// where  is the value of one of pixel neighbors that is already known to belong to the
/// component. That is, to be added to the connected component, a color/brightness of the pixel should
/// be close enough to:
/// - Color/brightness of one of its neighbors that already belong to the connected component in case
/// of a floating range.
/// - Color/brightness of the seed point in case of a fixed range.
///
/// Use these functions to either mark a connected component with the specified color in-place, or build
/// a mask and then extract the contour, or copy the region to another image, and so on.
///
/// ## Parameters
/// * image: Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
/// function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
/// the details below.
/// * mask: Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
/// taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
/// input and output parameter, you must take responsibility of initializing it.
/// Flood-filling cannot go across non-zero pixels in the input mask. For example,
/// an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
/// mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
/// as described below. Additionally, the function fills the border of the mask with ones to simplify
/// internal processing. It is therefore possible to use the same mask in multiple calls to the function
/// to make sure the filled areas do not overlap.
/// * seedPoint: Starting point.
/// * newVal: New value of the repainted domain pixels.
/// * loDiff: Maximal lower brightness/color difference between the currently observed pixel and
/// one of its neighbors belonging to the component, or a seed pixel being added to the component.
/// * upDiff: Maximal upper brightness/color difference between the currently observed pixel and
/// one of its neighbors belonging to the component, or a seed pixel being added to the component.
/// * rect: Optional output parameter set by the function to the minimum bounding rectangle of the
/// repainted domain.
/// * flags: Operation flags. The first 8 bits contain a connectivity value. The default value of
/// 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
/// connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
/// will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
/// the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
/// neighbours and fill the mask with a value of 255. The following additional options occupy higher
/// bits and therefore may be further combined with the connectivity and mask fill values using
/// bit-wise or (|), see #FloodFillFlags.
///
///
/// Note: Since the mask is larger than the filled image, a pixel  in image corresponds to the
/// pixel  in the mask .
/// ## See also
/// findContours
///
/// ## C++ default parameters
/// * rect: 0
/// * lo_diff: Scalar()
/// * up_diff: Scalar()
/// * flags: 4
#[inline]
pub fn flood_fill_mask(image: &mut dyn core::ToInputOutputArray, mask: &mut dyn core::ToInputOutputArray, seed_point: core::Point, new_val: core::Scalar, rect: &mut core::Rect, lo_diff: core::Scalar, up_diff: core::Scalar, flags: i32) -> Result<i32> {
input_output_array_arg!(image);
input_output_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_floodFill_const__InputOutputArrayR_const__InputOutputArrayR_Point_Scalar_RectX_Scalar_Scalar_int(image.as_raw__InputOutputArray(), mask.as_raw__InputOutputArray(), seed_point.opencv_as_extern(), new_val.opencv_as_extern(), rect, lo_diff.opencv_as_extern(), up_diff.opencv_as_extern(), flags, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates an affine transform from three pairs of the corresponding points.
///
/// The function calculates the  matrix of an affine transform so that:
///
/// 
///
/// where
///
/// 
///
/// ## Parameters
/// * src: Coordinates of triangle vertices in the source image.
/// * dst: Coordinates of the corresponding triangle vertices in the destination image.
/// ## See also
/// warpAffine, transform
#[inline]
pub fn get_affine_transform_slice(src: &[core::Point2f], dst: &[core::Point2f]) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getAffineTransform_const_Point2fX_const_Point2fX(src.as_ptr(), dst.as_ptr(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
#[inline]
pub fn get_affine_transform(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray) -> Result<core::Mat> {
input_array_arg!(src);
input_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_getAffineTransform_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), dst.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Returns filter coefficients for computing spatial image derivatives.
///
/// The function computes and returns the filter coefficients for spatial image derivatives. When
/// `ksize=FILTER_SCHARR`, the Scharr  kernels are generated (see #Scharr). Otherwise, Sobel
/// kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
///
/// ## Parameters
/// * kx: Output matrix of row filter coefficients. It has the type ktype .
/// * ky: Output matrix of column filter coefficients. It has the type ktype .
/// * dx: Derivative order in respect of x.
/// * dy: Derivative order in respect of y.
/// * ksize: Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
/// * normalize: Flag indicating whether to normalize (scale down) the filter coefficients or not.
/// Theoretically, the coefficients should have the denominator . If you are
/// going to filter floating-point images, you are likely to use the normalized kernels. But if you
/// compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
/// all the fractional bits, you may want to set normalize=false .
/// * ktype: Type of filter coefficients. It can be CV_32f or CV_64F .
///
/// ## C++ default parameters
/// * normalize: false
/// * ktype: CV_32F
#[inline]
pub fn get_deriv_kernels(kx: &mut dyn core::ToOutputArray, ky: &mut dyn core::ToOutputArray, dx: i32, dy: i32, ksize: i32, normalize: bool, ktype: i32) -> Result<()> {
output_array_arg!(kx);
output_array_arg!(ky);
return_send!(via ocvrs_return);
unsafe { sys::cv_getDerivKernels_const__OutputArrayR_const__OutputArrayR_int_int_int_bool_int(kx.as_raw__OutputArray(), ky.as_raw__OutputArray(), dx, dy, ksize, normalize, ktype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the font-specific size to use to achieve a given height in pixels.
///
/// ## Parameters
/// * fontFace: Font to use, see cv::HersheyFonts.
/// * pixelHeight: Pixel height to compute the fontScale for
/// * thickness: Thickness of lines used to render the text.See putText for details.
/// ## Returns
/// The fontSize to use for cv::putText
/// ## See also
/// cv::putText
///
/// ## C++ default parameters
/// * thickness: 1
#[inline]
pub fn get_font_scale_from_height(font_face: i32, pixel_height: i32, thickness: i32) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getFontScaleFromHeight_const_int_const_int_const_int(font_face, pixel_height, thickness, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns Gabor filter coefficients.
///
/// For more details about gabor filter equations and parameters, see: [Gabor
/// Filter](http://en.wikipedia.org/wiki/Gabor_filter).
///
/// ## Parameters
/// * ksize: Size of the filter returned.
/// * sigma: Standard deviation of the gaussian envelope.
/// * theta: Orientation of the normal to the parallel stripes of a Gabor function.
/// * lambd: Wavelength of the sinusoidal factor.
/// * gamma: Spatial aspect ratio.
/// * psi: Phase offset.
/// * ktype: Type of filter coefficients. It can be CV_32F or CV_64F .
///
/// ## C++ default parameters
/// * psi: CV_PI*0.5
/// * ktype: CV_64F
#[inline]
pub fn get_gabor_kernel(ksize: core::Size, sigma: f64, theta: f64, lambd: f64, gamma: f64, psi: f64, ktype: i32) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getGaborKernel_Size_double_double_double_double_double_int(ksize.opencv_as_extern(), sigma, theta, lambd, gamma, psi, ktype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Returns Gaussian filter coefficients.
///
/// The function computes and returns the  matrix of Gaussian filter
/// coefficients:
///
/// 
///
/// where  and  is the scale factor chosen so that .
///
/// Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
/// smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
/// You may also use the higher-level GaussianBlur.
/// ## Parameters
/// * ksize: Aperture size. It should be odd (  ) and positive.
/// * sigma: Gaussian standard deviation. If it is non-positive, it is computed from ksize as
/// `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
/// * ktype: Type of filter coefficients. It can be CV_32F or CV_64F .
/// ## See also
/// sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
///
/// ## C++ default parameters
/// * ktype: CV_64F
#[inline]
pub fn get_gaussian_kernel(ksize: i32, sigma: f64, ktype: i32) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getGaussianKernel_int_double_int(ksize, sigma, ktype, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Calculates a perspective transform from four pairs of the corresponding points.
///
/// The function calculates the  matrix of a perspective transform so that:
///
/// 
///
/// where
///
/// 
///
/// ## Parameters
/// * src: Coordinates of quadrangle vertices in the source image.
/// * dst: Coordinates of the corresponding quadrangle vertices in the destination image.
/// * solveMethod: method passed to cv::solve (#DecompTypes)
/// ## See also
/// findHomography, warpPerspective, perspectiveTransform
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * solve_method: DECOMP_LU
#[inline]
pub fn get_perspective_transform_slice(src: &[core::Point2f], dst: &[core::Point2f], solve_method: i32) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getPerspectiveTransform_const_Point2fX_const_Point2fX_int(src.as_ptr(), dst.as_ptr(), solve_method, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Calculates a perspective transform from four pairs of the corresponding points.
///
/// The function calculates the  matrix of a perspective transform so that:
///
/// 
///
/// where
///
/// 
///
/// ## Parameters
/// * src: Coordinates of quadrangle vertices in the source image.
/// * dst: Coordinates of the corresponding quadrangle vertices in the destination image.
/// * solveMethod: method passed to cv::solve (#DecompTypes)
/// ## See also
/// findHomography, warpPerspective, perspectiveTransform
///
/// ## C++ default parameters
/// * solve_method: DECOMP_LU
#[inline]
pub fn get_perspective_transform(src: &dyn core::ToInputArray, dst: &dyn core::ToInputArray, solve_method: i32) -> Result<core::Mat> {
input_array_arg!(src);
input_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_getPerspectiveTransform_const__InputArrayR_const__InputArrayR_int(src.as_raw__InputArray(), dst.as_raw__InputArray(), solve_method, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Retrieves a pixel rectangle from an image with sub-pixel accuracy.
///
/// The function getRectSubPix extracts pixels from src:
///
/// 
///
/// where the values of the pixels at non-integer coordinates are retrieved using bilinear
/// interpolation. Every channel of multi-channel images is processed independently. Also
/// the image should be a single channel or three channel image. While the center of the
/// rectangle must be inside the image, parts of the rectangle may be outside.
///
/// ## Parameters
/// * image: Source image.
/// * patchSize: Size of the extracted patch.
/// * center: Floating point coordinates of the center of the extracted rectangle within the
/// source image. The center must be inside the image.
/// * patch: Extracted patch that has the size patchSize and the same number of channels as src .
/// * patchType: Depth of the extracted pixels. By default, they have the same depth as src .
/// ## See also
/// warpAffine, warpPerspective
///
/// ## C++ default parameters
/// * patch_type: -1
#[inline]
pub fn get_rect_sub_pix(image: &dyn core::ToInputArray, patch_size: core::Size, center: core::Point2f, patch: &mut dyn core::ToOutputArray, patch_type: i32) -> Result<()> {
input_array_arg!(image);
output_array_arg!(patch);
return_send!(via ocvrs_return);
unsafe { sys::cv_getRectSubPix_const__InputArrayR_Size_Point2f_const__OutputArrayR_int(image.as_raw__InputArray(), patch_size.opencv_as_extern(), center.opencv_as_extern(), patch.as_raw__OutputArray(), patch_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates an affine matrix of 2D rotation.
///
/// The function calculates the following matrix:
///
/// 
///
/// where
///
/// 
///
/// The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
///
/// ## Parameters
/// * center: Center of the rotation in the source image.
/// * angle: Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
/// coordinate origin is assumed to be the top-left corner).
/// * scale: Isotropic scale factor.
/// ## See also
/// getAffineTransform, warpAffine, transform
#[inline]
pub fn get_rotation_matrix_2d(center: core::Point2f, angle: f64, scale: f64) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getRotationMatrix2D_Point2f_double_double(center.opencv_as_extern(), angle, scale, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// ## See also
/// getRotationMatrix2D
#[inline]
#[cfg(not(target_os = "windows"))]
pub fn get_rotation_matrix_2d_matx(center: core::Point2f, angle: f64, scale: f64) -> Result<core::Matx23d> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getRotationMatrix2D__Point2f_double_double(center.opencv_as_extern(), angle, scale, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns a structuring element of the specified size and shape for morphological operations.
///
/// The function constructs and returns the structuring element that can be further passed to #erode,
/// #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
/// the structuring element.
///
/// ## Parameters
/// * shape: Element shape that could be one of #MorphShapes
/// * ksize: Size of the structuring element.
/// * anchor: Anchor position within the element. The default value  means that the
/// anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
/// position. In other cases the anchor just regulates how much the result of the morphological
/// operation is shifted.
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
#[inline]
pub fn get_structuring_element(shape: i32, ksize: core::Size, anchor: core::Point) -> Result<core::Mat> {
return_send!(via ocvrs_return);
unsafe { sys::cv_getStructuringElement_int_Size_Point(shape, ksize.opencv_as_extern(), anchor.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::Mat::opencv_from_extern(ret) };
Ok(ret)
}
/// Calculates the width and height of a text string.
///
/// The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
/// That is, the following code renders some text, the tight box surrounding it, and the baseline: :
/// ```ignore
/// String text = "Funny text inside the box";
/// int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
/// double fontScale = 2;
/// int thickness = 3;
///
/// Mat img(600, 800, CV_8UC3, Scalar::all(0));
///
/// int baseline=0;
/// Size textSize = getTextSize(text, fontFace,
/// fontScale, thickness, &baseline);
/// baseline += thickness;
///
/// // center the text
/// Point textOrg((img.cols - textSize.width)/2,
/// (img.rows + textSize.height)/2);
///
/// // draw the box
/// rectangle(img, textOrg + Point(0, baseline),
/// textOrg + Point(textSize.width, -textSize.height),
/// Scalar(0,0,255));
/// // ... and the baseline first
/// line(img, textOrg + Point(0, thickness),
/// textOrg + Point(textSize.width, thickness),
/// Scalar(0, 0, 255));
///
/// // then put the text itself
/// putText(img, text, textOrg, fontFace, fontScale,
/// Scalar::all(255), thickness, 8);
/// ```
///
///
/// ## Parameters
/// * text: Input text string.
/// * fontFace: Font to use, see #HersheyFonts.
/// * fontScale: Font scale factor that is multiplied by the font-specific base size.
/// * thickness: Thickness of lines used to render the text. See #putText for details.
/// * baseLine:[out] y-coordinate of the baseline relative to the bottom-most text
/// point.
/// ## Returns
/// The size of a box that contains the specified text.
/// ## See also
/// putText
#[inline]
pub fn get_text_size(text: &str, font_face: i32, font_scale: f64, thickness: i32, base_line: &mut i32) -> Result<core::Size> {
extern_container_arg!(text);
return_send!(via ocvrs_return);
unsafe { sys::cv_getTextSize_const_StringR_int_double_int_intX(text.opencv_as_extern(), font_face, font_scale, thickness, base_line, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Same as above, but returns also quality measure of the detected corners.
///
/// ## Parameters
/// * image: Input 8-bit or floating-point 32-bit, single-channel image.
/// * corners: Output vector of detected corners.
/// * maxCorners: Maximum number of corners to return. If there are more corners than are found,
/// the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
/// and all detected corners are returned.
/// * qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The
/// parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
/// (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
/// quality measure less than the product are rejected. For example, if the best corner has the
/// quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
/// less than 15 are rejected.
/// * minDistance: Minimum possible Euclidean distance between the returned corners.
/// * mask: Region of interest. If the image is not empty (it needs to have the type
/// CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
/// * cornersQuality: Output vector of quality measure of the detected corners.
/// * blockSize: Size of an average block for computing a derivative covariation matrix over each
/// pixel neighborhood. See cornerEigenValsAndVecs .
/// * gradientSize: Aperture parameter for the Sobel operator used for derivatives computation.
/// See cornerEigenValsAndVecs .
/// * useHarrisDetector: Parameter indicating whether to use a Harris detector (see #cornerHarris)
/// or #cornerMinEigenVal.
/// * k: Free parameter of the Harris detector.
///
/// ## C++ default parameters
/// * block_size: 3
/// * gradient_size: 3
/// * use_harris_detector: false
/// * k: 0.04
#[inline]
pub fn good_features_to_track_with_quality(image: &dyn core::ToInputArray, corners: &mut dyn core::ToOutputArray, max_corners: i32, quality_level: f64, min_distance: f64, mask: &dyn core::ToInputArray, corners_quality: &mut dyn core::ToOutputArray, block_size: i32, gradient_size: i32, use_harris_detector: bool, k: f64) -> Result<()> {
input_array_arg!(image);
output_array_arg!(corners);
input_array_arg!(mask);
output_array_arg!(corners_quality);
return_send!(via ocvrs_return);
unsafe { sys::cv_goodFeaturesToTrack_const__InputArrayR_const__OutputArrayR_int_double_double_const__InputArrayR_const__OutputArrayR_int_int_bool_double(image.as_raw__InputArray(), corners.as_raw__OutputArray(), max_corners, quality_level, min_distance, mask.as_raw__InputArray(), corners_quality.as_raw__OutputArray(), block_size, gradient_size, use_harris_detector, k, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Determines strong corners on an image.
///
/// The function finds the most prominent corners in the image or in the specified image region, as
/// described in [Shi94](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Shi94)
///
/// * Function calculates the corner quality measure at every source image pixel using the
/// #cornerMinEigenVal or #cornerHarris .
/// * Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
/// retained).
/// * The corners with the minimal eigenvalue less than
///  are rejected.
/// * The remaining corners are sorted by the quality measure in the descending order.
/// * Function throws away each corner for which there is a stronger corner at a distance less than
/// maxDistance.
///
/// The function can be used to initialize a point-based tracker of an object.
///
///
/// Note: If the function is called with different values A and B of the parameter qualityLevel , and
/// A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
/// with qualityLevel=B .
///
/// ## Parameters
/// * image: Input 8-bit or floating-point 32-bit, single-channel image.
/// * corners: Output vector of detected corners.
/// * maxCorners: Maximum number of corners to return. If there are more corners than are found,
/// the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
/// and all detected corners are returned.
/// * qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The
/// parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
/// (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
/// quality measure less than the product are rejected. For example, if the best corner has the
/// quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
/// less than 15 are rejected.
/// * minDistance: Minimum possible Euclidean distance between the returned corners.
/// * mask: Optional region of interest. If the image is not empty (it needs to have the type
/// CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
/// * blockSize: Size of an average block for computing a derivative covariation matrix over each
/// pixel neighborhood. See cornerEigenValsAndVecs .
/// * useHarrisDetector: Parameter indicating whether to use a Harris detector (see #cornerHarris)
/// or #cornerMinEigenVal.
/// * k: Free parameter of the Harris detector.
/// ## See also
/// cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
///
/// ## C++ default parameters
/// * mask: noArray()
/// * block_size: 3
/// * use_harris_detector: false
/// * k: 0.04
#[inline]
pub fn good_features_to_track(image: &dyn core::ToInputArray, corners: &mut dyn core::ToOutputArray, max_corners: i32, quality_level: f64, min_distance: f64, mask: &dyn core::ToInputArray, block_size: i32, use_harris_detector: bool, k: f64) -> Result<()> {
input_array_arg!(image);
output_array_arg!(corners);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_goodFeaturesToTrack_const__InputArrayR_const__OutputArrayR_int_double_double_const__InputArrayR_int_bool_double(image.as_raw__InputArray(), corners.as_raw__OutputArray(), max_corners, quality_level, min_distance, mask.as_raw__InputArray(), block_size, use_harris_detector, k, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// ## C++ default parameters
/// * use_harris_detector: false
/// * k: 0.04
#[inline]
pub fn good_features_to_track_with_gradient(image: &dyn core::ToInputArray, corners: &mut dyn core::ToOutputArray, max_corners: i32, quality_level: f64, min_distance: f64, mask: &dyn core::ToInputArray, block_size: i32, gradient_size: i32, use_harris_detector: bool, k: f64) -> Result<()> {
input_array_arg!(image);
output_array_arg!(corners);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_goodFeaturesToTrack_const__InputArrayR_const__OutputArrayR_int_double_double_const__InputArrayR_int_int_bool_double(image.as_raw__InputArray(), corners.as_raw__OutputArray(), max_corners, quality_level, min_distance, mask.as_raw__InputArray(), block_size, gradient_size, use_harris_detector, k, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Runs the GrabCut algorithm.
///
/// The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
///
/// ## Parameters
/// * img: Input 8-bit 3-channel image.
/// * mask: Input/output 8-bit single-channel mask. The mask is initialized by the function when
/// mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
/// * rect: ROI containing a segmented object. The pixels outside of the ROI are marked as
/// "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
/// * bgdModel: Temporary array for the background model. Do not modify it while you are
/// processing the same image.
/// * fgdModel: Temporary arrays for the foreground model. Do not modify it while you are
/// processing the same image.
/// * iterCount: Number of iterations the algorithm should make before returning the result. Note
/// that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
/// mode==GC_EVAL .
/// * mode: Operation mode that could be one of the #GrabCutModes
///
/// ## C++ default parameters
/// * mode: GC_EVAL
#[inline]
pub fn grab_cut(img: &dyn core::ToInputArray, mask: &mut dyn core::ToInputOutputArray, rect: core::Rect, bgd_model: &mut dyn core::ToInputOutputArray, fgd_model: &mut dyn core::ToInputOutputArray, iter_count: i32, mode: i32) -> Result<()> {
input_array_arg!(img);
input_output_array_arg!(mask);
input_output_array_arg!(bgd_model);
input_output_array_arg!(fgd_model);
return_send!(via ocvrs_return);
unsafe { sys::cv_grabCut_const__InputArrayR_const__InputOutputArrayR_Rect_const__InputOutputArrayR_const__InputOutputArrayR_int_int(img.as_raw__InputArray(), mask.as_raw__InputOutputArray(), rect.opencv_as_extern(), bgd_model.as_raw__InputOutputArray(), fgd_model.as_raw__InputOutputArray(), iter_count, mode, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the integral of an image.
///
/// The function calculates one or more integral images for the source image as follows:
///
/// 
///
/// 
///
/// 
///
/// Using these integral images, you can calculate sum, mean, and standard deviation over a specific
/// up-right or rotated rectangular region of the image in a constant time, for example:
///
/// 
///
/// It makes possible to do a fast blurring or fast block correlation with a variable window size, for
/// example. In case of multi-channel images, sums for each channel are accumulated independently.
///
/// As a practical example, the next figure shows the calculation of the integral of a straight
/// rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
/// original image are shown, as well as the relative pixels in the integral images sum and tilted .
///
/// 
///
/// ## Parameters
/// * src: input image as , 8-bit or floating-point (32f or 64f).
/// * sum: integral image as  , 32-bit integer or floating-point (32f or 64f).
/// * sqsum: integral image for squared pixel values; it is , double-precision
/// floating-point (64f) array.
/// * tilted: integral for the image rotated by 45 degrees; it is  array with
/// the same data type as sum.
/// * sdepth: desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
/// CV_64F.
/// * sqdepth: desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
///
/// ## C++ default parameters
/// * sdepth: -1
/// * sqdepth: -1
#[inline]
pub fn integral3(src: &dyn core::ToInputArray, sum: &mut dyn core::ToOutputArray, sqsum: &mut dyn core::ToOutputArray, tilted: &mut dyn core::ToOutputArray, sdepth: i32, sqdepth: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(sum);
output_array_arg!(sqsum);
output_array_arg!(tilted);
return_send!(via ocvrs_return);
unsafe { sys::cv_integral_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), sum.as_raw__OutputArray(), sqsum.as_raw__OutputArray(), tilted.as_raw__OutputArray(), sdepth, sqdepth, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the integral of an image.
///
/// The function calculates one or more integral images for the source image as follows:
///
/// 
///
/// 
///
/// 
///
/// Using these integral images, you can calculate sum, mean, and standard deviation over a specific
/// up-right or rotated rectangular region of the image in a constant time, for example:
///
/// 
///
/// It makes possible to do a fast blurring or fast block correlation with a variable window size, for
/// example. In case of multi-channel images, sums for each channel are accumulated independently.
///
/// As a practical example, the next figure shows the calculation of the integral of a straight
/// rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
/// original image are shown, as well as the relative pixels in the integral images sum and tilted .
///
/// 
///
/// ## Parameters
/// * src: input image as , 8-bit or floating-point (32f or 64f).
/// * sum: integral image as  , 32-bit integer or floating-point (32f or 64f).
/// * sqsum: integral image for squared pixel values; it is , double-precision
/// floating-point (64f) array.
/// * tilted: integral for the image rotated by 45 degrees; it is  array with
/// the same data type as sum.
/// * sdepth: desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
/// CV_64F.
/// * sqdepth: desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * sdepth: -1
/// * sqdepth: -1
#[inline]
pub fn integral2(src: &dyn core::ToInputArray, sum: &mut dyn core::ToOutputArray, sqsum: &mut dyn core::ToOutputArray, sdepth: i32, sqdepth: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(sum);
output_array_arg!(sqsum);
return_send!(via ocvrs_return);
unsafe { sys::cv_integral_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), sum.as_raw__OutputArray(), sqsum.as_raw__OutputArray(), sdepth, sqdepth, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the integral of an image.
///
/// The function calculates one or more integral images for the source image as follows:
///
/// 
///
/// 
///
/// 
///
/// Using these integral images, you can calculate sum, mean, and standard deviation over a specific
/// up-right or rotated rectangular region of the image in a constant time, for example:
///
/// 
///
/// It makes possible to do a fast blurring or fast block correlation with a variable window size, for
/// example. In case of multi-channel images, sums for each channel are accumulated independently.
///
/// As a practical example, the next figure shows the calculation of the integral of a straight
/// rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
/// original image are shown, as well as the relative pixels in the integral images sum and tilted .
///
/// 
///
/// ## Parameters
/// * src: input image as , 8-bit or floating-point (32f or 64f).
/// * sum: integral image as  , 32-bit integer or floating-point (32f or 64f).
/// * sqsum: integral image for squared pixel values; it is , double-precision
/// floating-point (64f) array.
/// * tilted: integral for the image rotated by 45 degrees; it is  array with
/// the same data type as sum.
/// * sdepth: desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
/// CV_64F.
/// * sqdepth: desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
///
/// ## Overloaded parameters
///
/// ## C++ default parameters
/// * sdepth: -1
#[inline]
pub fn integral(src: &dyn core::ToInputArray, sum: &mut dyn core::ToOutputArray, sdepth: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(sum);
return_send!(via ocvrs_return);
unsafe { sys::cv_integral_const__InputArrayR_const__OutputArrayR_int(src.as_raw__InputArray(), sum.as_raw__OutputArray(), sdepth, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds intersection of two convex polygons
///
/// ## Parameters
/// * p1: First polygon
/// * p2: Second polygon
/// * p12: Output polygon describing the intersecting area
/// * handleNested: When true, an intersection is found if one of the polygons is fully enclosed in the other.
/// When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
/// of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
///
/// ## Returns
/// Absolute value of area of intersecting polygon
///
///
/// Note: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
///
/// ## C++ default parameters
/// * handle_nested: true
#[inline]
pub fn intersect_convex_convex(p1: &dyn core::ToInputArray, p2: &dyn core::ToInputArray, p12: &mut dyn core::ToOutputArray, handle_nested: bool) -> Result<f32> {
input_array_arg!(p1);
input_array_arg!(p2);
output_array_arg!(p12);
return_send!(via ocvrs_return);
unsafe { sys::cv_intersectConvexConvex_const__InputArrayR_const__InputArrayR_const__OutputArrayR_bool(p1.as_raw__InputArray(), p2.as_raw__InputArray(), p12.as_raw__OutputArray(), handle_nested, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Inverts an affine transformation.
///
/// The function computes an inverse affine transformation represented by  matrix M:
///
/// 
///
/// The result is also a  matrix of the same type as M.
///
/// ## Parameters
/// * M: Original affine transformation.
/// * iM: Output reverse affine transformation.
#[inline]
pub fn invert_affine_transform(m: &dyn core::ToInputArray, i_m: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(m);
output_array_arg!(i_m);
return_send!(via ocvrs_return);
unsafe { sys::cv_invertAffineTransform_const__InputArrayR_const__OutputArrayR(m.as_raw__InputArray(), i_m.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Tests a contour convexity.
///
/// The function tests whether the input contour is convex or not. The contour must be simple, that is,
/// without self-intersections. Otherwise, the function output is undefined.
///
/// ## Parameters
/// * contour: Input vector of 2D points, stored in std::vector\<\> or Mat
#[inline]
pub fn is_contour_convex(contour: &dyn core::ToInputArray) -> Result<bool> {
input_array_arg!(contour);
return_send!(via ocvrs_return);
unsafe { sys::cv_isContourConvex_const__InputArrayR(contour.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a line segment connecting two points.
///
/// The function line draws the line segment between pt1 and pt2 points in the image. The line is
/// clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
/// or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
/// lines are drawn using Gaussian filtering.
///
/// ## Parameters
/// * img: Image.
/// * pt1: First point of the line segment.
/// * pt2: Second point of the line segment.
/// * color: Line color.
/// * thickness: Line thickness.
/// * lineType: Type of the line. See #LineTypes.
/// * shift: Number of fractional bits in the point coordinates.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn line(img: &mut dyn core::ToInputOutputArray, pt1: core::Point, pt2: core::Point, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_line_const__InputOutputArrayR_Point_Point_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Remaps an image to polar coordinates space.
///
///
/// **Deprecated**: This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
///
/// @internal
/// Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
/// 
///
/// where
/// 
///
/// and
/// 
///
///
/// ## Parameters
/// * src: Source image
/// * dst: Destination image. It will have same size and type as src.
/// * center: The transformation center;
/// * maxRadius: The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
/// * flags: A combination of interpolation methods, see #InterpolationFlags
///
///
/// Note:
/// * The function can not operate in-place.
/// * To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
/// ## See also
/// cv::logPolar
/// @endinternal
#[deprecated = "This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)"]
#[inline]
pub fn linear_polar(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, center: core::Point2f, max_radius: f64, flags: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_linearPolar_const__InputArrayR_const__OutputArrayR_Point2f_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), center.opencv_as_extern(), max_radius, flags, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Remaps an image to semilog-polar coordinates space.
///
///
/// **Deprecated**: This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
///
/// @internal
/// Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
/// 
///
/// where
/// 
///
/// and
/// 
///
/// The function emulates the human "foveal" vision and can be used for fast scale and
/// rotation-invariant template matching, for object tracking and so forth.
/// ## Parameters
/// * src: Source image
/// * dst: Destination image. It will have same size and type as src.
/// * center: The transformation center; where the output precision is maximal
/// * M: Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
/// * flags: A combination of interpolation methods, see #InterpolationFlags
///
///
/// Note:
/// * The function can not operate in-place.
/// * To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
/// ## See also
/// cv::linearPolar
/// @endinternal
#[deprecated = "This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);"]
#[inline]
pub fn log_polar(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, center: core::Point2f, m: f64, flags: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_logPolar_const__InputArrayR_const__OutputArrayR_Point2f_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), center.opencv_as_extern(), m, flags, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Compares two shapes.
///
/// The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
///
/// ## Parameters
/// * contour1: First contour or grayscale image.
/// * contour2: Second contour or grayscale image.
/// * method: Comparison method, see #ShapeMatchModes
/// * parameter: Method-specific parameter (not supported now).
#[inline]
pub fn match_shapes(contour1: &dyn core::ToInputArray, contour2: &dyn core::ToInputArray, method: i32, parameter: f64) -> Result<f64> {
input_array_arg!(contour1);
input_array_arg!(contour2);
return_send!(via ocvrs_return);
unsafe { sys::cv_matchShapes_const__InputArrayR_const__InputArrayR_int_double(contour1.as_raw__InputArray(), contour2.as_raw__InputArray(), method, parameter, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Compares a template against overlapped image regions.
///
/// The function slides through image , compares the overlapped patches of size  against
/// templ using the specified method and stores the comparison results in result . #TemplateMatchModes
/// describes the formulae for the available comparison methods (  denotes image, 
/// template,  result,  the optional mask ). The summation is done over template and/or
/// the image patch: 
///
/// After the function finishes the comparison, the best matches can be found as global minimums (when
/// #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
/// #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
/// the denominator is done over all of the channels and separate mean values are used for each channel.
/// That is, the function can take a color template and a color image. The result will still be a
/// single-channel image, which is easier to analyze.
///
/// ## Parameters
/// * image: Image where the search is running. It must be 8-bit or 32-bit floating-point.
/// * templ: Searched template. It must be not greater than the source image and have the same
/// data type.
/// * result: Map of comparison results. It must be single-channel 32-bit floating-point. If image
/// is  and templ is  , then result is  .
/// * method: Parameter specifying the comparison method, see #TemplateMatchModes
/// * mask: Optional mask. It must have the same size as templ. It must either have the same number
/// of channels as template or only one channel, which is then used for all template and
/// image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
/// meaning only elements where mask is nonzero are used and are kept unchanged independent
/// of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
/// used as weights. The exact formulas are documented in #TemplateMatchModes.
///
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn match_template(image: &dyn core::ToInputArray, templ: &dyn core::ToInputArray, result: &mut dyn core::ToOutputArray, method: i32, mask: &dyn core::ToInputArray) -> Result<()> {
input_array_arg!(image);
input_array_arg!(templ);
output_array_arg!(result);
input_array_arg!(mask);
return_send!(via ocvrs_return);
unsafe { sys::cv_matchTemplate_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR(image.as_raw__InputArray(), templ.as_raw__InputArray(), result.as_raw__OutputArray(), method, mask.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image using the median filter.
///
/// The function smoothes an image using the median filter with the  aperture. Each channel of a multi-channel image is processed independently.
/// In-place operation is supported.
///
///
/// Note: The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
///
/// ## Parameters
/// * src: input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
/// CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
/// * dst: destination array of the same size and type as src.
/// * ksize: aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
/// ## See also
/// bilateralFilter, blur, boxFilter, GaussianBlur
#[inline]
pub fn median_blur(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ksize: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_medianBlur_const__InputArrayR_const__OutputArrayR_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ksize, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
///
/// The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
/// specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
/// indices when data is close to the containing Mat element boundary.
///
/// ## Parameters
/// * points: Input vector of 2D points, stored in std::vector\<\> or Mat
#[inline]
pub fn min_area_rect(points: &dyn core::ToInputArray) -> Result<core::RotatedRect> {
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_minAreaRect_const__InputArrayR(points.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { core::RotatedRect::opencv_from_extern(ret) };
Ok(ret)
}
/// Finds a circle of the minimum area enclosing a 2D point set.
///
/// The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
///
/// ## Parameters
/// * points: Input vector of 2D points, stored in std::vector\<\> or Mat
/// * center: Output center of the circle.
/// * radius: Output radius of the circle.
#[inline]
pub fn min_enclosing_circle(points: &dyn core::ToInputArray, center: &mut core::Point2f, radius: &mut f32) -> Result<()> {
input_array_arg!(points);
return_send!(via ocvrs_return);
unsafe { sys::cv_minEnclosingCircle_const__InputArrayR_Point2fR_floatR(points.as_raw__InputArray(), center, radius, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds a triangle of minimum area enclosing a 2D point set and returns its area.
///
/// The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
/// area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
/// *red* and the enclosing triangle in *yellow*.
///
/// 
///
/// The implementation of the algorithm is based on O'Rourke's [ORourke86](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_ORourke86) and Klee and Laskowski's
/// [KleeLaskowski85](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_KleeLaskowski85) papers. O'Rourke provides a  algorithm for finding the minimal
/// enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
/// takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
/// 2D point set is required. The complexity of the #convexHull function is  which is higher
/// than . Thus the overall complexity of the function is .
///
/// ## Parameters
/// * points: Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
/// * triangle: Output vector of three 2D points defining the vertices of the triangle. The depth
/// of the OutputArray must be CV_32F.
#[inline]
pub fn min_enclosing_triangle(points: &dyn core::ToInputArray, triangle: &mut dyn core::ToOutputArray) -> Result<f64> {
input_array_arg!(points);
output_array_arg!(triangle);
return_send!(via ocvrs_return);
unsafe { sys::cv_minEnclosingTriangle_const__InputArrayR_const__OutputArrayR(points.as_raw__InputArray(), triangle.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates all of the moments up to the third order of a polygon or rasterized shape.
///
/// The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
/// results are returned in the structure cv::Moments.
///
/// ## Parameters
/// * array: Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
///  or  ) of 2D points (Point or Point2f ).
/// * binaryImage: If it is true, all non-zero image pixels are treated as 1's. The parameter is
/// used for images only.
/// ## Returns
/// moments.
///
///
/// Note: Only applicable to contour moments calculations from Python bindings: Note that the numpy
/// type for the input array should be either np.int32 or np.float32.
/// ## See also
/// contourArea, arcLength
///
/// ## C++ default parameters
/// * binary_image: false
#[inline]
pub fn moments(array: &dyn core::ToInputArray, binary_image: bool) -> Result<core::Moments> {
input_array_arg!(array);
return_send!(via ocvrs_return);
unsafe { sys::cv_moments_const__InputArrayR_bool(array.as_raw__InputArray(), binary_image, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
#[inline]
pub fn morphology_default_border_value() -> Result<core::Scalar> {
return_send!(via ocvrs_return);
unsafe { sys::cv_morphologyDefaultBorderValue(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs advanced morphological transformations.
///
/// The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
/// basic operations.
///
/// Any of the operations can be done in-place. In case of multi-channel images, each channel is
/// processed independently.
///
/// ## Parameters
/// * src: Source image. The number of channels can be arbitrary. The depth should be one of
/// CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
/// * dst: Destination image of the same size and type as source image.
/// * op: Type of a morphological operation, see #MorphTypes
/// * kernel: Structuring element. It can be created using #getStructuringElement.
/// * anchor: Anchor position with the kernel. Negative values mean that the anchor is at the
/// kernel center.
/// * iterations: Number of times erosion and dilation are applied.
/// * borderType: Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// * borderValue: Border value in case of a constant border. The default value has a special
/// meaning.
/// ## See also
/// dilate, erode, getStructuringElement
///
/// Note: The number of iterations is the number of times erosion or dilatation operation will be applied.
/// For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
/// successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * iterations: 1
/// * border_type: BORDER_CONSTANT
/// * border_value: morphologyDefaultBorderValue()
#[inline]
pub fn morphology_ex(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, op: i32, kernel: &dyn core::ToInputArray, anchor: core::Point, iterations: i32, border_type: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(kernel);
return_send!(via ocvrs_return);
unsafe { sys::cv_morphologyEx_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR_Point_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), op, kernel.as_raw__InputArray(), anchor.opencv_as_extern(), iterations, border_type, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// The function is used to detect translational shifts that occur between two images.
///
/// The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
/// the frequency domain. It can be used for fast image registration as well as motion estimation. For
/// more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
///
/// Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
/// with getOptimalDFTSize.
///
/// The function performs the following equations:
/// - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
/// image to remove possible edge effects. This window is cached until the array size changes to speed
/// up processing time.
/// - Next it computes the forward DFTs of each source array:
/// 
/// where  is the forward DFT.
/// - It then computes the cross-power spectrum of each frequency domain array:
/// 
/// - Next the cross-correlation is converted back into the time domain via the inverse DFT:
/// 
/// - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
/// achieve sub-pixel accuracy.
/// 
/// - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
/// centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
/// peak) and will be smaller when there are multiple peaks.
///
/// ## Parameters
/// * src1: Source floating point array (CV_32FC1 or CV_64FC1)
/// * src2: Source floating point array (CV_32FC1 or CV_64FC1)
/// * window: Floating point array with windowing coefficients to reduce edge effects (optional).
/// * response: Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
/// ## Returns
/// detected phase shift (sub-pixel) between the two arrays.
/// ## See also
/// dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
///
/// ## C++ default parameters
/// * window: noArray()
/// * response: 0
#[inline]
pub fn phase_correlate(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, window: &dyn core::ToInputArray, response: &mut f64) -> Result<core::Point2d> {
input_array_arg!(src1);
input_array_arg!(src2);
input_array_arg!(window);
return_send!(via ocvrs_return);
unsafe { sys::cv_phaseCorrelate_const__InputArrayR_const__InputArrayR_const__InputArrayR_doubleX(src1.as_raw__InputArray(), src2.as_raw__InputArray(), window.as_raw__InputArray(), response, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs a point-in-contour test.
///
/// The function determines whether the point is inside a contour, outside, or lies on an edge (or
/// coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
/// value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
/// Otherwise, the return value is a signed distance between the point and the nearest contour edge.
///
/// See below a sample output of the function where each image pixel is tested against the contour:
///
/// 
///
/// ## Parameters
/// * contour: Input contour.
/// * pt: Point tested against the contour.
/// * measureDist: If true, the function estimates the signed distance from the point to the
/// nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
#[inline]
pub fn point_polygon_test(contour: &dyn core::ToInputArray, pt: core::Point2f, measure_dist: bool) -> Result<f64> {
input_array_arg!(contour);
return_send!(via ocvrs_return);
unsafe { sys::cv_pointPolygonTest_const__InputArrayR_Point2f_bool(contour.as_raw__InputArray(), pt.opencv_as_extern(), measure_dist, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws several polygonal curves.
///
/// ## Parameters
/// * img: Image.
/// * pts: Array of polygonal curves.
/// * isClosed: Flag indicating whether the drawn polylines are closed or not. If they are closed,
/// the function draws a line from the last vertex of each curve to its first vertex.
/// * color: Polyline color.
/// * thickness: Thickness of the polyline edges.
/// * lineType: Type of the line segments. See #LineTypes
/// * shift: Number of fractional bits in the vertex coordinates.
///
/// The function cv::polylines draws one or more polygonal curves.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn polylines(img: &mut dyn core::ToInputOutputArray, pts: &dyn core::ToInputArray, is_closed: bool, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
input_array_arg!(pts);
return_send!(via ocvrs_return);
unsafe { sys::cv_polylines_const__InputOutputArrayR_const__InputArrayR_bool_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), pts.as_raw__InputArray(), is_closed, &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates a feature map for corner detection.
///
/// The function calculates the complex spatial derivative-based function of the source image
///
/// 
///
/// where , are the first image derivatives, , are the second image
/// derivatives, and  is the mixed derivative.
///
/// The corners can be found as local maximums of the functions, as shown below:
/// ```ignore
/// Mat corners, dilated_corners;
/// preCornerDetect(image, corners, 3);
/// // dilation with 3x3 rectangular structuring element
/// dilate(corners, dilated_corners, Mat(), 1);
/// Mat corner_mask = corners == dilated_corners;
/// ```
///
///
/// ## Parameters
/// * src: Source single-channel 8-bit of floating-point image.
/// * dst: Output image that has the type CV_32F and the same size as src .
/// * ksize: %Aperture size of the Sobel .
/// * borderType: Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
///
/// ## C++ default parameters
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn pre_corner_detect(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ksize: i32, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_preCornerDetect_const__InputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ksize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a text string.
///
/// The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
/// using the specified font are replaced by question marks. See #getTextSize for a text rendering code
/// example.
///
/// ## Parameters
/// * img: Image.
/// * text: Text string to be drawn.
/// * org: Bottom-left corner of the text string in the image.
/// * fontFace: Font type, see #HersheyFonts.
/// * fontScale: Font scale factor that is multiplied by the font-specific base size.
/// * color: Text color.
/// * thickness: Thickness of the lines used to draw a text.
/// * lineType: Line type. See #LineTypes
/// * bottomLeftOrigin: When true, the image data origin is at the bottom-left corner. Otherwise,
/// it is at the top-left corner.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * bottom_left_origin: false
#[inline]
pub fn put_text(img: &mut dyn core::ToInputOutputArray, text: &str, org: core::Point, font_face: i32, font_scale: f64, color: core::Scalar, thickness: i32, line_type: i32, bottom_left_origin: bool) -> Result<()> {
input_output_array_arg!(img);
extern_container_arg!(text);
return_send!(via ocvrs_return);
unsafe { sys::cv_putText_const__InputOutputArrayR_const_StringR_Point_int_double_Scalar_int_int_bool(img.as_raw__InputOutputArray(), text.opencv_as_extern(), org.opencv_as_extern(), font_face, font_scale, color.opencv_as_extern(), thickness, line_type, bottom_left_origin, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image and downsamples it.
///
/// By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
/// any case, the following conditions should be satisfied:
///
/// 
///
/// The function performs the downsampling step of the Gaussian pyramid construction. First, it
/// convolves the source image with the kernel:
///
/// 
///
/// Then, it downsamples the image by rejecting even rows and columns.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image; it has the specified size and the same type as src.
/// * dstsize: size of the output image.
/// * borderType: Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
///
/// ## C++ default parameters
/// * dstsize: Size()
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn pyr_down(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dstsize: core::Size, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_pyrDown_const__InputArrayR_const__OutputArrayR_const_SizeR_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), &dstsize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs initial step of meanshift segmentation of an image.
///
/// The function implements the filtering stage of meanshift segmentation, that is, the output of the
/// function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
/// At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
/// meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
/// considered:
///
/// 
///
/// where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
/// (though, the algorithm does not depend on the color space used, so any 3-component color space can
/// be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
/// (R',G',B') are found and they act as the neighborhood center on the next iteration:
///
/// 
///
/// After the iterations over, the color components of the initial pixel (that is, the pixel from where
/// the iterations started) are set to the final value (average color at the last iteration):
///
/// 
///
/// When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
/// run on the smallest layer first. After that, the results are propagated to the larger layer and the
/// iterations are run again only on those pixels where the layer colors differ by more than sr from the
/// lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
/// results will be actually different from the ones obtained by running the meanshift procedure on the
/// whole original image (i.e. when maxLevel==0).
///
/// ## Parameters
/// * src: The source 8-bit, 3-channel image.
/// * dst: The destination image of the same format and the same size as the source.
/// * sp: The spatial window radius.
/// * sr: The color window radius.
/// * maxLevel: Maximum level of the pyramid for the segmentation.
/// * termcrit: Termination criteria: when to stop meanshift iterations.
///
/// ## C++ default parameters
/// * max_level: 1
/// * termcrit: TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)
#[inline]
pub fn pyr_mean_shift_filtering(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, sp: f64, sr: f64, max_level: i32, termcrit: core::TermCriteria) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_pyrMeanShiftFiltering_const__InputArrayR_const__OutputArrayR_double_double_int_TermCriteria(src.as_raw__InputArray(), dst.as_raw__OutputArray(), sp, sr, max_level, termcrit.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Upsamples an image and then blurs it.
///
/// By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
/// case, the following conditions should be satisfied:
///
/// 
///
/// The function performs the upsampling step of the Gaussian pyramid construction, though it can
/// actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
/// injecting even zero rows and columns and then convolves the result with the same kernel as in
/// pyrDown multiplied by 4.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image. It has the specified size and the same type as src .
/// * dstsize: size of the output image.
/// * borderType: Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
///
/// ## C++ default parameters
/// * dstsize: Size()
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn pyr_up(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dstsize: core::Size, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_pyrUp_const__InputArrayR_const__OutputArrayR_const_SizeR_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), &dstsize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a simple, thick, or filled up-right rectangle.
///
/// The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
/// are pt1 and pt2.
///
/// ## Parameters
/// * img: Image.
/// * pt1: Vertex of the rectangle.
/// * pt2: Vertex of the rectangle opposite to pt1 .
/// * color: Rectangle color or brightness (grayscale image).
/// * thickness: Thickness of lines that make up the rectangle. Negative values, like #FILLED,
/// mean that the function has to draw a filled rectangle.
/// * lineType: Type of the line. See #LineTypes
/// * shift: Number of fractional bits in the point coordinates.
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn rectangle_points(img: &mut dyn core::ToInputOutputArray, pt1: core::Point, pt2: core::Point, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_rectangle_const__InputOutputArrayR_Point_Point_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws a simple, thick, or filled up-right rectangle.
///
/// The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
/// are pt1 and pt2.
///
/// ## Parameters
/// * img: Image.
/// * pt1: Vertex of the rectangle.
/// * pt2: Vertex of the rectangle opposite to pt1 .
/// * color: Rectangle color or brightness (grayscale image).
/// * thickness: Thickness of lines that make up the rectangle. Negative values, like #FILLED,
/// mean that the function has to draw a filled rectangle.
/// * lineType: Type of the line. See #LineTypes
/// * shift: Number of fractional bits in the point coordinates.
///
/// ## Overloaded parameters
///
///
/// use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
/// r.br()-Point(1,1)` are opposite corners
///
/// ## C++ default parameters
/// * thickness: 1
/// * line_type: LINE_8
/// * shift: 0
#[inline]
pub fn rectangle(img: &mut dyn core::ToInputOutputArray, rec: core::Rect, color: core::Scalar, thickness: i32, line_type: i32, shift: i32) -> Result<()> {
input_output_array_arg!(img);
return_send!(via ocvrs_return);
unsafe { sys::cv_rectangle_const__InputOutputArrayR_Rect_const_ScalarR_int_int_int(img.as_raw__InputOutputArray(), rec.opencv_as_extern(), &color, thickness, line_type, shift, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a generic geometrical transformation to an image.
///
/// The function remap transforms the source image using the specified map:
///
/// 
///
/// where values of pixels with non-integer coordinates are computed using one of available
/// interpolation methods.  and  can be encoded as separate floating-point maps
/// in  and  respectively, or interleaved floating-point maps of  in
/// , or fixed-point maps created by using #convertMaps. The reason you might want to
/// convert from floating to fixed-point representations of a map is that they can yield much faster
/// (\~2x) remapping operations. In the converted case,  contains pairs (cvFloor(x),
/// cvFloor(y)) and  contains indices in a table of interpolation coefficients.
///
/// This function cannot operate in-place.
///
/// ## Parameters
/// * src: Source image.
/// * dst: Destination image. It has the same size as map1 and the same type as src .
/// * map1: The first map of either (x,y) points or just x values having the type CV_16SC2 ,
/// CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
/// representation to fixed-point for speed.
/// * map2: The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
/// if map1 is (x,y) points), respectively.
/// * interpolation: Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
/// and #INTER_LINEAR_EXACT are not supported by this function.
/// * borderMode: Pixel extrapolation method (see #BorderTypes). When
/// borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
/// corresponds to the "outliers" in the source image are not modified by the function.
/// * borderValue: Value used in case of a constant border. By default, it is 0.
///
/// Note:
/// Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
///
/// ## C++ default parameters
/// * border_mode: BORDER_CONSTANT
/// * border_value: Scalar()
#[inline]
pub fn remap(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, map1: &dyn core::ToInputArray, map2: &dyn core::ToInputArray, interpolation: i32, border_mode: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(map1);
input_array_arg!(map2);
return_send!(via ocvrs_return);
unsafe { sys::cv_remap_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), map1.as_raw__InputArray(), map2.as_raw__InputArray(), interpolation, border_mode, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Resizes an image.
///
/// The function resize resizes the image src down to or up to the specified size. Note that the
/// initial dst type or size are not taken into account. Instead, the size and type are derived from
/// the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
/// you may call the function as follows:
/// ```ignore
/// // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
/// resize(src, dst, dst.size(), 0, 0, interpolation);
/// ```
///
/// If you want to decimate the image by factor of 2 in each direction, you can call the function this
/// way:
/// ```ignore
/// // specify fx and fy and let the function compute the destination image size.
/// resize(src, dst, Size(), 0.5, 0.5, interpolation);
/// ```
///
/// To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
/// enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
/// (faster but still looks OK).
///
/// ## Parameters
/// * src: input image.
/// * dst: output image; it has the size dsize (when it is non-zero) or the size computed from
/// src.size(), fx, and fy; the type of dst is the same as of src.
/// * dsize: output image size; if it equals zero (`None` in Python), it is computed as:
/// 
/// Either dsize or both fx and fy must be non-zero.
/// * fx: scale factor along the horizontal axis; when it equals 0, it is computed as
/// 
/// * fy: scale factor along the vertical axis; when it equals 0, it is computed as
/// 
/// * interpolation: interpolation method, see #InterpolationFlags
/// ## See also
/// warpAffine, warpPerspective, remap
///
/// ## C++ default parameters
/// * fx: 0
/// * fy: 0
/// * interpolation: INTER_LINEAR
#[inline]
pub fn resize(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dsize: core::Size, fx: f64, fy: f64, interpolation: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_resize_const__InputArrayR_const__OutputArrayR_Size_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), dsize.opencv_as_extern(), fx, fy, interpolation, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds out if there is any intersection between two rotated rectangles.
///
/// If there is then the vertices of the intersecting region are returned as well.
///
/// Below are some examples of intersection configurations. The hatched pattern indicates the
/// intersecting region and the red vertices are returned by the function.
///
/// 
///
/// ## Parameters
/// * rect1: First rectangle
/// * rect2: Second rectangle
/// * intersectingRegion: The output array of the vertices of the intersecting region. It returns
/// at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
/// ## Returns
/// One of #RectanglesIntersectTypes
#[inline]
pub fn rotated_rectangle_intersection(rect1: &core::RotatedRect, rect2: &core::RotatedRect, intersecting_region: &mut dyn core::ToOutputArray) -> Result<i32> {
output_array_arg!(intersecting_region);
return_send!(via ocvrs_return);
unsafe { sys::cv_rotatedRectangleIntersection_const_RotatedRectR_const_RotatedRectR_const__OutputArrayR(rect1.as_raw_RotatedRect(), rect2.as_raw_RotatedRect(), intersecting_region.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a separable linear filter to an image.
///
/// The function applies a separable linear filter to the image. That is, first, every row of src is
/// filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
/// kernel kernelY. The final result shifted by delta is stored in dst .
///
/// ## Parameters
/// * src: Source image.
/// * dst: Destination image of the same size and the same number of channels as src .
/// * ddepth: Destination image depth, see @ref filter_depths "combinations"
/// * kernelX: Coefficients for filtering each row.
/// * kernelY: Coefficients for filtering each column.
/// * anchor: Anchor position within the kernel. The default value  means that the anchor
/// is at the kernel center.
/// * delta: Value added to the filtered results before storing them.
/// * borderType: Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// filter2D, Sobel, GaussianBlur, boxFilter, blur
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * delta: 0
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn sep_filter_2d(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, kernel_x: &dyn core::ToInputArray, kernel_y: &dyn core::ToInputArray, anchor: core::Point, delta: f64, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(kernel_x);
input_array_arg!(kernel_y);
return_send!(via ocvrs_return);
unsafe { sys::cv_sepFilter2D_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR_const__InputArrayR_Point_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, kernel_x.as_raw__InputArray(), kernel_y.as_raw__InputArray(), anchor.opencv_as_extern(), delta, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the first order image derivative in both x and y using a Sobel operator
///
/// Equivalent to calling:
///
/// ```ignore
/// Sobel( src, dx, CV_16SC1, 1, 0, 3 );
/// Sobel( src, dy, CV_16SC1, 0, 1, 3 );
/// ```
///
///
/// ## Parameters
/// * src: input image.
/// * dx: output image with first-order derivative in x.
/// * dy: output image with first-order derivative in y.
/// * ksize: size of Sobel kernel. It must be 3.
/// * borderType: pixel extrapolation method, see #BorderTypes.
/// Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
/// ## See also
/// Sobel
///
/// ## C++ default parameters
/// * ksize: 3
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn spatial_gradient(src: &dyn core::ToInputArray, dx: &mut dyn core::ToOutputArray, dy: &mut dyn core::ToOutputArray, ksize: i32, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dx);
output_array_arg!(dy);
return_send!(via ocvrs_return);
unsafe { sys::cv_spatialGradient_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_int_int(src.as_raw__InputArray(), dx.as_raw__OutputArray(), dy.as_raw__OutputArray(), ksize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Calculates the normalized sum of squares of the pixel values overlapping the filter.
///
/// For every pixel  in the source image, the function calculates the sum of squares of those neighboring
/// pixel values which overlap the filter placed over the pixel .
///
/// The unnormalized square box filter can be useful in computing local image statistics such as the local
/// variance and standard deviation around the neighborhood of a pixel.
///
/// ## Parameters
/// * src: input image
/// * dst: output image of the same size and type as src
/// * ddepth: the output image depth (-1 to use src.depth())
/// * ksize: kernel size
/// * anchor: kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
/// center.
/// * normalize: flag, specifying whether the kernel is to be normalized by it's area or not.
/// * borderType: border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
/// ## See also
/// boxFilter
///
/// ## C++ default parameters
/// * anchor: Point(-1,-1)
/// * normalize: true
/// * border_type: BORDER_DEFAULT
#[inline]
pub fn sqr_box_filter(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ddepth: i32, ksize: core::Size, anchor: core::Point, normalize: bool, border_type: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_sqrBoxFilter_const__InputArrayR_const__OutputArrayR_int_Size_Point_bool_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ddepth, ksize.opencv_as_extern(), anchor.opencv_as_extern(), normalize, border_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Blurs an image using the stackBlur.
///
/// The function applies and stackBlur to an image.
/// stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
/// It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
/// of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
/// depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
/// Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
///
/// ## Parameters
/// * src: input image. The number of channels can be arbitrary, but the depth should be one of
/// CV_8U, CV_16U, CV_16S or CV_32F.
/// * dst: output image of the same size and type as src.
/// * ksize: stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
/// positive and odd.
#[inline]
pub fn stack_blur(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, ksize: core::Size) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_stackBlur_const__InputArrayR_const__OutputArrayR_Size(src.as_raw__InputArray(), dst.as_raw__OutputArray(), ksize.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a fixed-level threshold to each array element.
///
/// The function applies fixed-level thresholding to a multiple-channel array. The function is typically
/// used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
/// this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
/// values. There are several types of thresholding supported by the function. They are determined by
/// type parameter.
///
/// Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
/// above values. In these cases, the function determines the optimal threshold value using the Otsu's
/// or Triangle algorithm and uses it instead of the specified thresh.
///
///
/// Note: Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
///
/// ## Parameters
/// * src: input array (multiple-channel, 8-bit or 32-bit floating point).
/// * dst: output array of the same size and type and the same number of channels as src.
/// * thresh: threshold value.
/// * maxval: maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
/// types.
/// * type: thresholding type (see #ThresholdTypes).
/// ## Returns
/// the computed threshold value if Otsu's or Triangle methods used.
/// ## See also
/// adaptiveThreshold, findContours, compare, min, max
#[inline]
pub fn threshold(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, thresh: f64, maxval: f64, typ: i32) -> Result<f64> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_threshold_const__InputArrayR_const__OutputArrayR_double_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), thresh, maxval, typ, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies an affine transformation to an image.
///
/// The function warpAffine transforms the source image using the specified matrix:
///
/// 
///
/// when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
/// with #invertAffineTransform and then put in the formula above instead of M. The function cannot
/// operate in-place.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image that has the size dsize and the same type as src .
/// * M:  transformation matrix.
/// * dsize: size of the output image.
/// * flags: combination of interpolation methods (see #InterpolationFlags) and the optional
/// flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
///  ).
/// * borderMode: pixel extrapolation method (see #BorderTypes); when
/// borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
/// the "outliers" in the source image are not modified by the function.
/// * borderValue: value used in case of a constant border; by default, it is 0.
/// ## See also
/// warpPerspective, resize, remap, getRectSubPix, transform
///
/// ## C++ default parameters
/// * flags: INTER_LINEAR
/// * border_mode: BORDER_CONSTANT
/// * border_value: Scalar()
#[inline]
pub fn warp_affine(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, m: &dyn core::ToInputArray, dsize: core::Size, flags: i32, border_mode: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(m);
return_send!(via ocvrs_return);
unsafe { sys::cv_warpAffine_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Size_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), m.as_raw__InputArray(), dsize.opencv_as_extern(), flags, border_mode, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Applies a perspective transformation to an image.
///
/// The function warpPerspective transforms the source image using the specified matrix:
///
/// 
///
/// when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
/// and then put in the formula above instead of M. The function cannot operate in-place.
///
/// ## Parameters
/// * src: input image.
/// * dst: output image that has the size dsize and the same type as src .
/// * M:  transformation matrix.
/// * dsize: size of the output image.
/// * flags: combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
/// optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
///  ).
/// * borderMode: pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
/// * borderValue: value used in case of a constant border; by default, it equals 0.
/// ## See also
/// warpAffine, resize, remap, getRectSubPix, perspectiveTransform
///
/// ## C++ default parameters
/// * flags: INTER_LINEAR
/// * border_mode: BORDER_CONSTANT
/// * border_value: Scalar()
#[inline]
pub fn warp_perspective(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, m: &dyn core::ToInputArray, dsize: core::Size, flags: i32, border_mode: i32, border_value: core::Scalar) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
input_array_arg!(m);
return_send!(via ocvrs_return);
unsafe { sys::cv_warpPerspective_const__InputArrayR_const__OutputArrayR_const__InputArrayR_Size_int_int_const_ScalarR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), m.as_raw__InputArray(), dsize.opencv_as_extern(), flags, border_mode, &border_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// \brief Remaps an image to polar or semilog-polar coordinates space
///
/// @anchor polar_remaps_reference_image
/// 
///
/// Transform the source image using the following transformation:
/// 
///
/// where
/// 
///
/// and
/// 
///
///
/// \par Linear vs semilog mapping
///
/// Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
///
/// Linear is the default mode.
///
/// The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
/// in contrast to peripheral vision where acuity is minor.
///
/// \par Option on `dsize`:
///
/// - if both values in `dsize <=0 ` (default),
/// the destination image will have (almost) same area of source bounding circle:
/// 
///
///
/// - if only `dsize.height <= 0`,
/// the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
/// 
///
/// - if both values in `dsize > 0 `,
/// the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
///
///
/// \par Reverse mapping
///
/// You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
/// \snippet polar_transforms.cpp InverseMap
///
/// In addiction, to calculate the original coordinate from a polar mapped coordinate :
/// \snippet polar_transforms.cpp InverseCoordinate
///
/// ## Parameters
/// * src: Source image.
/// * dst: Destination image. It will have same type as src.
/// * dsize: The destination image size (see description for valid options).
/// * center: The transformation center.
/// * maxRadius: The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
/// * flags: A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
/// - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
/// - Add #WARP_POLAR_LOG to select semilog polar mapping
/// - Add #WARP_INVERSE_MAP for reverse mapping.
///
/// Note:
/// * The function can not operate in-place.
/// * To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
/// * This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
/// ## See also
/// cv::remap
#[inline]
pub fn warp_polar(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dsize: core::Size, center: core::Point2f, max_radius: f64, flags: i32) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_warpPolar_const__InputArrayR_const__OutputArrayR_Size_Point2f_double_int(src.as_raw__InputArray(), dst.as_raw__OutputArray(), dsize.opencv_as_extern(), center.opencv_as_extern(), max_radius, flags, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Performs a marker-based image segmentation using the watershed algorithm.
///
/// The function implements one of the variants of watershed, non-parametric marker-based segmentation
/// algorithm, described in [Meyer92](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Meyer92) .
///
/// Before passing the image to the function, you have to roughly outline the desired regions in the
/// image markers with positive (\>0) indices. So, every region is represented as one or more connected
/// components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
/// mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
/// the future image regions. All the other pixels in markers , whose relation to the outlined regions
/// is not known and should be defined by the algorithm, should be set to 0's. In the function output,
/// each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
/// regions.
///
///
/// Note: Any two neighbor connected components are not necessarily separated by a watershed boundary
/// (-1's pixels); for example, they can touch each other in the initial marker image passed to the
/// function.
///
/// ## Parameters
/// * image: Input 8-bit 3-channel image.
/// * markers: Input/output 32-bit single-channel image (map) of markers. It should have the same
/// size as image .
/// ## See also
/// findContours
#[inline]
pub fn watershed(image: &dyn core::ToInputArray, markers: &mut dyn core::ToInputOutputArray) -> Result<()> {
input_array_arg!(image);
input_output_array_arg!(markers);
return_send!(via ocvrs_return);
unsafe { sys::cv_watershed_const__InputArrayR_const__InputOutputArrayR(image.as_raw__InputArray(), markers.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// ## C++ default parameters
/// * cost: noArray()
/// * lower_bound: Ptr<float>()
/// * flow: noArray()
#[inline]
pub fn emd_1(signature1: &dyn core::ToInputArray, signature2: &dyn core::ToInputArray, dist_type: i32, cost: &dyn core::ToInputArray, mut lower_bound: core::Ptr<f32>, flow: &mut dyn core::ToOutputArray) -> Result<f32> {
input_array_arg!(signature1);
input_array_arg!(signature2);
input_array_arg!(cost);
output_array_arg!(flow);
return_send!(via ocvrs_return);
unsafe { sys::cv_wrapperEMD_const__InputArrayR_const__InputArrayR_int_const__InputArrayR_PtrLfloatG_const__OutputArrayR(signature1.as_raw__InputArray(), signature2.as_raw__InputArray(), dist_type, cost.as_raw__InputArray(), lower_bound.as_raw_mut_PtrOff32(), flow.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Base class for Contrast Limited Adaptive Histogram Equalization.
pub trait CLAHEConst: core::AlgorithmTraitConst {
fn as_raw_CLAHE(&self) -> *const c_void;
/// Returns threshold value for contrast limiting.
#[inline]
fn get_clip_limit(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_getClipLimit_const(self.as_raw_CLAHE(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns Size defines the number of tiles in row and column.
#[inline]
fn get_tiles_grid_size(&self) -> Result<core::Size> {
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_getTilesGridSize_const(self.as_raw_CLAHE(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait CLAHE: core::AlgorithmTrait + crate::imgproc::CLAHEConst {
fn as_raw_mut_CLAHE(&mut self) -> *mut c_void;
/// Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
///
/// ## Parameters
/// * src: Source image of type CV_8UC1 or CV_16UC1.
/// * dst: Destination image.
#[inline]
fn apply(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(src);
output_array_arg!(dst);
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_apply_const__InputArrayR_const__OutputArrayR(self.as_raw_mut_CLAHE(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Sets threshold for contrast limiting.
///
/// ## Parameters
/// * clipLimit: threshold value.
#[inline]
fn set_clip_limit(&mut self, clip_limit: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_setClipLimit_double(self.as_raw_mut_CLAHE(), clip_limit, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Sets size of grid for histogram equalization. Input image will be divided into
/// equally sized rectangular tiles.
///
/// ## Parameters
/// * tileGridSize: defines the number of tiles in row and column.
#[inline]
fn set_tiles_grid_size(&mut self, tile_grid_size: core::Size) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_setTilesGridSize_Size(self.as_raw_mut_CLAHE(), tile_grid_size.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn collect_garbage(&mut self) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_CLAHE_collectGarbage(self.as_raw_mut_CLAHE(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// finds arbitrary template in the grayscale image using Generalized Hough Transform
pub trait GeneralizedHoughConst: core::AlgorithmTraitConst {
fn as_raw_GeneralizedHough(&self) -> *const c_void;
#[inline]
fn get_canny_low_thresh(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_getCannyLowThresh_const(self.as_raw_GeneralizedHough(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_canny_high_thresh(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_getCannyHighThresh_const(self.as_raw_GeneralizedHough(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_min_dist(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_getMinDist_const(self.as_raw_GeneralizedHough(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_dp(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_getDp_const(self.as_raw_GeneralizedHough(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_max_buffer_size(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_getMaxBufferSize_const(self.as_raw_GeneralizedHough(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait GeneralizedHough: core::AlgorithmTrait + crate::imgproc::GeneralizedHoughConst {
fn as_raw_mut_GeneralizedHough(&mut self) -> *mut c_void;
/// set template to search
///
/// ## C++ default parameters
/// * templ_center: Point(-1,-1)
#[inline]
fn set_template(&mut self, templ: &dyn core::ToInputArray, templ_center: core::Point) -> Result<()> {
input_array_arg!(templ);
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setTemplate_const__InputArrayR_Point(self.as_raw_mut_GeneralizedHough(), templ.as_raw__InputArray(), templ_center.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// ## C++ default parameters
/// * templ_center: Point(-1,-1)
#[inline]
fn set_template_1(&mut self, edges: &dyn core::ToInputArray, dx: &dyn core::ToInputArray, dy: &dyn core::ToInputArray, templ_center: core::Point) -> Result<()> {
input_array_arg!(edges);
input_array_arg!(dx);
input_array_arg!(dy);
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setTemplate_const__InputArrayR_const__InputArrayR_const__InputArrayR_Point(self.as_raw_mut_GeneralizedHough(), edges.as_raw__InputArray(), dx.as_raw__InputArray(), dy.as_raw__InputArray(), templ_center.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// find template on image
///
/// ## C++ default parameters
/// * votes: noArray()
#[inline]
fn detect(&mut self, image: &dyn core::ToInputArray, positions: &mut dyn core::ToOutputArray, votes: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(image);
output_array_arg!(positions);
output_array_arg!(votes);
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_detect_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_GeneralizedHough(), image.as_raw__InputArray(), positions.as_raw__OutputArray(), votes.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// ## C++ default parameters
/// * votes: noArray()
#[inline]
fn detect_with_edges(&mut self, edges: &dyn core::ToInputArray, dx: &dyn core::ToInputArray, dy: &dyn core::ToInputArray, positions: &mut dyn core::ToOutputArray, votes: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(edges);
input_array_arg!(dx);
input_array_arg!(dy);
output_array_arg!(positions);
output_array_arg!(votes);
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_detect_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_GeneralizedHough(), edges.as_raw__InputArray(), dx.as_raw__InputArray(), dy.as_raw__InputArray(), positions.as_raw__OutputArray(), votes.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Canny low threshold.
#[inline]
fn set_canny_low_thresh(&mut self, canny_low_thresh: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setCannyLowThresh_int(self.as_raw_mut_GeneralizedHough(), canny_low_thresh, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Canny high threshold.
#[inline]
fn set_canny_high_thresh(&mut self, canny_high_thresh: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setCannyHighThresh_int(self.as_raw_mut_GeneralizedHough(), canny_high_thresh, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Minimum distance between the centers of the detected objects.
#[inline]
fn set_min_dist(&mut self, min_dist: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setMinDist_double(self.as_raw_mut_GeneralizedHough(), min_dist, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Inverse ratio of the accumulator resolution to the image resolution.
#[inline]
fn set_dp(&mut self, dp: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setDp_double(self.as_raw_mut_GeneralizedHough(), dp, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Maximal size of inner buffers.
#[inline]
fn set_max_buffer_size(&mut self, max_buffer_size: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHough_setMaxBufferSize_int(self.as_raw_mut_GeneralizedHough(), max_buffer_size, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// finds arbitrary template in the grayscale image using Generalized Hough Transform
///
/// Detects position only without translation and rotation [Ballard1981](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Ballard1981) .
pub trait GeneralizedHoughBallardConst: crate::imgproc::GeneralizedHoughConst {
fn as_raw_GeneralizedHoughBallard(&self) -> *const c_void;
#[inline]
fn get_levels(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughBallard_getLevels_const(self.as_raw_GeneralizedHoughBallard(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_votes_threshold(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughBallard_getVotesThreshold_const(self.as_raw_GeneralizedHoughBallard(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait GeneralizedHoughBallard: crate::imgproc::GeneralizedHough + crate::imgproc::GeneralizedHoughBallardConst {
fn as_raw_mut_GeneralizedHoughBallard(&mut self) -> *mut c_void;
/// R-Table levels.
#[inline]
fn set_levels(&mut self, levels: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughBallard_setLevels_int(self.as_raw_mut_GeneralizedHoughBallard(), levels, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
#[inline]
fn set_votes_threshold(&mut self, votes_threshold: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughBallard_setVotesThreshold_int(self.as_raw_mut_GeneralizedHoughBallard(), votes_threshold, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// finds arbitrary template in the grayscale image using Generalized Hough Transform
///
/// Detects position, translation and rotation [Guil1999](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Guil1999) .
pub trait GeneralizedHoughGuilConst: crate::imgproc::GeneralizedHoughConst {
fn as_raw_GeneralizedHoughGuil(&self) -> *const c_void;
#[inline]
fn get_xi(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getXi_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_levels(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getLevels_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_angle_epsilon(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getAngleEpsilon_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_min_angle(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getMinAngle_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_max_angle(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getMaxAngle_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_angle_step(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getAngleStep_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_angle_thresh(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getAngleThresh_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_min_scale(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getMinScale_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_max_scale(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getMaxScale_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_scale_step(&self) -> Result<f64> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getScaleStep_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_scale_thresh(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getScaleThresh_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn get_pos_thresh(&self) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_getPosThresh_const(self.as_raw_GeneralizedHoughGuil(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait GeneralizedHoughGuil: crate::imgproc::GeneralizedHough + crate::imgproc::GeneralizedHoughGuilConst {
fn as_raw_mut_GeneralizedHoughGuil(&mut self) -> *mut c_void;
/// Angle difference in degrees between two points in feature.
#[inline]
fn set_xi(&mut self, xi: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setXi_double(self.as_raw_mut_GeneralizedHoughGuil(), xi, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Feature table levels.
#[inline]
fn set_levels(&mut self, levels: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setLevels_int(self.as_raw_mut_GeneralizedHoughGuil(), levels, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Maximal difference between angles that treated as equal.
#[inline]
fn set_angle_epsilon(&mut self, angle_epsilon: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setAngleEpsilon_double(self.as_raw_mut_GeneralizedHoughGuil(), angle_epsilon, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Minimal rotation angle to detect in degrees.
#[inline]
fn set_min_angle(&mut self, min_angle: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setMinAngle_double(self.as_raw_mut_GeneralizedHoughGuil(), min_angle, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Maximal rotation angle to detect in degrees.
#[inline]
fn set_max_angle(&mut self, max_angle: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setMaxAngle_double(self.as_raw_mut_GeneralizedHoughGuil(), max_angle, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Angle step in degrees.
#[inline]
fn set_angle_step(&mut self, angle_step: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setAngleStep_double(self.as_raw_mut_GeneralizedHoughGuil(), angle_step, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Angle votes threshold.
#[inline]
fn set_angle_thresh(&mut self, angle_thresh: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setAngleThresh_int(self.as_raw_mut_GeneralizedHoughGuil(), angle_thresh, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Minimal scale to detect.
#[inline]
fn set_min_scale(&mut self, min_scale: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setMinScale_double(self.as_raw_mut_GeneralizedHoughGuil(), min_scale, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Maximal scale to detect.
#[inline]
fn set_max_scale(&mut self, max_scale: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setMaxScale_double(self.as_raw_mut_GeneralizedHoughGuil(), max_scale, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Scale step.
#[inline]
fn set_scale_step(&mut self, scale_step: f64) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setScaleStep_double(self.as_raw_mut_GeneralizedHoughGuil(), scale_step, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Scale votes threshold.
#[inline]
fn set_scale_thresh(&mut self, scale_thresh: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setScaleThresh_int(self.as_raw_mut_GeneralizedHoughGuil(), scale_thresh, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Position votes threshold.
#[inline]
fn set_pos_thresh(&mut self, pos_thresh: i32) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_GeneralizedHoughGuil_setPosThresh_int(self.as_raw_mut_GeneralizedHoughGuil(), pos_thresh, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Class for iterating over all pixels on a raster line segment.
///
/// The class LineIterator is used to get each pixel of a raster line connecting
/// two specified points.
/// It can be treated as a versatile implementation of the Bresenham algorithm
/// where you can stop at each pixel and do some extra processing, for
/// example, grab pixel values along the line or draw a line with an effect
/// (for example, with XOR operation).
///
/// The number of pixels along the line is stored in LineIterator::count.
/// The method LineIterator::pos returns the current position in the image:
///
/// ```ignore
/// // grabs pixels along the line (pt1, pt2)
/// // from 8-bit 3-channel image to the buffer
/// LineIterator it(img, pt1, pt2, 8);
/// LineIterator it2 = it;
/// vector<Vec3b> buf(it.count);
///
/// for(int i = 0; i < it.count; i++, ++it)
/// buf[i] = *(const Vec3b*)*it;
///
/// // alternative way of iterating through the line
/// for(int i = 0; i < it2.count; i++, ++it2)
/// {
/// Vec3b val = img.at<Vec3b>(it2.pos());
/// CV_Assert(buf[i] == val);
/// }
/// ```
///
pub trait LineIteratorTraitConst {
fn as_raw_LineIterator(&self) -> *const c_void;
#[inline]
fn ptr0(&self) -> *const u8 {
let ret = unsafe { sys::cv_LineIterator_getPropPtr0_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn step(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropStep_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn elem_size(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropElemSize_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn err(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropErr_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn count(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropCount_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn minus_delta(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropMinusDelta_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn plus_delta(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropPlusDelta_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn minus_step(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropMinusStep_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn plus_step(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropPlusStep_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn minus_shift(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropMinusShift_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn plus_shift(&self) -> i32 {
let ret = unsafe { sys::cv_LineIterator_getPropPlusShift_const(self.as_raw_LineIterator()) };
ret
}
#[inline]
fn p(&self) -> core::Point {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_getPropP_const(self.as_raw_LineIterator(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
ret
}
#[inline]
fn ptmode(&self) -> bool {
let ret = unsafe { sys::cv_LineIterator_getPropPtmode_const(self.as_raw_LineIterator()) };
ret
}
/// Returns coordinates of the current pixel.
#[inline]
fn pos(&self) -> Result<core::Point> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_pos_const(self.as_raw_LineIterator(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait LineIteratorTrait: crate::imgproc::LineIteratorTraitConst {
fn as_raw_mut_LineIterator(&mut self) -> *mut c_void;
#[inline]
fn ptr(&mut self) -> *mut u8 {
let ret = unsafe { sys::cv_LineIterator_getPropPtr(self.as_raw_mut_LineIterator()) };
ret
}
#[inline]
unsafe fn set_ptr(&mut self, val: *mut u8) {
let ret = { sys::cv_LineIterator_setPropPtr_unsigned_charX(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_step(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropStep_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_elem_size(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropElemSize_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_err(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropErr_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_count(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropCount_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_minus_delta(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropMinusDelta_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_plus_delta(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropPlusDelta_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_minus_step(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropMinusStep_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_plus_step(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropPlusStep_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_minus_shift(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropMinusShift_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_plus_shift(&mut self, val: i32) {
let ret = unsafe { sys::cv_LineIterator_setPropPlusShift_int(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn set_p(&mut self, val: core::Point) {
let ret = unsafe { sys::cv_LineIterator_setPropP_Point(self.as_raw_mut_LineIterator(), val.opencv_as_extern()) };
ret
}
#[inline]
fn set_ptmode(&mut self, val: bool) {
let ret = unsafe { sys::cv_LineIterator_setPropPtmode_bool(self.as_raw_mut_LineIterator(), val) };
ret
}
#[inline]
fn init(&mut self, img: &core::Mat, bounding_area_rect: core::Rect, pt1: core::Point, pt2: core::Point, connectivity: i32, left_to_right: bool) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_init_const_MatX_Rect_Point_Point_int_bool(self.as_raw_mut_LineIterator(), img.as_raw_Mat(), bounding_area_rect.opencv_as_extern(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), connectivity, left_to_right, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns pointer to the current pixel.
#[inline]
fn try_deref_mut(&mut self) -> Result<*mut u8> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_operatorX(self.as_raw_mut_LineIterator(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Moves iterator to the next pixel on the line.
///
/// This is the prefix version (++it).
#[inline]
fn incr(&mut self) -> Result<crate::imgproc::LineIterator> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_operatorAA(self.as_raw_mut_LineIterator(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::LineIterator::opencv_from_extern(ret) };
Ok(ret)
}
}
/// Class for iterating over all pixels on a raster line segment.
///
/// The class LineIterator is used to get each pixel of a raster line connecting
/// two specified points.
/// It can be treated as a versatile implementation of the Bresenham algorithm
/// where you can stop at each pixel and do some extra processing, for
/// example, grab pixel values along the line or draw a line with an effect
/// (for example, with XOR operation).
///
/// The number of pixels along the line is stored in LineIterator::count.
/// The method LineIterator::pos returns the current position in the image:
///
/// ```ignore
/// // grabs pixels along the line (pt1, pt2)
/// // from 8-bit 3-channel image to the buffer
/// LineIterator it(img, pt1, pt2, 8);
/// LineIterator it2 = it;
/// vector<Vec3b> buf(it.count);
///
/// for(int i = 0; i < it.count; i++, ++it)
/// buf[i] = *(const Vec3b*)*it;
///
/// // alternative way of iterating through the line
/// for(int i = 0; i < it2.count; i++, ++it2)
/// {
/// Vec3b val = img.at<Vec3b>(it2.pos());
/// CV_Assert(buf[i] == val);
/// }
/// ```
///
pub struct LineIterator {
ptr: *mut c_void
}
opencv_type_boxed! { LineIterator }
impl Drop for LineIterator {
fn drop(&mut self) {
extern "C" { fn cv_LineIterator_delete(instance: *mut c_void); }
unsafe { cv_LineIterator_delete(self.as_raw_mut_LineIterator()) };
}
}
unsafe impl Send for LineIterator {}
impl crate::imgproc::LineIteratorTraitConst for LineIterator {
#[inline] fn as_raw_LineIterator(&self) -> *const c_void { self.as_raw() }
}
impl crate::imgproc::LineIteratorTrait for LineIterator {
#[inline] fn as_raw_mut_LineIterator(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl LineIterator {
/// Initializes iterator object for the given line and image.
///
/// The returned iterator can be used to traverse all pixels on a line that
/// connects the given two points.
/// The line will be clipped on the image boundaries.
///
/// ## Parameters
/// * img: Underlying image.
/// * pt1: First endpoint of the line.
/// * pt2: The other endpoint of the line.
/// * connectivity: Pixel connectivity of the iterator. Valid values are 4 (iterator can move
/// up, down, left and right) and 8 (iterator can also move diagonally).
/// * leftToRight: If true, the line is traversed from the leftmost endpoint to the rightmost
/// endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
///
/// ## C++ default parameters
/// * connectivity: 8
/// * left_to_right: false
#[inline]
pub fn new(img: &core::Mat, pt1: core::Point, pt2: core::Point, connectivity: i32, left_to_right: bool) -> Result<crate::imgproc::LineIterator> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_LineIterator_const_MatR_Point_Point_int_bool(img.as_raw_Mat(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), connectivity, left_to_right, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::LineIterator::opencv_from_extern(ret) };
Ok(ret)
}
/// ## C++ default parameters
/// * connectivity: 8
/// * left_to_right: false
#[inline]
pub fn new_1(pt1: core::Point, pt2: core::Point, connectivity: i32, left_to_right: bool) -> Result<crate::imgproc::LineIterator> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_LineIterator_Point_Point_int_bool(pt1.opencv_as_extern(), pt2.opencv_as_extern(), connectivity, left_to_right, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::LineIterator::opencv_from_extern(ret) };
Ok(ret)
}
/// ## C++ default parameters
/// * connectivity: 8
/// * left_to_right: false
#[inline]
pub fn new_2(bounding_area_size: core::Size, pt1: core::Point, pt2: core::Point, connectivity: i32, left_to_right: bool) -> Result<crate::imgproc::LineIterator> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_LineIterator_Size_Point_Point_int_bool(bounding_area_size.opencv_as_extern(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), connectivity, left_to_right, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::LineIterator::opencv_from_extern(ret) };
Ok(ret)
}
/// ## C++ default parameters
/// * connectivity: 8
/// * left_to_right: false
#[inline]
pub fn new_3(bounding_area_rect: core::Rect, pt1: core::Point, pt2: core::Point, connectivity: i32, left_to_right: bool) -> Result<crate::imgproc::LineIterator> {
return_send!(via ocvrs_return);
unsafe { sys::cv_LineIterator_LineIterator_Rect_Point_Point_int_bool(bounding_area_rect.opencv_as_extern(), pt1.opencv_as_extern(), pt2.opencv_as_extern(), connectivity, left_to_right, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::LineIterator::opencv_from_extern(ret) };
Ok(ret)
}
}
/// Line segment detector class
///
/// following the algorithm described at [Rafael12](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Rafael12) .
///
///
/// Note: Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
/// restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
pub trait LineSegmentDetectorConst: core::AlgorithmTraitConst {
fn as_raw_LineSegmentDetector(&self) -> *const c_void;
}
pub trait LineSegmentDetector: core::AlgorithmTrait + crate::imgproc::LineSegmentDetectorConst {
fn as_raw_mut_LineSegmentDetector(&mut self) -> *mut c_void;
/// Finds lines in the input image.
///
/// This is the output of the default parameters of the algorithm on the above shown image.
///
/// 
///
/// ## Parameters
/// * image: A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
/// `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
/// * lines: A vector of Vec4f elements specifying the beginning and ending point of a line. Where
/// Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
/// oriented depending on the gradient.
/// * width: Vector of widths of the regions, where the lines are found. E.g. Width of line.
/// * prec: Vector of precisions with which the lines are found.
/// * nfa: Vector containing number of false alarms in the line region, with precision of 10%. The
/// bigger the value, logarithmically better the detection.
/// - -1 corresponds to 10 mean false alarms
/// - 0 corresponds to 1 mean false alarm
/// - 1 corresponds to 0.1 mean false alarms
/// This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
///
/// ## C++ default parameters
/// * width: noArray()
/// * prec: noArray()
/// * nfa: noArray()
#[inline]
fn detect(&mut self, image: &dyn core::ToInputArray, lines: &mut dyn core::ToOutputArray, width: &mut dyn core::ToOutputArray, prec: &mut dyn core::ToOutputArray, nfa: &mut dyn core::ToOutputArray) -> Result<()> {
input_array_arg!(image);
output_array_arg!(lines);
output_array_arg!(width);
output_array_arg!(prec);
output_array_arg!(nfa);
return_send!(via ocvrs_return);
unsafe { sys::cv_LineSegmentDetector_detect_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_LineSegmentDetector(), image.as_raw__InputArray(), lines.as_raw__OutputArray(), width.as_raw__OutputArray(), prec.as_raw__OutputArray(), nfa.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws the line segments on a given image.
/// ## Parameters
/// * image: The image, where the lines will be drawn. Should be bigger or equal to the image,
/// where the lines were found.
/// * lines: A vector of the lines that needed to be drawn.
#[inline]
fn draw_segments(&mut self, image: &mut dyn core::ToInputOutputArray, lines: &dyn core::ToInputArray) -> Result<()> {
input_output_array_arg!(image);
input_array_arg!(lines);
return_send!(via ocvrs_return);
unsafe { sys::cv_LineSegmentDetector_drawSegments_const__InputOutputArrayR_const__InputArrayR(self.as_raw_mut_LineSegmentDetector(), image.as_raw__InputOutputArray(), lines.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
///
/// ## Parameters
/// * size: The size of the image, where lines1 and lines2 were found.
/// * lines1: The first group of lines that needs to be drawn. It is visualized in blue color.
/// * lines2: The second group of lines. They visualized in red color.
/// * image: Optional image, where the lines will be drawn. The image should be color(3-channel)
/// in order for lines1 and lines2 to be drawn in the above mentioned colors.
///
/// ## C++ default parameters
/// * image: noArray()
#[inline]
fn compare_segments(&mut self, size: core::Size, lines1: &dyn core::ToInputArray, lines2: &dyn core::ToInputArray, image: &mut dyn core::ToInputOutputArray) -> Result<i32> {
input_array_arg!(lines1);
input_array_arg!(lines2);
input_output_array_arg!(image);
return_send!(via ocvrs_return);
unsafe { sys::cv_LineSegmentDetector_compareSegments_const_SizeR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR(self.as_raw_mut_LineSegmentDetector(), &size, lines1.as_raw__InputArray(), lines2.as_raw__InputArray(), image.as_raw__InputOutputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait Subdiv2DTraitConst {
fn as_raw_Subdiv2D(&self) -> *const c_void;
/// Returns a list of all edges.
///
/// ## Parameters
/// * edgeList: Output vector.
///
/// The function gives each edge as a 4 numbers vector, where each two are one of the edge
/// vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
#[inline]
fn get_edge_list(&self, edge_list: &mut core::Vector<core::Vec4f>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getEdgeList_const_vectorLVec4fGR(self.as_raw_Subdiv2D(), edge_list.as_raw_mut_VectorOfVec4f(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns a list of the leading edge ID connected to each triangle.
///
/// ## Parameters
/// * leadingEdgeList: Output vector.
///
/// The function gives one edge ID for each triangle.
#[inline]
fn get_leading_edge_list(&self, leading_edge_list: &mut core::Vector<i32>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getLeadingEdgeList_const_vectorLintGR(self.as_raw_Subdiv2D(), leading_edge_list.as_raw_mut_VectorOfi32(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns a list of all triangles.
///
/// ## Parameters
/// * triangleList: Output vector.
///
/// The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
/// vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
#[inline]
fn get_triangle_list(&self, triangle_list: &mut core::Vector<core::Vec6f>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getTriangleList_const_vectorLVec6fGR(self.as_raw_Subdiv2D(), triangle_list.as_raw_mut_VectorOfVec6f(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns vertex location from vertex ID.
///
/// ## Parameters
/// * vertex: vertex ID.
/// * firstEdge: Optional. The first edge ID which is connected to the vertex.
/// ## Returns
/// vertex (x,y)
///
/// ## C++ default parameters
/// * first_edge: 0
#[inline]
fn get_vertex(&self, vertex: i32, first_edge: &mut i32) -> Result<core::Point2f> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getVertex_const_int_intX(self.as_raw_Subdiv2D(), vertex, first_edge, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns one of the edges related to the given edge.
///
/// ## Parameters
/// * edge: Subdivision edge ID.
/// * nextEdgeType: Parameter specifying which of the related edges to return.
/// The following values are possible:
/// * NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
/// * NEXT_AROUND_DST next around the edge vertex ( eDnext )
/// * PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
/// * PREV_AROUND_DST previous around the edge destination (reversed eLnext )
/// * NEXT_AROUND_LEFT next around the left facet ( eLnext )
/// * NEXT_AROUND_RIGHT next around the right facet ( eRnext )
/// * PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
/// * PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
///
/// 
///
/// ## Returns
/// edge ID related to the input edge.
#[inline]
fn get_edge(&self, edge: i32, next_edge_type: i32) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getEdge_const_int_int(self.as_raw_Subdiv2D(), edge, next_edge_type, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns next edge around the edge origin.
///
/// ## Parameters
/// * edge: Subdivision edge ID.
///
/// ## Returns
/// an integer which is next edge ID around the edge origin: eOnext on the
/// picture above if e is the input edge).
#[inline]
fn next_edge(&self, edge: i32) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_nextEdge_const_int(self.as_raw_Subdiv2D(), edge, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns another edge of the same quad-edge.
///
/// ## Parameters
/// * edge: Subdivision edge ID.
/// * rotate: Parameter specifying which of the edges of the same quad-edge as the input
/// one to return. The following values are possible:
/// * 0 - the input edge ( e on the picture below if e is the input edge)
/// * 1 - the rotated edge ( eRot )
/// * 2 - the reversed edge (reversed e (in green))
/// * 3 - the reversed rotated edge (reversed eRot (in green))
///
/// ## Returns
/// one of the edges ID of the same quad-edge as the input edge.
#[inline]
fn rotate_edge(&self, edge: i32, rotate: i32) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_rotateEdge_const_int_int(self.as_raw_Subdiv2D(), edge, rotate, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
#[inline]
fn sym_edge(&self, edge: i32) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_symEdge_const_int(self.as_raw_Subdiv2D(), edge, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the edge origin.
///
/// ## Parameters
/// * edge: Subdivision edge ID.
/// * orgpt: Output vertex location.
///
/// ## Returns
/// vertex ID.
///
/// ## C++ default parameters
/// * orgpt: 0
#[inline]
fn edge_org(&self, edge: i32, orgpt: &mut core::Point2f) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_edgeOrg_const_int_Point2fX(self.as_raw_Subdiv2D(), edge, orgpt, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the edge destination.
///
/// ## Parameters
/// * edge: Subdivision edge ID.
/// * dstpt: Output vertex location.
///
/// ## Returns
/// vertex ID.
///
/// ## C++ default parameters
/// * dstpt: 0
#[inline]
fn edge_dst(&self, edge: i32, dstpt: &mut core::Point2f) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_edgeDst_const_int_Point2fX(self.as_raw_Subdiv2D(), edge, dstpt, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait Subdiv2DTrait: crate::imgproc::Subdiv2DTraitConst {
fn as_raw_mut_Subdiv2D(&mut self) -> *mut c_void;
/// Creates a new empty Delaunay subdivision
///
/// ## Parameters
/// * rect: Rectangle that includes all of the 2D points that are to be added to the subdivision.
#[inline]
fn init_delaunay(&mut self, rect: core::Rect) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_initDelaunay_Rect(self.as_raw_mut_Subdiv2D(), rect.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Insert a single point into a Delaunay triangulation.
///
/// ## Parameters
/// * pt: Point to insert.
///
/// The function inserts a single point into a subdivision and modifies the subdivision topology
/// appropriately. If a point with the same coordinates exists already, no new point is added.
/// ## Returns
/// the ID of the point.
///
///
/// Note: If the point is outside of the triangulation specified rect a runtime error is raised.
#[inline]
fn insert(&mut self, pt: core::Point2f) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_insert_Point2f(self.as_raw_mut_Subdiv2D(), pt.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Insert multiple points into a Delaunay triangulation.
///
/// ## Parameters
/// * ptvec: Points to insert.
///
/// The function inserts a vector of points into a subdivision and modifies the subdivision topology
/// appropriately.
#[inline]
fn insert_multiple(&mut self, ptvec: &core::Vector<core::Point2f>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_insert_const_vectorLPoint2fGR(self.as_raw_mut_Subdiv2D(), ptvec.as_raw_VectorOfPoint2f(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns the location of a point within a Delaunay triangulation.
///
/// ## Parameters
/// * pt: Point to locate.
/// * edge: Output edge that the point belongs to or is located to the right of it.
/// * vertex: Optional output vertex the input point coincides with.
///
/// The function locates the input point within the subdivision and gives one of the triangle edges
/// or vertices.
///
/// ## Returns
/// an integer which specify one of the following five cases for point location:
/// * The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
/// edges of the facet.
/// * The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
/// * The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
/// vertex will contain a pointer to the vertex.
/// * The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
/// and no pointers are filled.
/// * One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
/// processing mode is selected, #PTLOC_ERROR is returned.
#[inline]
fn locate(&mut self, pt: core::Point2f, edge: &mut i32, vertex: &mut i32) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_locate_Point2f_intR_intR(self.as_raw_mut_Subdiv2D(), pt.opencv_as_extern(), edge, vertex, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Finds the subdivision vertex closest to the given point.
///
/// ## Parameters
/// * pt: Input point.
/// * nearestPt: Output subdivision vertex point.
///
/// The function is another function that locates the input point within the subdivision. It finds the
/// subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
/// of the facet containing the input point, though the facet (located using locate() ) is used as a
/// starting point.
///
/// ## Returns
/// vertex ID.
///
/// ## C++ default parameters
/// * nearest_pt: 0
#[inline]
fn find_nearest(&mut self, pt: core::Point2f, nearest_pt: &mut core::Point2f) -> Result<i32> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_findNearest_Point2f_Point2fX(self.as_raw_mut_Subdiv2D(), pt.opencv_as_extern(), nearest_pt, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
/// Returns a list of all Voronoi facets.
///
/// ## Parameters
/// * idx: Vector of vertices IDs to consider. For all vertices you can pass empty vector.
/// * facetList: Output vector of the Voronoi facets.
/// * facetCenters: Output vector of the Voronoi facets center points.
#[inline]
fn get_voronoi_facet_list(&mut self, idx: &core::Vector<i32>, facet_list: &mut core::Vector<core::Vector<core::Point2f>>, facet_centers: &mut core::Vector<core::Point2f>) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_getVoronoiFacetList_const_vectorLintGR_vectorLvectorLPoint2fGGR_vectorLPoint2fGR(self.as_raw_mut_Subdiv2D(), idx.as_raw_VectorOfi32(), facet_list.as_raw_mut_VectorOfVectorOfPoint2f(), facet_centers.as_raw_mut_VectorOfPoint2f(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub struct Subdiv2D {
ptr: *mut c_void
}
opencv_type_boxed! { Subdiv2D }
impl Drop for Subdiv2D {
fn drop(&mut self) {
extern "C" { fn cv_Subdiv2D_delete(instance: *mut c_void); }
unsafe { cv_Subdiv2D_delete(self.as_raw_mut_Subdiv2D()) };
}
}
unsafe impl Send for Subdiv2D {}
impl crate::imgproc::Subdiv2DTraitConst for Subdiv2D {
#[inline] fn as_raw_Subdiv2D(&self) -> *const c_void { self.as_raw() }
}
impl crate::imgproc::Subdiv2DTrait for Subdiv2D {
#[inline] fn as_raw_mut_Subdiv2D(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl Subdiv2D {
/// creates an empty Subdiv2D object.
/// To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
#[inline]
pub fn default() -> Result<crate::imgproc::Subdiv2D> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_Subdiv2D(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::Subdiv2D::opencv_from_extern(ret) };
Ok(ret)
}
/// creates an empty Subdiv2D object.
/// To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
///
/// ## Overloaded parameters
///
///
/// ## Parameters
/// * rect: Rectangle that includes all of the 2D points that are to be added to the subdivision.
///
/// The function creates an empty Delaunay subdivision where 2D points can be added using the function
/// insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
/// error is raised.
#[inline]
pub fn new(rect: core::Rect) -> Result<crate::imgproc::Subdiv2D> {
return_send!(via ocvrs_return);
unsafe { sys::cv_Subdiv2D_Subdiv2D_Rect(rect.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::Subdiv2D::opencv_from_extern(ret) };
Ok(ret)
}
}
/// Intelligent Scissors image segmentation
///
/// This class is used to find the path (contour) between two points
/// which can be used for image segmentation.
///
/// Usage example:
/// [usage_example_intelligent_scissors](https://github.com/opencv/opencv/blob/4.7.0/samples/cpp/tutorial_code/snippets/imgproc_segmentation.cpp#L1)
///
/// Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a>
/// algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University
/// [Mortensen95intelligentscissors](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Mortensen95intelligentscissors)
pub trait IntelligentScissorsMBTraitConst {
fn as_raw_IntelligentScissorsMB(&self) -> *const c_void;
/// Extracts optimal contour for the given target point on the image
///
///
/// Note: buildMap() must be called before this call
///
/// ## Parameters
/// * targetPt: The target point
/// * contour:[out] The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with `std::vector<Point>`)
/// * backward: Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)
///
/// ## C++ default parameters
/// * backward: false
#[inline]
fn get_contour(&self, target_pt: core::Point, contour: &mut dyn core::ToOutputArray, backward: bool) -> Result<()> {
output_array_arg!(contour);
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_getContour_const_const_PointR_const__OutputArrayR_bool(self.as_raw_IntelligentScissorsMB(), &target_pt, contour.as_raw__OutputArray(), backward, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
pub trait IntelligentScissorsMBTrait: crate::imgproc::IntelligentScissorsMBTraitConst {
fn as_raw_mut_IntelligentScissorsMB(&mut self) -> *mut c_void;
/// Specify weights of feature functions
///
/// Consider keeping weights normalized (sum of weights equals to 1.0)
/// Discrete dynamic programming (DP) goal is minimization of costs between pixels.
///
/// ## Parameters
/// * weight_non_edge: Specify cost of non-edge pixels (default: 0.43f)
/// * weight_gradient_direction: Specify cost of gradient direction function (default: 0.43f)
/// * weight_gradient_magnitude: Specify cost of gradient magnitude function (default: 0.14f)
#[inline]
fn set_weights(&mut self, weight_non_edge: f32, weight_gradient_direction: f32, weight_gradient_magnitude: f32) -> Result<crate::imgproc::IntelligentScissorsMB> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_setWeights_float_float_float(self.as_raw_mut_IntelligentScissorsMB(), weight_non_edge, weight_gradient_direction, weight_gradient_magnitude, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Specify gradient magnitude max value threshold
///
/// Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
/// Otherwize pixels with `gradient magnitude >= threshold` have zero cost.
///
///
/// Note: Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
///
/// ## Parameters
/// * gradient_magnitude_threshold_max: Specify gradient magnitude max value threshold (default: 0, disabled)
///
/// ## C++ default parameters
/// * gradient_magnitude_threshold_max: 0.0f
#[inline]
fn set_gradient_magnitude_max_limit(&mut self, gradient_magnitude_threshold_max: f32) -> Result<crate::imgproc::IntelligentScissorsMB> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_setGradientMagnitudeMaxLimit_float(self.as_raw_mut_IntelligentScissorsMB(), gradient_magnitude_threshold_max, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
///
/// This feature extractor is used by default according to article.
///
/// Implementation has additional filtering for regions with low-amplitude noise.
/// This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
///
///
/// Note: Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
///
///
/// Note: Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
///
/// ## Parameters
/// * gradient_magnitude_min_value: Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)
///
/// ## C++ default parameters
/// * gradient_magnitude_min_value: 0.0f
#[inline]
fn set_edge_feature_zero_crossing_parameters(&mut self, gradient_magnitude_min_value: f32) -> Result<crate::imgproc::IntelligentScissorsMB> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_setEdgeFeatureZeroCrossingParameters_float(self.as_raw_mut_IntelligentScissorsMB(), gradient_magnitude_min_value, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Switch edge feature extractor to use Canny edge detector
///
///
/// Note: "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
/// ## See also
/// Canny
///
/// ## C++ default parameters
/// * aperture_size: 3
/// * l2gradient: false
#[inline]
fn set_edge_feature_canny_parameters(&mut self, threshold1: f64, threshold2: f64, aperture_size: i32, l2gradient: bool) -> Result<crate::imgproc::IntelligentScissorsMB> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_setEdgeFeatureCannyParameters_double_double_int_bool(self.as_raw_mut_IntelligentScissorsMB(), threshold1, threshold2, aperture_size, l2gradient, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Specify input image and extract image features
///
/// ## Parameters
/// * image: input image. Type is #CV_8UC1 / #CV_8UC3
#[inline]
fn apply_image(&mut self, image: &dyn core::ToInputArray) -> Result<crate::imgproc::IntelligentScissorsMB> {
input_array_arg!(image);
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_applyImage_const__InputArrayR(self.as_raw_mut_IntelligentScissorsMB(), image.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Specify custom features of input image
///
/// Customized advanced variant of applyImage() call.
///
/// ## Parameters
/// * non_edge: Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are `{0, 1}`.
/// * gradient_direction: Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: `x^2 + y^2 == 1`
/// * gradient_magnitude: Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range `[0, 1]`.
/// * image: **Optional parameter**. Must be specified if subset of features is specified (non-specified features are calculated internally)
///
/// ## C++ default parameters
/// * image: noArray()
#[inline]
fn apply_image_features(&mut self, non_edge: &dyn core::ToInputArray, gradient_direction: &dyn core::ToInputArray, gradient_magnitude: &dyn core::ToInputArray, image: &dyn core::ToInputArray) -> Result<crate::imgproc::IntelligentScissorsMB> {
input_array_arg!(non_edge);
input_array_arg!(gradient_direction);
input_array_arg!(gradient_magnitude);
input_array_arg!(image);
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_applyImageFeatures_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(self.as_raw_mut_IntelligentScissorsMB(), non_edge.as_raw__InputArray(), gradient_direction.as_raw__InputArray(), gradient_magnitude.as_raw__InputArray(), image.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
/// Prepares a map of optimal paths for the given source point on the image
///
///
/// Note: applyImage() / applyImageFeatures() must be called before this call
///
/// ## Parameters
/// * sourcePt: The source point used to find the paths
#[inline]
fn build_map(&mut self, source_pt: core::Point) -> Result<()> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_buildMap_const_PointR(self.as_raw_mut_IntelligentScissorsMB(), &source_pt, ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
Ok(ret)
}
}
/// Intelligent Scissors image segmentation
///
/// This class is used to find the path (contour) between two points
/// which can be used for image segmentation.
///
/// Usage example:
/// [usage_example_intelligent_scissors](https://github.com/opencv/opencv/blob/4.7.0/samples/cpp/tutorial_code/snippets/imgproc_segmentation.cpp#L1)
///
/// Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a>
/// algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University
/// [Mortensen95intelligentscissors](https://docs.opencv.org/4.7.0/d0/de3/citelist.html#CITEREF_Mortensen95intelligentscissors)
pub struct IntelligentScissorsMB {
ptr: *mut c_void
}
opencv_type_boxed! { IntelligentScissorsMB }
impl Drop for IntelligentScissorsMB {
fn drop(&mut self) {
extern "C" { fn cv_IntelligentScissorsMB_delete(instance: *mut c_void); }
unsafe { cv_IntelligentScissorsMB_delete(self.as_raw_mut_IntelligentScissorsMB()) };
}
}
unsafe impl Send for IntelligentScissorsMB {}
impl crate::imgproc::IntelligentScissorsMBTraitConst for IntelligentScissorsMB {
#[inline] fn as_raw_IntelligentScissorsMB(&self) -> *const c_void { self.as_raw() }
}
impl crate::imgproc::IntelligentScissorsMBTrait for IntelligentScissorsMB {
#[inline] fn as_raw_mut_IntelligentScissorsMB(&mut self) -> *mut c_void { self.as_raw_mut() }
}
impl IntelligentScissorsMB {
#[inline]
pub fn default() -> Result<crate::imgproc::IntelligentScissorsMB> {
return_send!(via ocvrs_return);
unsafe { sys::cv_segmentation_IntelligentScissorsMB_IntelligentScissorsMB(ocvrs_return.as_mut_ptr()) };
return_receive!(unsafe ocvrs_return => ret);
let ret = ret.into_result()?;
let ret = unsafe { crate::imgproc::IntelligentScissorsMB::opencv_from_extern(ret) };
Ok(ret)
}
}