1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # ArUco Marker Detection
//! This module is dedicated to square fiducial markers (also known as Augmented Reality Markers)
//! These markers are useful for easy, fast and robust camera pose estimation.ç
//! 
//! The main functionalities are:
//! - Detection of markers in an image
//! - Pose estimation from a single marker or from a board/set of markers
//! - Detection of ChArUco board for high subpixel accuracy
//! - Camera calibration from both, ArUco boards and ChArUco boards.
//! - Detection of ChArUco diamond markers
//! The samples directory includes easy examples of how to use the module.
//! 
//! The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado [Aruco2014](https://docs.opencv.org/4.6.0/d0/de3/citelist.html#CITEREF_Aruco2014).
//! 
//! Markers can also be detected based on the AprilTag 2 [wang2016iros](https://docs.opencv.org/4.6.0/d0/de3/citelist.html#CITEREF_wang2016iros) fiducial detection method.
//! ## See also
//! S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. 2014.
//! "Automatic generation and detection of highly reliable fiducial markers under occlusion".
//! Pattern Recogn. 47, 6 (June 2014), 2280-2292. DOI=10.1016/j.patcog.2014.01.005
//! 
//! http://www.uco.es/investiga/grupos/ava/node/26
//! 
//! This module has been originally developed by Sergio Garrido-Jurado as a project
//! for Google Summer of Code 2015 (GSoC 15).
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::DictionaryTraitConst, super::DictionaryTrait, super::DetectorParametersTraitConst, super::DetectorParametersTrait, super::EstimateParametersTraitConst, super::EstimateParametersTrait, super::BoardTraitConst, super::BoardTrait, super::GridBoardTraitConst, super::GridBoardTrait, super::CharucoBoardTraitConst, super::CharucoBoardTrait };
}

/// The marker coordinate system is centered on the middle of the marker.
/// The coordinates of the four corners (CCW order) of the marker in its own coordinate system are:
/// (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),
/// (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0).
/// 
/// These pattern points define this coordinate system:
/// ![Image with axes drawn](https://docs.opencv.org/4.6.0/singlemarkersaxes.jpg)
pub const CCW_center: i32 = 0;
/// Tag and corners detection based on the AprilTag 2 approach [wang2016iros](https://docs.opencv.org/4.6.0/d0/de3/citelist.html#CITEREF_wang2016iros)
pub const CORNER_REFINE_APRILTAG: i32 = 3;
/// ArUco approach and refine the corners locations using the contour-points line fitting
pub const CORNER_REFINE_CONTOUR: i32 = 2;
/// Tag and corners detection based on the ArUco approach
pub const CORNER_REFINE_NONE: i32 = 0;
/// ArUco approach and refine the corners locations using corner subpixel accuracy
pub const CORNER_REFINE_SUBPIX: i32 = 1;
/// The marker coordinate system is centered on the top-left corner of the marker.
/// The coordinates of the four corners (CW order) of the marker in its own coordinate system are:
/// (0, 0, 0), (markerLength, 0, 0),
/// (markerLength, markerLength, 0), (0, markerLength, 0).
/// 
/// These pattern points define this coordinate system:
/// ![Image with axes drawn](https://docs.opencv.org/4.6.0/singlemarkersaxes2.jpg)
pub const CW_top_left_corner: i32 = 1;
/// 4x4 bits, minimum hamming distance between any two codes = 3, 100 codes
pub const DICT_4X4_100: i32 = 1;
/// 4x4 bits, minimum hamming distance between any two codes = 2, 1000 codes
pub const DICT_4X4_1000: i32 = 3;
/// 4x4 bits, minimum hamming distance between any two codes = 3, 250 codes
pub const DICT_4X4_250: i32 = 2;
/// 4x4 bits, minimum hamming distance between any two codes = 4, 50 codes
pub const DICT_4X4_50: i32 = 0;
/// 5x5 bits, minimum hamming distance between any two codes = 7, 100 codes
pub const DICT_5X5_100: i32 = 5;
/// 5x5 bits, minimum hamming distance between any two codes = 5, 1000 codes
pub const DICT_5X5_1000: i32 = 7;
/// 5x5 bits, minimum hamming distance between any two codes = 6, 250 codes
pub const DICT_5X5_250: i32 = 6;
/// 5x5 bits, minimum hamming distance between any two codes = 8, 50 codes
pub const DICT_5X5_50: i32 = 4;
/// 6x6 bits, minimum hamming distance between any two codes = 12, 100 codes
pub const DICT_6X6_100: i32 = 9;
/// 6x6 bits, minimum hamming distance between any two codes = 9, 1000 codes
pub const DICT_6X6_1000: i32 = 11;
/// 6x6 bits, minimum hamming distance between any two codes = 11, 250 codes
pub const DICT_6X6_250: i32 = 10;
/// 6x6 bits, minimum hamming distance between any two codes = 13, 50 codes
pub const DICT_6X6_50: i32 = 8;
/// 7x7 bits, minimum hamming distance between any two codes = 18, 100 codes
pub const DICT_7X7_100: i32 = 13;
/// 7x7 bits, minimum hamming distance between any two codes = 14, 1000 codes
pub const DICT_7X7_1000: i32 = 15;
/// 7x7 bits, minimum hamming distance between any two codes = 17, 250 codes
pub const DICT_7X7_250: i32 = 14;
/// 7x7 bits, minimum hamming distance between any two codes = 19, 50 codes
pub const DICT_7X7_50: i32 = 12;
/// 4x4 bits, minimum hamming distance between any two codes = 5, 30 codes
pub const DICT_APRILTAG_16h5: i32 = 17;
/// 5x5 bits, minimum hamming distance between any two codes = 9, 35 codes
pub const DICT_APRILTAG_25h9: i32 = 18;
/// 6x6 bits, minimum hamming distance between any two codes = 10, 2320 codes
pub const DICT_APRILTAG_36h10: i32 = 19;
/// 6x6 bits, minimum hamming distance between any two codes = 11, 587 codes
pub const DICT_APRILTAG_36h11: i32 = 20;
/// 6x6 bits, minimum hamming distance between any two codes = 3, 1024 codes
pub const DICT_ARUCO_ORIGINAL: i32 = 16;
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum CornerRefineMethod {
	/// Tag and corners detection based on the ArUco approach
	CORNER_REFINE_NONE = 0,
	/// ArUco approach and refine the corners locations using corner subpixel accuracy
	CORNER_REFINE_SUBPIX = 1,
	/// ArUco approach and refine the corners locations using the contour-points line fitting
	CORNER_REFINE_CONTOUR = 2,
	/// Tag and corners detection based on the AprilTag 2 approach [wang2016iros](https://docs.opencv.org/4.6.0/d0/de3/citelist.html#CITEREF_wang2016iros)
	CORNER_REFINE_APRILTAG = 3,
}

opencv_type_enum! { crate::aruco::CornerRefineMethod }

/// Predefined markers dictionaries/sets
/// Each dictionary indicates the number of bits and the number of markers contained
/// - DICT_ARUCO_ORIGINAL: standard ArUco Library Markers. 1024 markers, 5x5 bits, 0 minimum
///                        distance
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum PREDEFINED_DICTIONARY_NAME {
	/// 4x4 bits, minimum hamming distance between any two codes = 4, 50 codes
	DICT_4X4_50 = 0,
	/// 4x4 bits, minimum hamming distance between any two codes = 3, 100 codes
	DICT_4X4_100 = 1,
	/// 4x4 bits, minimum hamming distance between any two codes = 3, 250 codes
	DICT_4X4_250 = 2,
	/// 4x4 bits, minimum hamming distance between any two codes = 2, 1000 codes
	DICT_4X4_1000 = 3,
	/// 5x5 bits, minimum hamming distance between any two codes = 8, 50 codes
	DICT_5X5_50 = 4,
	/// 5x5 bits, minimum hamming distance between any two codes = 7, 100 codes
	DICT_5X5_100 = 5,
	/// 5x5 bits, minimum hamming distance between any two codes = 6, 250 codes
	DICT_5X5_250 = 6,
	/// 5x5 bits, minimum hamming distance between any two codes = 5, 1000 codes
	DICT_5X5_1000 = 7,
	/// 6x6 bits, minimum hamming distance between any two codes = 13, 50 codes
	DICT_6X6_50 = 8,
	/// 6x6 bits, minimum hamming distance between any two codes = 12, 100 codes
	DICT_6X6_100 = 9,
	/// 6x6 bits, minimum hamming distance between any two codes = 11, 250 codes
	DICT_6X6_250 = 10,
	/// 6x6 bits, minimum hamming distance between any two codes = 9, 1000 codes
	DICT_6X6_1000 = 11,
	/// 7x7 bits, minimum hamming distance between any two codes = 19, 50 codes
	DICT_7X7_50 = 12,
	/// 7x7 bits, minimum hamming distance between any two codes = 18, 100 codes
	DICT_7X7_100 = 13,
	/// 7x7 bits, minimum hamming distance between any two codes = 17, 250 codes
	DICT_7X7_250 = 14,
	/// 7x7 bits, minimum hamming distance between any two codes = 14, 1000 codes
	DICT_7X7_1000 = 15,
	/// 6x6 bits, minimum hamming distance between any two codes = 3, 1024 codes
	DICT_ARUCO_ORIGINAL = 16,
	/// 4x4 bits, minimum hamming distance between any two codes = 5, 30 codes
	DICT_APRILTAG_16h5 = 17,
	/// 5x5 bits, minimum hamming distance between any two codes = 9, 35 codes
	DICT_APRILTAG_25h9 = 18,
	/// 6x6 bits, minimum hamming distance between any two codes = 10, 2320 codes
	DICT_APRILTAG_36h10 = 19,
	/// 6x6 bits, minimum hamming distance between any two codes = 11, 587 codes
	DICT_APRILTAG_36h11 = 20,
}

opencv_type_enum! { crate::aruco::PREDEFINED_DICTIONARY_NAME }

/// 
/// rvec/tvec define the right handed coordinate system of the marker.
/// PatternPos defines center this system and axes direction.
/// Axis X (red color) - first coordinate, axis Y (green color) - second coordinate,
/// axis Z (blue color) - third coordinate.
/// ## See also
/// estimatePoseSingleMarkers(), @ref tutorial_aruco_detection
#[repr(C)]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum PatternPos {
	/// The marker coordinate system is centered on the middle of the marker.
	/// The coordinates of the four corners (CCW order) of the marker in its own coordinate system are:
	/// (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),
	/// (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0).
	/// 
	/// These pattern points define this coordinate system:
	/// ![Image with axes drawn](https://docs.opencv.org/4.6.0/singlemarkersaxes.jpg)
	CCW_center = 0,
	/// The marker coordinate system is centered on the top-left corner of the marker.
	/// The coordinates of the four corners (CW order) of the marker in its own coordinate system are:
	/// (0, 0, 0), (markerLength, 0, 0),
	/// (markerLength, markerLength, 0), (0, markerLength, 0).
	/// 
	/// These pattern points define this coordinate system:
	/// ![Image with axes drawn](https://docs.opencv.org/4.6.0/singlemarkersaxes2.jpg)
	CW_top_left_corner = 1,
}

opencv_type_enum! { crate::aruco::PatternPos }

/// Calibrate a camera using aruco markers
/// 
/// ## Parameters
/// * corners: vector of detected marker corners in all frames.
/// The corners should have the same format returned by detectMarkers (see #detectMarkers).
/// * ids: list of identifiers for each marker in corners
/// * counter: number of markers in each frame so that corners and ids can be split
/// * board: Marker Board layout
/// * imageSize: Size of the image used only to initialize the intrinsic camera matrix.
/// * cameraMatrix: Output 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
/// and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
/// initialized before calling the function.
/// * distCoeffs: Output vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * rvecs: Output vector of rotation vectors (see Rodrigues ) estimated for each board view
/// (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
/// k-th translation vector (see the next output parameter description) brings the board pattern
/// from the model coordinate space (in which object points are specified) to the world coordinate
/// space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1).
/// * tvecs: Output vector of translation vectors estimated for each pattern view.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
/// Order of deviations values:
/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0As%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
/// Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F1%2C%20T%5F1%2C%20%5Cdotsc%20%2C%20R%5FM%2C%20T%5FM%29) where M is number of pattern views,
/// ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
/// * perViewErrors: Output vector of average re-projection errors estimated for each pattern view.
/// * flags: flags Different flags  for the calibration process (see #calibrateCamera for details).
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// This function calibrates a camera using an Aruco Board. The function receives a list of
/// detected markers from several views of the Board. The process is similar to the chessboard
/// calibration in calibrateCamera(). The function returns the final re-projection error.
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
#[inline]
pub fn calibrate_camera_aruco_extended(corners: &dyn core::ToInputArray, ids: &dyn core::ToInputArray, counter: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::Board>, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, std_deviations_intrinsics: &mut dyn core::ToOutputArray, std_deviations_extrinsics: &mut dyn core::ToOutputArray, per_view_errors: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(corners);
	input_array_arg!(ids);
	input_array_arg!(counter);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(std_deviations_intrinsics);
	output_array_arg!(std_deviations_extrinsics);
	output_array_arg!(per_view_errors);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_calibrateCameraAruco_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_Ptr_Board_R_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(corners.as_raw__InputArray(), ids.as_raw__InputArray(), counter.as_raw__InputArray(), board.as_raw_PtrOfBoard(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// It's the same function as #calibrateCameraAruco but without calibration error estimation.
/// 
/// ## C++ default parameters
/// * rvecs: noArray()
/// * tvecs: noArray()
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
#[inline]
pub fn calibrate_camera_aruco(corners: &dyn core::ToInputArray, ids: &dyn core::ToInputArray, counter: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::Board>, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(corners);
	input_array_arg!(ids);
	input_array_arg!(counter);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_calibrateCameraAruco_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_Ptr_Board_R_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(corners.as_raw__InputArray(), ids.as_raw__InputArray(), counter.as_raw__InputArray(), board.as_raw_PtrOfBoard(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Calibrate a camera using Charuco corners
/// 
/// ## Parameters
/// * charucoCorners: vector of detected charuco corners per frame
/// * charucoIds: list of identifiers for each corner in charucoCorners per frame
/// * board: Marker Board layout
/// * imageSize: input image size
/// * cameraMatrix: Output 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D) . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
/// and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
/// initialized before calling the function.
/// * distCoeffs: Output vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * rvecs: Output vector of rotation vectors (see Rodrigues ) estimated for each board view
/// (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
/// k-th translation vector (see the next output parameter description) brings the board pattern
/// from the model coordinate space (in which object points are specified) to the world coordinate
/// space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1).
/// * tvecs: Output vector of translation vectors estimated for each pattern view.
/// * stdDeviationsIntrinsics: Output vector of standard deviations estimated for intrinsic parameters.
/// Order of deviations values:
/// ![inline formula](https://latex.codecogs.com/png.latex?%28f%5Fx%2C%20f%5Fy%2C%20c%5Fx%2C%20c%5Fy%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%2C%20k%5F3%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%20%2C%20s%5F1%2C%20s%5F2%2C%20s%5F3%2C%0As%5F4%2C%20%5Ctau%5Fx%2C%20%5Ctau%5Fy%29) If one of parameters is not estimated, it's deviation is equals to zero.
/// * stdDeviationsExtrinsics: Output vector of standard deviations estimated for extrinsic parameters.
/// Order of deviations values: ![inline formula](https://latex.codecogs.com/png.latex?%28R%5F1%2C%20T%5F1%2C%20%5Cdotsc%20%2C%20R%5FM%2C%20T%5FM%29) where M is number of pattern views,
/// ![inline formula](https://latex.codecogs.com/png.latex?R%5Fi%2C%20T%5Fi) are concatenated 1x3 vectors.
/// * perViewErrors: Output vector of average re-projection errors estimated for each pattern view.
/// * flags: flags Different flags  for the calibration process (see #calibrateCamera for details).
/// * criteria: Termination criteria for the iterative optimization algorithm.
/// 
/// This function calibrates a camera using a set of corners of a  Charuco Board. The function
/// receives a list of detected corners and its identifiers from several views of the Board.
/// The function returns the final re-projection error.
/// 
/// ## C++ default parameters
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
#[inline]
pub fn calibrate_camera_charuco_extended(charuco_corners: &dyn core::ToInputArray, charuco_ids: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::CharucoBoard>, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, std_deviations_intrinsics: &mut dyn core::ToOutputArray, std_deviations_extrinsics: &mut dyn core::ToOutputArray, per_view_errors: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(charuco_corners);
	input_array_arg!(charuco_ids);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(std_deviations_intrinsics);
	output_array_arg!(std_deviations_extrinsics);
	output_array_arg!(per_view_errors);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_calibrateCameraCharuco_const__InputArrayR_const__InputArrayR_const_Ptr_CharucoBoard_R_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(charuco_corners.as_raw__InputArray(), charuco_ids.as_raw__InputArray(), board.as_raw_PtrOfCharucoBoard(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), std_deviations_intrinsics.as_raw__OutputArray(), std_deviations_extrinsics.as_raw__OutputArray(), per_view_errors.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// It's the same function as #calibrateCameraCharuco but without calibration error estimation.
/// 
/// ## C++ default parameters
/// * rvecs: noArray()
/// * tvecs: noArray()
/// * flags: 0
/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
#[inline]
pub fn calibrate_camera_charuco(charuco_corners: &dyn core::ToInputArray, charuco_ids: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::CharucoBoard>, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
	input_array_arg!(charuco_corners);
	input_array_arg!(charuco_ids);
	input_output_array_arg!(camera_matrix);
	input_output_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_calibrateCameraCharuco_const__InputArrayR_const__InputArrayR_const_Ptr_CharucoBoard_R_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(charuco_corners.as_raw__InputArray(), charuco_ids.as_raw__InputArray(), board.as_raw_PtrOfCharucoBoard(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Detect ChArUco Diamond markers
/// 
/// ## Parameters
/// * image: input image necessary for corner subpixel.
/// * markerCorners: list of detected marker corners from detectMarkers function.
/// * markerIds: list of marker ids in markerCorners.
/// * squareMarkerLengthRate: rate between square and marker length:
/// squareMarkerLengthRate = squareLength/markerLength. The real units are not necessary.
/// * diamondCorners: output list of detected diamond corners (4 corners per diamond). The order
/// is the same than in marker corners: top left, top right, bottom right and bottom left. Similar
/// format than the corners returned by detectMarkers (e.g std::vector<std::vector<cv::Point2f> > ).
/// * diamondIds: ids of the diamonds in diamondCorners. The id of each diamond is in fact of
/// type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the
/// diamond.
/// * cameraMatrix: Optional camera calibration matrix.
/// * distCoeffs: Optional camera distortion coefficients.
/// * dictionary: dictionary of markers indicating the type of markers.
/// 
/// This function detects Diamond markers from the previous detected ArUco markers. The diamonds
/// are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters
/// are provided, the diamond search is based on reprojection. If not, diamond search is based on
/// homography. Homography is faster than reprojection but can slightly reduce the detection rate.
/// 
/// ## C++ default parameters
/// * camera_matrix: noArray()
/// * dist_coeffs: noArray()
/// * dictionary: cv::aruco::getPredefinedDictionary(cv::aruco::PREDEFINED_DICTIONARY_NAME::DICT_4X4_50)
#[inline]
pub fn detect_charuco_diamond(image: &dyn core::ToInputArray, marker_corners: &dyn core::ToInputArray, marker_ids: &dyn core::ToInputArray, square_marker_length_rate: f32, diamond_corners: &mut dyn core::ToOutputArray, diamond_ids: &mut dyn core::ToOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, mut dictionary: core::Ptr<crate::aruco::Dictionary>) -> Result<()> {
	input_array_arg!(image);
	input_array_arg!(marker_corners);
	input_array_arg!(marker_ids);
	output_array_arg!(diamond_corners);
	output_array_arg!(diamond_ids);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_detectCharucoDiamond_const__InputArrayR_const__InputArrayR_const__InputArrayR_float_const__OutputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_Ptr_Dictionary_(image.as_raw__InputArray(), marker_corners.as_raw__InputArray(), marker_ids.as_raw__InputArray(), square_marker_length_rate, diamond_corners.as_raw__OutputArray(), diamond_ids.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), dictionary.as_raw_mut_PtrOfDictionary(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Basic marker detection
/// 
/// ## Parameters
/// * image: input image
/// * dictionary: indicates the type of markers that will be searched
/// * corners: vector of detected marker corners. For each marker, its four corners
/// are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
/// the dimensions of this array is Nx4. The order of the corners is clockwise.
/// * ids: vector of identifiers of the detected markers. The identifier is of type int
/// (e.g. std::vector<int>). For N detected markers, the size of ids is also N.
/// The identifiers have the same order than the markers in the imgPoints array.
/// * parameters: marker detection parameters
/// * rejectedImgPoints: contains the imgPoints of those squares whose inner code has not a
/// correct codification. Useful for debugging purposes.
/// 
/// Performs marker detection in the input image. Only markers included in the specific dictionary
/// are searched. For each detected marker, it returns the 2D position of its corner in the image
/// and its corresponding identifier.
/// Note that this function does not perform pose estimation.
/// 
/// Note: The function does not correct lens distortion or takes it into account. It's recommended to undistort
/// input image with corresponging camera model, if camera parameters are known
/// ## See also
/// undistort, estimatePoseSingleMarkers,  estimatePoseBoard
/// 
/// ## C++ default parameters
/// * parameters: DetectorParameters::create()
/// * rejected_img_points: noArray()
#[inline]
pub fn detect_markers(image: &dyn core::ToInputArray, dictionary: &core::Ptr<crate::aruco::Dictionary>, corners: &mut dyn core::ToOutputArray, ids: &mut dyn core::ToOutputArray, parameters: &core::Ptr<crate::aruco::DetectorParameters>, rejected_img_points: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(image);
	output_array_arg!(corners);
	output_array_arg!(ids);
	output_array_arg!(rejected_img_points);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_detectMarkers_const__InputArrayR_const_Ptr_Dictionary_R_const__OutputArrayR_const__OutputArrayR_const_Ptr_DetectorParameters_R_const__OutputArrayR(image.as_raw__InputArray(), dictionary.as_raw_PtrOfDictionary(), corners.as_raw__OutputArray(), ids.as_raw__OutputArray(), parameters.as_raw_PtrOfDetectorParameters(), rejected_img_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draw a ChArUco Diamond marker
/// 
/// ## Parameters
/// * dictionary: dictionary of markers indicating the type of markers.
/// * ids: list of 4 ids for each ArUco marker in the ChArUco marker.
/// * squareLength: size of the chessboard squares in pixels.
/// * markerLength: size of the markers in pixels.
/// * img: output image with the marker. The size of this image will be
/// 3*squareLength + 2*marginSize,.
/// * marginSize: minimum margins (in pixels) of the marker in the output image
/// * borderBits: width of the marker borders.
/// 
/// This function return the image of a ChArUco marker, ready to be printed.
/// 
/// ## C++ default parameters
/// * margin_size: 0
/// * border_bits: 1
#[inline]
pub fn draw_charuco_diamond(dictionary: &core::Ptr<crate::aruco::Dictionary>, ids: core::Vec4i, square_length: i32, marker_length: i32, img: &mut dyn core::ToOutputArray, margin_size: i32, border_bits: i32) -> Result<()> {
	output_array_arg!(img);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawCharucoDiamond_const_Ptr_Dictionary_R_Vec4i_int_int_const__OutputArrayR_int_int(dictionary.as_raw_PtrOfDictionary(), ids.opencv_as_extern(), square_length, marker_length, img.as_raw__OutputArray(), margin_size, border_bits, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draws a set of Charuco corners
/// ## Parameters
/// * image: input/output image. It must have 1 or 3 channels. The number of channels is not
/// altered.
/// * charucoCorners: vector of detected charuco corners
/// * charucoIds: list of identifiers for each corner in charucoCorners
/// * cornerColor: color of the square surrounding each corner
/// 
/// This function draws a set of detected Charuco corners. If identifiers vector is provided, it also
/// draws the id of each corner.
/// 
/// ## C++ default parameters
/// * charuco_ids: noArray()
/// * corner_color: Scalar(255,0,0)
#[inline]
pub fn draw_detected_corners_charuco(image: &mut dyn core::ToInputOutputArray, charuco_corners: &dyn core::ToInputArray, charuco_ids: &dyn core::ToInputArray, corner_color: core::Scalar) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(charuco_corners);
	input_array_arg!(charuco_ids);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawDetectedCornersCharuco_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_Scalar(image.as_raw__InputOutputArray(), charuco_corners.as_raw__InputArray(), charuco_ids.as_raw__InputArray(), corner_color.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draw a set of detected ChArUco Diamond markers
/// 
/// ## Parameters
/// * image: input/output image. It must have 1 or 3 channels. The number of channels is not
/// altered.
/// * diamondCorners: positions of diamond corners in the same format returned by
/// detectCharucoDiamond(). (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
/// the dimensions of this array should be Nx4. The order of the corners should be clockwise.
/// * diamondIds: vector of identifiers for diamonds in diamondCorners, in the same format
/// returned by detectCharucoDiamond() (e.g. std::vector<Vec4i>).
/// Optional, if not provided, ids are not painted.
/// * borderColor: color of marker borders. Rest of colors (text color and first corner color)
/// are calculated based on this one.
/// 
/// Given an array of detected diamonds, this functions draws them in the image. The marker borders
/// are painted and the markers identifiers if provided.
/// Useful for debugging purposes.
/// 
/// ## C++ default parameters
/// * diamond_ids: noArray()
/// * border_color: Scalar(0,0,255)
#[inline]
pub fn draw_detected_diamonds(image: &mut dyn core::ToInputOutputArray, diamond_corners: &dyn core::ToInputArray, diamond_ids: &dyn core::ToInputArray, border_color: core::Scalar) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(diamond_corners);
	input_array_arg!(diamond_ids);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawDetectedDiamonds_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_Scalar(image.as_raw__InputOutputArray(), diamond_corners.as_raw__InputArray(), diamond_ids.as_raw__InputArray(), border_color.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draw detected markers in image
/// 
/// ## Parameters
/// * image: input/output image. It must have 1 or 3 channels. The number of channels is not
/// altered.
/// * corners: positions of marker corners on input image.
/// (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the dimensions of
/// this array should be Nx4. The order of the corners should be clockwise.
/// * ids: vector of identifiers for markers in markersCorners .
/// Optional, if not provided, ids are not painted.
/// * borderColor: color of marker borders. Rest of colors (text color and first corner color)
/// are calculated based on this one to improve visualization.
/// 
/// Given an array of detected marker corners and its corresponding ids, this functions draws
/// the markers in the image. The marker borders are painted and the markers identifiers if provided.
/// Useful for debugging purposes.
/// 
/// ## C++ default parameters
/// * ids: noArray()
/// * border_color: Scalar(0,255,0)
#[inline]
pub fn draw_detected_markers(image: &mut dyn core::ToInputOutputArray, corners: &dyn core::ToInputArray, ids: &dyn core::ToInputArray, border_color: core::Scalar) -> Result<()> {
	input_output_array_arg!(image);
	input_array_arg!(corners);
	input_array_arg!(ids);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawDetectedMarkers_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_Scalar(image.as_raw__InputOutputArray(), corners.as_raw__InputArray(), ids.as_raw__InputArray(), border_color.opencv_as_extern(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draw a canonical marker image
/// 
/// ## Parameters
/// * dictionary: dictionary of markers indicating the type of markers
/// * id: identifier of the marker that will be returned. It has to be a valid id
/// in the specified dictionary.
/// * sidePixels: size of the image in pixels
/// * img: output image with the marker
/// * borderBits: width of the marker border.
/// 
/// This function returns a marker image in its canonical form (i.e. ready to be printed)
/// 
/// ## C++ default parameters
/// * border_bits: 1
#[inline]
pub fn draw_marker(dictionary: &core::Ptr<crate::aruco::Dictionary>, id: i32, side_pixels: i32, img: &mut dyn core::ToOutputArray, border_bits: i32) -> Result<()> {
	output_array_arg!(img);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawMarker_const_Ptr_Dictionary_R_int_int_const__OutputArrayR_int(dictionary.as_raw_PtrOfDictionary(), id, side_pixels, img.as_raw__OutputArray(), border_bits, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Draw a planar board
/// ## See also
/// _drawPlanarBoardImpl
/// 
/// ## Parameters
/// * board: layout of the board that will be drawn. The board should be planar,
/// z coordinate is ignored
/// * outSize: size of the output image in pixels.
/// * img: output image with the board. The size of this image will be outSize
/// and the board will be on the center, keeping the board proportions.
/// * marginSize: minimum margins (in pixels) of the board in the output image
/// * borderBits: width of the marker borders.
/// 
/// This function return the image of a planar board, ready to be printed. It assumes
/// the Board layout specified is planar by ignoring the z coordinates of the object points.
/// 
/// ## C++ default parameters
/// * margin_size: 0
/// * border_bits: 1
#[inline]
pub fn draw_planar_board(board: &core::Ptr<crate::aruco::Board>, out_size: core::Size, img: &mut dyn core::ToOutputArray, margin_size: i32, border_bits: i32) -> Result<()> {
	output_array_arg!(img);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_drawPlanarBoard_const_Ptr_Board_R_Size_const__OutputArrayR_int_int(board.as_raw_PtrOfBoard(), out_size.opencv_as_extern(), img.as_raw__OutputArray(), margin_size, border_bits, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Pose estimation for a board of markers
/// 
/// ## Parameters
/// * corners: vector of already detected markers corners. For each marker, its four corners
/// are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the
/// dimensions of this array should be Nx4. The order of the corners should be clockwise.
/// * ids: list of identifiers for each marker in corners
/// * board: layout of markers in the board. The layout is composed by the marker identifiers
/// and the positions of each marker corner in the board reference system.
/// * cameraMatrix: input 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D)
/// * distCoeffs: vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * rvec: Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
/// (see cv::Rodrigues). Used as initial guess if not empty.
/// * tvec: Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.
/// * useExtrinsicGuess: defines whether initial guess for \b rvec and \b tvec will be used or not.
/// Used as initial guess if not empty.
/// 
/// This function receives the detected markers and returns the pose of a marker board composed
/// by those markers.
/// A Board of marker has a single world coordinate system which is defined by the board layout.
/// The returned transformation is the one that transforms points from the board coordinate system
/// to the camera coordinate system.
/// Input markers that are not included in the board layout are ignored.
/// The function returns the number of markers from the input employed for the board pose estimation.
/// Note that returning a 0 means the pose has not been estimated.
/// ## See also
/// use cv::drawFrameAxes to get world coordinate system axis for object points
/// 
/// ## C++ default parameters
/// * use_extrinsic_guess: false
#[inline]
pub fn estimate_pose_board(corners: &dyn core::ToInputArray, ids: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::Board>, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool) -> Result<i32> {
	input_array_arg!(corners);
	input_array_arg!(ids);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_output_array_arg!(rvec);
	input_output_array_arg!(tvec);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_estimatePoseBoard_const__InputArrayR_const__InputArrayR_const_Ptr_Board_R_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool(corners.as_raw__InputArray(), ids.as_raw__InputArray(), board.as_raw_PtrOfBoard(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Pose estimation for a ChArUco board given some of their corners
/// ## Parameters
/// * charucoCorners: vector of detected charuco corners
/// * charucoIds: list of identifiers for each corner in charucoCorners
/// * board: layout of ChArUco board.
/// * cameraMatrix: input 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D)
/// * distCoeffs: vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * rvec: Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board
/// (see cv::Rodrigues).
/// * tvec: Output vector (e.g. cv::Mat) corresponding to the translation vector of the board.
/// * useExtrinsicGuess: defines whether initial guess for \b rvec and \b tvec will be used or not.
/// 
/// This function estimates a Charuco board pose from some detected corners.
/// The function checks if the input corners are enough and valid to perform pose estimation.
/// If pose estimation is valid, returns true, else returns false.
/// ## See also
/// use cv::drawFrameAxes to get world coordinate system axis for object points
/// 
/// ## C++ default parameters
/// * use_extrinsic_guess: false
#[inline]
pub fn estimate_pose_charuco_board(charuco_corners: &dyn core::ToInputArray, charuco_ids: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::CharucoBoard>, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool) -> Result<bool> {
	input_array_arg!(charuco_corners);
	input_array_arg!(charuco_ids);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	input_output_array_arg!(rvec);
	input_output_array_arg!(tvec);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_estimatePoseCharucoBoard_const__InputArrayR_const__InputArrayR_const_Ptr_CharucoBoard_R_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool(charuco_corners.as_raw__InputArray(), charuco_ids.as_raw__InputArray(), board.as_raw_PtrOfCharucoBoard(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Pose estimation for single markers
/// 
/// ## Parameters
/// * corners: vector of already detected markers corners. For each marker, its four corners
/// are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers,
/// the dimensions of this array should be Nx4. The order of the corners should be clockwise.
/// ## See also
/// detectMarkers
/// * markerLength: the length of the markers' side. The returning translation vectors will
/// be in the same unit. Normally, unit is meters.
/// * cameraMatrix: input 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D)
/// * distCoeffs: vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * rvecs: array of output rotation vectors (Rodrigues) (e.g. std::vector<cv::Vec3d>).
/// Each element in rvecs corresponds to the specific marker in imgPoints.
/// * tvecs: array of output translation vectors (e.g. std::vector<cv::Vec3d>).
/// Each element in tvecs corresponds to the specific marker in imgPoints.
/// * _objPoints: array of object points of all the marker corners
/// * estimateParameters: set the origin of coordinate system and the coordinates of the four corners of the marker
/// (default estimateParameters.pattern = PatternPos::CCW_center, estimateParameters.useExtrinsicGuess = false,
/// estimateParameters.solvePnPMethod = SOLVEPNP_ITERATIVE).
/// 
/// This function receives the detected markers and returns their pose estimation respect to
/// the camera individually. So for each marker, one rotation and translation vector is returned.
/// The returned transformation is the one that transforms points from each marker coordinate system
/// to the camera coordinate system.
/// The marker coordinate system is centered on the middle (by default) or on the top-left corner of the marker,
/// with the Z axis perpendicular to the marker plane.
/// estimateParameters defines the coordinates of the four corners of the marker in its own coordinate system (by default) are:
/// (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),
/// (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0)
/// use cv::drawFrameAxes to get world coordinate system axis for object points
/// @ref tutorial_aruco_detection
/// EstimateParameters
/// PatternPos
/// 
/// ## C++ default parameters
/// * _obj_points: noArray()
/// * estimate_parameters: EstimateParameters::create()
#[inline]
pub fn estimate_pose_single_markers(corners: &dyn core::ToInputArray, marker_length: f32, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, _obj_points: &mut dyn core::ToOutputArray, mut estimate_parameters: core::Ptr<crate::aruco::EstimateParameters>) -> Result<()> {
	input_array_arg!(corners);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(_obj_points);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_estimatePoseSingleMarkers_const__InputArrayR_float_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_Ptr_EstimateParameters_(corners.as_raw__InputArray(), marker_length, camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), _obj_points.as_raw__OutputArray(), estimate_parameters.as_raw_mut_PtrOfEstimateParameters(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Generates a new customizable marker dictionary
/// 
/// ## Parameters
/// * nMarkers: number of markers in the dictionary
/// * markerSize: number of bits per dimension of each markers
/// * baseDictionary: Include the markers in this dictionary at the beginning (optional)
/// * randomSeed: a user supplied seed for theRNG()
/// 
/// This function creates a new dictionary composed by nMarkers markers and each markers composed
/// by markerSize x markerSize bits. If baseDictionary is provided, its markers are directly
/// included and the rest are generated based on them. If the size of baseDictionary is higher
/// than nMarkers, only the first nMarkers in baseDictionary are taken and no new marker is added.
/// 
/// ## C++ default parameters
/// * random_seed: 0
#[inline]
pub fn custom_dictionary_from(n_markers: i32, marker_size: i32, base_dictionary: &core::Ptr<crate::aruco::Dictionary>, random_seed: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_generateCustomDictionary_int_int_const_Ptr_Dictionary_R_int(n_markers, marker_size, base_dictionary.as_raw_PtrOfDictionary(), random_seed, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
	Ok(ret)
}

/// ## See also
/// generateCustomDictionary
/// 
/// ## C++ default parameters
/// * random_seed: 0
#[inline]
pub fn custom_dictionary(n_markers: i32, marker_size: i32, random_seed: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_generateCustomDictionary_int_int_int(n_markers, marker_size, random_seed, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Given a board configuration and a set of detected markers, returns the corresponding
/// image points and object points to call solvePnP
/// 
/// ## Parameters
/// * board: Marker board layout.
/// * detectedCorners: List of detected marker corners of the board.
/// * detectedIds: List of identifiers for each marker.
/// * objPoints: Vector of vectors of board marker points in the board coordinate space.
/// * imgPoints: Vector of vectors of the projections of board marker corner points.
#[inline]
pub fn get_board_object_and_image_points(board: &core::Ptr<crate::aruco::Board>, detected_corners: &dyn core::ToInputArray, detected_ids: &dyn core::ToInputArray, obj_points: &mut dyn core::ToOutputArray, img_points: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(detected_corners);
	input_array_arg!(detected_ids);
	output_array_arg!(obj_points);
	output_array_arg!(img_points);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_getBoardObjectAndImagePoints_const_Ptr_Board_R_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(board.as_raw_PtrOfBoard(), detected_corners.as_raw__InputArray(), detected_ids.as_raw__InputArray(), obj_points.as_raw__OutputArray(), img_points.as_raw__OutputArray(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Returns one of the predefined dictionaries defined in PREDEFINED_DICTIONARY_NAME
#[inline]
pub fn get_predefined_dictionary(name: crate::aruco::PREDEFINED_DICTIONARY_NAME) -> Result<core::Ptr<crate::aruco::Dictionary>> {
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_getPredefinedDictionary_PREDEFINED_DICTIONARY_NAME(name, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Returns one of the predefined dictionaries referenced by DICT_*.
#[inline]
pub fn get_predefined_dictionary_i32(dict: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_getPredefinedDictionary_int(dict, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Interpolate position of ChArUco board corners
/// ## Parameters
/// * markerCorners: vector of already detected markers corners. For each marker, its four
/// corners are provided, (e.g std::vector<std::vector<cv::Point2f> > ). For N detected markers, the
/// dimensions of this array should be Nx4. The order of the corners should be clockwise.
/// * markerIds: list of identifiers for each marker in corners
/// * image: input image necesary for corner refinement. Note that markers are not detected and
/// should be sent in corners and ids parameters.
/// * board: layout of ChArUco board.
/// * charucoCorners: interpolated chessboard corners
/// * charucoIds: interpolated chessboard corners identifiers
/// * cameraMatrix: optional 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D)
/// * distCoeffs: optional vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * minMarkers: number of adjacent markers that must be detected to return a charuco corner
/// 
/// This function receives the detected markers and returns the 2D position of the chessboard corners
/// from a ChArUco board using the detected Aruco markers. If camera parameters are provided,
/// the process is based in an approximated pose estimation, else it is based on local homography.
/// Only visible corners are returned. For each corner, its corresponding identifier is
/// also returned in charucoIds.
/// The function returns the number of interpolated corners.
/// 
/// ## C++ default parameters
/// * camera_matrix: noArray()
/// * dist_coeffs: noArray()
/// * min_markers: 2
#[inline]
pub fn interpolate_corners_charuco(marker_corners: &dyn core::ToInputArray, marker_ids: &dyn core::ToInputArray, image: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::CharucoBoard>, charuco_corners: &mut dyn core::ToOutputArray, charuco_ids: &mut dyn core::ToOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, min_markers: i32) -> Result<i32> {
	input_array_arg!(marker_corners);
	input_array_arg!(marker_ids);
	input_array_arg!(image);
	output_array_arg!(charuco_corners);
	output_array_arg!(charuco_ids);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_interpolateCornersCharuco_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_Ptr_CharucoBoard_R_const__OutputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_int(marker_corners.as_raw__InputArray(), marker_ids.as_raw__InputArray(), image.as_raw__InputArray(), board.as_raw_PtrOfCharucoBoard(), charuco_corners.as_raw__OutputArray(), charuco_ids.as_raw__OutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), min_markers, ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Refind not detected markers based on the already detected and the board layout
/// 
/// ## Parameters
/// * image: input image
/// * board: layout of markers in the board.
/// * detectedCorners: vector of already detected marker corners.
/// * detectedIds: vector of already detected marker identifiers.
/// * rejectedCorners: vector of rejected candidates during the marker detection process.
/// * cameraMatrix: optional input 3x3 floating-point camera matrix
/// ![inline formula](https://latex.codecogs.com/png.latex?A%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%200%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%201%20%5Cend%7Bbmatrix%7D)
/// * distCoeffs: optional vector of distortion coefficients
/// ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%5B%2C%20k%5F3%5B%2C%20k%5F4%2C%20k%5F5%2C%20k%5F6%5D%2C%5Bs%5F1%2C%20s%5F2%2C%20s%5F3%2C%20s%5F4%5D%5D%29) of 4, 5, 8 or 12 elements
/// * minRepDistance: minimum distance between the corners of the rejected candidate and the
/// reprojected marker in order to consider it as a correspondence.
/// * errorCorrectionRate: rate of allowed erroneous bits respect to the error correction
/// capability of the used dictionary. -1 ignores the error correction step.
/// * checkAllOrders: Consider the four posible corner orders in the rejectedCorners array.
/// If it set to false, only the provided corner order is considered (default true).
/// * recoveredIdxs: Optional array to returns the indexes of the recovered candidates in the
/// original rejectedCorners array.
/// * parameters: marker detection parameters
/// 
/// This function tries to find markers that were not detected in the basic detecMarkers function.
/// First, based on the current detected marker and the board layout, the function interpolates
/// the position of the missing markers. Then it tries to find correspondence between the reprojected
/// markers and the rejected candidates based on the minRepDistance and errorCorrectionRate
/// parameters.
/// If camera parameters and distortion coefficients are provided, missing markers are reprojected
/// using projectPoint function. If not, missing marker projections are interpolated using global
/// homography, and all the marker corners in the board must have the same Z coordinate.
/// 
/// ## C++ default parameters
/// * camera_matrix: noArray()
/// * dist_coeffs: noArray()
/// * min_rep_distance: 10.f
/// * error_correction_rate: 3.f
/// * check_all_orders: true
/// * recovered_idxs: noArray()
/// * parameters: DetectorParameters::create()
#[inline]
pub fn refine_detected_markers(image: &dyn core::ToInputArray, board: &core::Ptr<crate::aruco::Board>, detected_corners: &mut dyn core::ToInputOutputArray, detected_ids: &mut dyn core::ToInputOutputArray, rejected_corners: &mut dyn core::ToInputOutputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, min_rep_distance: f32, error_correction_rate: f32, check_all_orders: bool, recovered_idxs: &mut dyn core::ToOutputArray, parameters: &core::Ptr<crate::aruco::DetectorParameters>) -> Result<()> {
	input_array_arg!(image);
	input_output_array_arg!(detected_corners);
	input_output_array_arg!(detected_ids);
	input_output_array_arg!(rejected_corners);
	input_array_arg!(camera_matrix);
	input_array_arg!(dist_coeffs);
	output_array_arg!(recovered_idxs);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_refineDetectedMarkers_const__InputArrayR_const_Ptr_Board_R_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_float_float_bool_const__OutputArrayR_const_Ptr_DetectorParameters_R(image.as_raw__InputArray(), board.as_raw_PtrOfBoard(), detected_corners.as_raw__InputOutputArray(), detected_ids.as_raw__InputOutputArray(), rejected_corners.as_raw__InputOutputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), min_rep_distance, error_correction_rate, check_all_orders, recovered_idxs.as_raw__OutputArray(), parameters.as_raw_PtrOfDetectorParameters(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// test whether the ChArUco markers are collinear
/// 
/// ## Parameters
/// * _board: layout of ChArUco board.
/// * _charucoIds: list of identifiers for each corner in charucoCorners per frame.
/// ## Returns
/// bool value, 1 (true) if detected corners form a line, 0 (false) if they do not.
///    solvePnP, calibration functions will fail if the corners are collinear (true).
/// 
/// The number of ids in charucoIDs should be <= the number of chessboard corners in the board.  This functions checks whether the charuco corners are on a straight line (returns true, if so), or not (false).  Axis parallel, as well as diagonal and other straight lines detected.  Degenerate cases: for number of charucoIDs <= 2, the function returns true.
#[inline]
pub fn test_charuco_corners_collinear(_board: &core::Ptr<crate::aruco::CharucoBoard>, _charuco_ids: &dyn core::ToInputArray) -> Result<bool> {
	input_array_arg!(_charuco_ids);
	return_send!(via ocvrs_return);
	unsafe { sys::cv_aruco_testCharucoCornersCollinear_const_Ptr_CharucoBoard_R_const__InputArrayR(_board.as_raw_PtrOfCharucoBoard(), _charuco_ids.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
	return_receive!(unsafe ocvrs_return => ret);
	let ret = ret.into_result()?;
	Ok(ret)
}

/// Board of markers
/// 
/// A board is a set of markers in the 3D space with a common coordinate system.
/// The common form of a board of marker is a planar (2D) board, however any 3D layout can be used.
/// A Board object is composed by:
/// - The object points of the marker corners, i.e. their coordinates respect to the board system.
/// - The dictionary which indicates the type of markers of the board
/// - The identifier of all the markers in the board.
pub trait BoardTraitConst {
	fn as_raw_Board(&self) -> *const c_void;

	/// array of object points of all the marker corners in the board
	///  each marker include its 4 corners in this order:
	/// *   objPoints[i][0] - left-top point of i-th marker
	/// *   objPoints[i][1] - right-top point of i-th marker
	/// *   objPoints[i][2] - right-bottom point of i-th marker
	/// *   objPoints[i][3] - left-bottom point of i-th marker
	/// 
	///  Markers are placed in a certain order - row by row, left to right in every row.
	///  For M markers, the size is Mx4.
	#[inline]
	fn obj_points(&self) -> core::Vector<core::Vector<core::Point3f>> {
		let ret = unsafe { sys::cv_aruco_Board_getPropObjPoints_const(self.as_raw_Board()) };
		let ret = unsafe { core::Vector::<core::Vector<core::Point3f>>::opencv_from_extern(ret) };
		ret
	}
	
	/// vector of the identifiers of the markers in the board (same size than objPoints)
	/// The identifiers refers to the board dictionary
	#[inline]
	fn ids(&self) -> core::Vector<i32> {
		let ret = unsafe { sys::cv_aruco_Board_getPropIds_const(self.as_raw_Board()) };
		let ret = unsafe { core::Vector::<i32>::opencv_from_extern(ret) };
		ret
	}
	
	/// coordinate of the bottom right corner of the board, is set when calling the function create()
	#[inline]
	fn right_bottom_border(&self) -> core::Point3f {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Board_getPropRightBottomBorder_const(self.as_raw_Board(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		ret
	}
	
}

pub trait BoardTrait: crate::aruco::BoardTraitConst {
	fn as_raw_mut_Board(&mut self) -> *mut c_void;

	/// array of object points of all the marker corners in the board
	///  each marker include its 4 corners in this order:
	/// *   objPoints[i][0] - left-top point of i-th marker
	/// *   objPoints[i][1] - right-top point of i-th marker
	/// *   objPoints[i][2] - right-bottom point of i-th marker
	/// *   objPoints[i][3] - left-bottom point of i-th marker
	/// 
	///  Markers are placed in a certain order - row by row, left to right in every row.
	///  For M markers, the size is Mx4.
	#[inline]
	fn set_obj_points(&mut self, mut val: core::Vector<core::Vector<core::Point3f>>) {
		let ret = unsafe { sys::cv_aruco_Board_setPropObjPoints_vector_vector_Point3f__(self.as_raw_mut_Board(), val.as_raw_mut_VectorOfVectorOfPoint3f()) };
		ret
	}
	
	/// the dictionary of markers employed for this board
	#[inline]
	fn dictionary(&mut self) -> core::Ptr<crate::aruco::Dictionary> {
		let ret = unsafe { sys::cv_aruco_Board_getPropDictionary(self.as_raw_mut_Board()) };
		let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
		ret
	}
	
	/// the dictionary of markers employed for this board
	#[inline]
	fn set_dictionary(&mut self, mut val: core::Ptr<crate::aruco::Dictionary>) {
		let ret = unsafe { sys::cv_aruco_Board_setPropDictionary_Ptr_Dictionary_(self.as_raw_mut_Board(), val.as_raw_mut_PtrOfDictionary()) };
		ret
	}
	
	/// vector of the identifiers of the markers in the board (same size than objPoints)
	/// The identifiers refers to the board dictionary
	#[inline]
	fn set_ids(&mut self, mut val: core::Vector<i32>) {
		let ret = unsafe { sys::cv_aruco_Board_setPropIds_vector_int_(self.as_raw_mut_Board(), val.as_raw_mut_VectorOfi32()) };
		ret
	}
	
	/// coordinate of the bottom right corner of the board, is set when calling the function create()
	#[inline]
	fn set_right_bottom_border(&mut self, val: core::Point3f) {
		let ret = unsafe { sys::cv_aruco_Board_setPropRightBottomBorder_Point3f(self.as_raw_mut_Board(), val.opencv_as_extern()) };
		ret
	}
	
	/// Set ids vector
	/// 
	/// ## Parameters
	/// * ids: vector of the identifiers of the markers in the board (should be the same size
	/// as objPoints)
	/// 
	/// Recommended way to set ids vector, which will fail if the size of ids does not match size
	/// of objPoints.
	#[inline]
	fn set_ids_1(&mut self, ids: &dyn core::ToInputArray) -> Result<()> {
		input_array_arg!(ids);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Board_setIds_const__InputArrayR(self.as_raw_mut_Board(), ids.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

/// Board of markers
/// 
/// A board is a set of markers in the 3D space with a common coordinate system.
/// The common form of a board of marker is a planar (2D) board, however any 3D layout can be used.
/// A Board object is composed by:
/// - The object points of the marker corners, i.e. their coordinates respect to the board system.
/// - The dictionary which indicates the type of markers of the board
/// - The identifier of all the markers in the board.
pub struct Board {
	ptr: *mut c_void
}

opencv_type_boxed! { Board }

impl Drop for Board {
	fn drop(&mut self) {
		extern "C" { fn cv_Board_delete(instance: *mut c_void); }
		unsafe { cv_Board_delete(self.as_raw_mut_Board()) };
	}
}

unsafe impl Send for Board {}

impl crate::aruco::BoardTraitConst for Board {
	#[inline] fn as_raw_Board(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::BoardTrait for Board {
	#[inline] fn as_raw_mut_Board(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl Board {
	/// Provide way to create Board by passing necessary data. Specially needed in Python.
	/// 
	/// ## Parameters
	/// * objPoints: array of object points of all the marker corners in the board
	/// * dictionary: the dictionary of markers employed for this board
	/// * ids: vector of the identifiers of the markers in the board
	#[inline]
	pub fn create(obj_points: &dyn core::ToInputArray, dictionary: &core::Ptr<crate::aruco::Dictionary>, ids: &dyn core::ToInputArray) -> Result<core::Ptr<crate::aruco::Board>> {
		input_array_arg!(obj_points);
		input_array_arg!(ids);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Board_create_const__InputArrayR_const_Ptr_Dictionary_R_const__InputArrayR(obj_points.as_raw__InputArray(), dictionary.as_raw_PtrOfDictionary(), ids.as_raw__InputArray(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::Board>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// ChArUco board
/// Specific class for ChArUco boards. A ChArUco board is a planar board where the markers are placed
/// inside the white squares of a chessboard. The benefits of ChArUco boards is that they provide
/// both, ArUco markers versatility and chessboard corner precision, which is important for
/// calibration and pose estimation.
/// This class also allows the easy creation and drawing of ChArUco boards.
pub trait CharucoBoardTraitConst: crate::aruco::BoardTraitConst {
	fn as_raw_CharucoBoard(&self) -> *const c_void;

	#[inline]
	fn chessboard_corners(&self) -> core::Vector<core::Point3f> {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_getPropChessboardCorners_const(self.as_raw_CharucoBoard()) };
		let ret = unsafe { core::Vector::<core::Point3f>::opencv_from_extern(ret) };
		ret
	}
	
	#[inline]
	fn nearest_marker_idx(&self) -> core::Vector<core::Vector<i32>> {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_getPropNearestMarkerIdx_const(self.as_raw_CharucoBoard()) };
		let ret = unsafe { core::Vector::<core::Vector<i32>>::opencv_from_extern(ret) };
		ret
	}
	
	#[inline]
	fn nearest_marker_corners(&self) -> core::Vector<core::Vector<i32>> {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_getPropNearestMarkerCorners_const(self.as_raw_CharucoBoard()) };
		let ret = unsafe { core::Vector::<core::Vector<i32>>::opencv_from_extern(ret) };
		ret
	}
	
	#[inline]
	fn get_chessboard_size(&self) -> Result<core::Size> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_CharucoBoard_getChessboardSize_const(self.as_raw_CharucoBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_square_length(&self) -> Result<f32> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_CharucoBoard_getSquareLength_const(self.as_raw_CharucoBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_marker_length(&self) -> Result<f32> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_CharucoBoard_getMarkerLength_const(self.as_raw_CharucoBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

pub trait CharucoBoardTrait: crate::aruco::BoardTrait + crate::aruco::CharucoBoardTraitConst {
	fn as_raw_mut_CharucoBoard(&mut self) -> *mut c_void;

	#[inline]
	fn set_chessboard_corners(&mut self, mut val: core::Vector<core::Point3f>) {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_setPropChessboardCorners_vector_Point3f_(self.as_raw_mut_CharucoBoard(), val.as_raw_mut_VectorOfPoint3f()) };
		ret
	}
	
	#[inline]
	fn set_nearest_marker_idx(&mut self, mut val: core::Vector<core::Vector<i32>>) {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_setPropNearestMarkerIdx_vector_vector_int__(self.as_raw_mut_CharucoBoard(), val.as_raw_mut_VectorOfVectorOfi32()) };
		ret
	}
	
	#[inline]
	fn set_nearest_marker_corners(&mut self, mut val: core::Vector<core::Vector<i32>>) {
		let ret = unsafe { sys::cv_aruco_CharucoBoard_setPropNearestMarkerCorners_vector_vector_int__(self.as_raw_mut_CharucoBoard(), val.as_raw_mut_VectorOfVectorOfi32()) };
		ret
	}
	
	/// Draw a ChArUco board
	/// 
	/// ## Parameters
	/// * outSize: size of the output image in pixels.
	/// * img: output image with the board. The size of this image will be outSize
	/// and the board will be on the center, keeping the board proportions.
	/// * marginSize: minimum margins (in pixels) of the board in the output image
	/// * borderBits: width of the marker borders.
	/// 
	/// This function return the image of the ChArUco board, ready to be printed.
	/// 
	/// ## C++ default parameters
	/// * margin_size: 0
	/// * border_bits: 1
	#[inline]
	fn draw(&mut self, out_size: core::Size, img: &mut dyn core::ToOutputArray, margin_size: i32, border_bits: i32) -> Result<()> {
		output_array_arg!(img);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_CharucoBoard_draw_Size_const__OutputArrayR_int_int(self.as_raw_mut_CharucoBoard(), out_size.opencv_as_extern(), img.as_raw__OutputArray(), margin_size, border_bits, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

/// ChArUco board
/// Specific class for ChArUco boards. A ChArUco board is a planar board where the markers are placed
/// inside the white squares of a chessboard. The benefits of ChArUco boards is that they provide
/// both, ArUco markers versatility and chessboard corner precision, which is important for
/// calibration and pose estimation.
/// This class also allows the easy creation and drawing of ChArUco boards.
pub struct CharucoBoard {
	ptr: *mut c_void
}

opencv_type_boxed! { CharucoBoard }

impl Drop for CharucoBoard {
	fn drop(&mut self) {
		extern "C" { fn cv_CharucoBoard_delete(instance: *mut c_void); }
		unsafe { cv_CharucoBoard_delete(self.as_raw_mut_CharucoBoard()) };
	}
}

unsafe impl Send for CharucoBoard {}

impl crate::aruco::BoardTraitConst for CharucoBoard {
	#[inline] fn as_raw_Board(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::BoardTrait for CharucoBoard {
	#[inline] fn as_raw_mut_Board(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl crate::aruco::CharucoBoardTraitConst for CharucoBoard {
	#[inline] fn as_raw_CharucoBoard(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::CharucoBoardTrait for CharucoBoard {
	#[inline] fn as_raw_mut_CharucoBoard(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl CharucoBoard {
	/// Create a CharucoBoard object
	/// 
	/// ## Parameters
	/// * squaresX: number of chessboard squares in X direction
	/// * squaresY: number of chessboard squares in Y direction
	/// * squareLength: chessboard square side length (normally in meters)
	/// * markerLength: marker side length (same unit than squareLength)
	/// * dictionary: dictionary of markers indicating the type of markers.
	/// The first markers in the dictionary are used to fill the white chessboard squares.
	/// ## Returns
	/// the output CharucoBoard object
	/// 
	/// This functions creates a CharucoBoard object given the number of squares in each direction
	/// and the size of the markers and chessboard squares.
	#[inline]
	pub fn create(squares_x: i32, squares_y: i32, square_length: f32, marker_length: f32, dictionary: &core::Ptr<crate::aruco::Dictionary>) -> Result<core::Ptr<crate::aruco::CharucoBoard>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_CharucoBoard_create_int_int_float_float_const_Ptr_Dictionary_R(squares_x, squares_y, square_length, marker_length, dictionary.as_raw_PtrOfDictionary(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::CharucoBoard>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

boxed_cast_base! { CharucoBoard, crate::aruco::Board, cv_CharucoBoard_to_Board }

/// Parameters for the detectMarker process:
/// - adaptiveThreshWinSizeMin: minimum window size for adaptive thresholding before finding
///   contours (default 3).
/// - adaptiveThreshWinSizeMax: maximum window size for adaptive thresholding before finding
///   contours (default 23).
/// - adaptiveThreshWinSizeStep: increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax
///   during the thresholding (default 10).
/// - adaptiveThreshConstant: constant for adaptive thresholding before finding contours (default 7)
/// - minMarkerPerimeterRate: determine minimum perimeter for marker contour to be detected. This
///   is defined as a rate respect to the maximum dimension of the input image (default 0.03).
/// - maxMarkerPerimeterRate:  determine maximum perimeter for marker contour to be detected. This
///   is defined as a rate respect to the maximum dimension of the input image (default 4.0).
/// - polygonalApproxAccuracyRate: minimum accuracy during the polygonal approximation process to
///   determine which contours are squares. (default 0.03)
/// - minCornerDistanceRate: minimum distance between corners for detected markers relative to its
///   perimeter (default 0.05)
/// - minDistanceToBorder: minimum distance of any corner to the image border for detected markers
///   (in pixels) (default 3)
/// - minMarkerDistanceRate: minimum mean distance beetween two marker corners to be considered
///   similar, so that the smaller one is removed. The rate is relative to the smaller perimeter
///   of the two markers (default 0.05).
/// - cornerRefinementMethod: corner refinement method. (CORNER_REFINE_NONE, no refinement.
///   CORNER_REFINE_SUBPIX, do subpixel refinement. CORNER_REFINE_CONTOUR use contour-Points,
///   CORNER_REFINE_APRILTAG  use the AprilTag2 approach). (default CORNER_REFINE_NONE)
/// - cornerRefinementWinSize: window size for the corner refinement process (in pixels) (default 5).
/// - cornerRefinementMaxIterations: maximum number of iterations for stop criteria of the corner
///   refinement process (default 30).
/// - cornerRefinementMinAccuracy: minimum error for the stop cristeria of the corner refinement
///   process (default: 0.1)
/// - markerBorderBits: number of bits of the marker border, i.e. marker border width (default 1).
/// - perspectiveRemovePixelPerCell: number of bits (per dimension) for each cell of the marker
///   when removing the perspective (default 4).
/// - perspectiveRemoveIgnoredMarginPerCell: width of the margin of pixels on each cell not
///   considered for the determination of the cell bit. Represents the rate respect to the total
///   size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
/// - maxErroneousBitsInBorderRate: maximum number of accepted erroneous bits in the border (i.e.
///   number of allowed white bits in the border). Represented as a rate respect to the total
///   number of bits per marker (default 0.35).
/// - minOtsuStdDev: minimun standard deviation in pixels values during the decodification step to
///   apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher
///   than 128 or not) (default 5.0)
/// - errorCorrectionRate error correction rate respect to the maximun error correction capability
///   for each dictionary. (default 0.6).
/// - aprilTagMinClusterPixels: reject quads containing too few pixels. (default 5)
/// - aprilTagMaxNmaxima: how many corner candidates to consider when segmenting a group of pixels into a quad. (default 10)
/// - aprilTagCriticalRad: Reject quads where pairs of edges have angles that are close to straight or close to
///   180 degrees. Zero means that no quads are rejected. (In radians) (default 10*PI/180)
/// - aprilTagMaxLineFitMse:  When fitting lines to the contours, what is the maximum mean squared error
///   allowed?  This is useful in rejecting contours that are far from being quad shaped; rejecting
///   these quads "early" saves expensive decoding processing. (default 10.0)
/// - aprilTagMinWhiteBlackDiff: When we build our model of black & white pixels, we add an extra check that
///   the white model must be (overall) brighter than the black model.  How much brighter? (in pixel values, [0,255]). (default 5)
/// - aprilTagDeglitch:  should the thresholded image be deglitched? Only useful for very noisy images. (default 0)
/// - aprilTagQuadDecimate: Detection of quads can be done on a lower-resolution image, improving speed at a
///   cost of pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
///   done at full resolution. (default 0.0)
/// - aprilTagQuadSigma: What Gaussian blur should be applied to the segmented image (used for quad detection?)
///   Parameter is the standard deviation in pixels.  Very noisy images benefit from non-zero values (e.g. 0.8). (default 0.0)
/// - detectInvertedMarker: to check if there is a white marker. In order to generate a "white" marker just
///   invert a normal marker by using a tilde, ~markerImage. (default false)
/// - useAruco3Detection: to enable the new and faster Aruco detection strategy. The most important observation from the authors of
///   Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018) is, that the binary
///   code of a marker can be reliably detected if the canonical image (that is used to extract the binary code)
///   has a size of minSideLengthCanonicalImg (in practice tau_c=16-32 pixels).
///   Link to article: https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
///   In addition, very small markers are barely useful for pose estimation and thus a we can define a minimum marker size that we
///   still want to be able to detect (e.g. 50x50 pixel).
///   To decouple this from the initial image size they propose to resize the input image
///   to (I_w_r, I_h_r) = (tau_c / tau_dot_i) * (I_w, I_h), with tau_dot_i = tau_c + max(I_w,I_h) * tau_i.
///   Here tau_i (parameter: minMarkerLengthRatioOriginalImg) is a ratio in the range [0,1].
///   If we set this to 0, the smallest marker we can detect
///   has a side length of tau_c. If we set it to 1 the marker would fill the entire image.
///   For a FullHD video a good value to start with is 0.1.
/// - minSideLengthCanonicalImg: minimum side length of a marker in the canonical image.
///   Latter is the binarized image in which contours are searched.
///   So all contours with a size smaller than minSideLengthCanonicalImg*minSideLengthCanonicalImg will omitted from the search.
/// - minMarkerLengthRatioOriginalImg:  range [0,1], eq (2) from paper
///   The parameter tau_i has a direct influence on the processing speed.
pub trait DetectorParametersTraitConst {
	fn as_raw_DetectorParameters(&self) -> *const c_void;

	#[inline]
	fn adaptive_thresh_win_size_min(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAdaptiveThreshWinSizeMin_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn adaptive_thresh_win_size_max(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAdaptiveThreshWinSizeMax_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn adaptive_thresh_win_size_step(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAdaptiveThreshWinSizeStep_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn adaptive_thresh_constant(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAdaptiveThreshConstant_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_marker_perimeter_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinMarkerPerimeterRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn max_marker_perimeter_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMaxMarkerPerimeterRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn polygonal_approx_accuracy_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropPolygonalApproxAccuracyRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_corner_distance_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinCornerDistanceRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_distance_to_border(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinDistanceToBorder_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_marker_distance_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinMarkerDistanceRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn corner_refinement_method(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropCornerRefinementMethod_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn corner_refinement_win_size(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropCornerRefinementWinSize_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn corner_refinement_max_iterations(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropCornerRefinementMaxIterations_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn corner_refinement_min_accuracy(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropCornerRefinementMinAccuracy_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn marker_border_bits(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMarkerBorderBits_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn perspective_remove_pixel_per_cell(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropPerspectiveRemovePixelPerCell_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn perspective_remove_ignored_margin_per_cell(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropPerspectiveRemoveIgnoredMarginPerCell_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn max_erroneous_bits_in_border_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMaxErroneousBitsInBorderRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_otsu_std_dev(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinOtsuStdDev_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn error_correction_rate(&self) -> f64 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropErrorCorrectionRate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_quad_decimate(&self) -> f32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagQuadDecimate_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_quad_sigma(&self) -> f32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagQuadSigma_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_min_cluster_pixels(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagMinClusterPixels_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_max_nmaxima(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagMaxNmaxima_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_critical_rad(&self) -> f32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagCriticalRad_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_max_line_fit_mse(&self) -> f32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagMaxLineFitMse_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_min_white_black_diff(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagMinWhiteBlackDiff_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn april_tag_deglitch(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropAprilTagDeglitch_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn detect_inverted_marker(&self) -> bool {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropDetectInvertedMarker_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn use_aruco3_detection(&self) -> bool {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropUseAruco3Detection_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_side_length_canonical_img(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinSideLengthCanonicalImg_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
	#[inline]
	fn min_marker_length_ratio_original_img(&self) -> f32 {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_getPropMinMarkerLengthRatioOriginalImg_const(self.as_raw_DetectorParameters()) };
		ret
	}
	
}

pub trait DetectorParametersTrait: crate::aruco::DetectorParametersTraitConst {
	fn as_raw_mut_DetectorParameters(&mut self) -> *mut c_void;

	#[inline]
	fn set_adaptive_thresh_win_size_min(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAdaptiveThreshWinSizeMin_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_adaptive_thresh_win_size_max(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAdaptiveThreshWinSizeMax_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_adaptive_thresh_win_size_step(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAdaptiveThreshWinSizeStep_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_adaptive_thresh_constant(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAdaptiveThreshConstant_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_marker_perimeter_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinMarkerPerimeterRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_max_marker_perimeter_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMaxMarkerPerimeterRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_polygonal_approx_accuracy_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropPolygonalApproxAccuracyRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_corner_distance_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinCornerDistanceRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_distance_to_border(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinDistanceToBorder_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_marker_distance_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinMarkerDistanceRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_corner_refinement_method(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropCornerRefinementMethod_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_corner_refinement_win_size(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropCornerRefinementWinSize_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_corner_refinement_max_iterations(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropCornerRefinementMaxIterations_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_corner_refinement_min_accuracy(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropCornerRefinementMinAccuracy_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_marker_border_bits(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMarkerBorderBits_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_perspective_remove_pixel_per_cell(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropPerspectiveRemovePixelPerCell_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_perspective_remove_ignored_margin_per_cell(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropPerspectiveRemoveIgnoredMarginPerCell_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_max_erroneous_bits_in_border_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMaxErroneousBitsInBorderRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_otsu_std_dev(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinOtsuStdDev_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_error_correction_rate(&mut self, val: f64) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropErrorCorrectionRate_double(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_quad_decimate(&mut self, val: f32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagQuadDecimate_float(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_quad_sigma(&mut self, val: f32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagQuadSigma_float(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_min_cluster_pixels(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagMinClusterPixels_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_max_nmaxima(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagMaxNmaxima_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_critical_rad(&mut self, val: f32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagCriticalRad_float(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_max_line_fit_mse(&mut self, val: f32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagMaxLineFitMse_float(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_min_white_black_diff(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagMinWhiteBlackDiff_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_april_tag_deglitch(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropAprilTagDeglitch_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_detect_inverted_marker(&mut self, val: bool) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropDetectInvertedMarker_bool(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_use_aruco3_detection(&mut self, val: bool) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropUseAruco3Detection_bool(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_side_length_canonical_img(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinSideLengthCanonicalImg_int(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_min_marker_length_ratio_original_img(&mut self, val: f32) {
		let ret = unsafe { sys::cv_aruco_DetectorParameters_setPropMinMarkerLengthRatioOriginalImg_float(self.as_raw_mut_DetectorParameters(), val) };
		ret
	}
	
	#[inline]
	fn read_detector_parameters(&mut self, fn_: &core::FileNode) -> Result<bool> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_DetectorParameters_readDetectorParameters_const_FileNodeR(self.as_raw_mut_DetectorParameters(), fn_.as_raw_FileNode(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

/// Parameters for the detectMarker process:
/// - adaptiveThreshWinSizeMin: minimum window size for adaptive thresholding before finding
///   contours (default 3).
/// - adaptiveThreshWinSizeMax: maximum window size for adaptive thresholding before finding
///   contours (default 23).
/// - adaptiveThreshWinSizeStep: increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax
///   during the thresholding (default 10).
/// - adaptiveThreshConstant: constant for adaptive thresholding before finding contours (default 7)
/// - minMarkerPerimeterRate: determine minimum perimeter for marker contour to be detected. This
///   is defined as a rate respect to the maximum dimension of the input image (default 0.03).
/// - maxMarkerPerimeterRate:  determine maximum perimeter for marker contour to be detected. This
///   is defined as a rate respect to the maximum dimension of the input image (default 4.0).
/// - polygonalApproxAccuracyRate: minimum accuracy during the polygonal approximation process to
///   determine which contours are squares. (default 0.03)
/// - minCornerDistanceRate: minimum distance between corners for detected markers relative to its
///   perimeter (default 0.05)
/// - minDistanceToBorder: minimum distance of any corner to the image border for detected markers
///   (in pixels) (default 3)
/// - minMarkerDistanceRate: minimum mean distance beetween two marker corners to be considered
///   similar, so that the smaller one is removed. The rate is relative to the smaller perimeter
///   of the two markers (default 0.05).
/// - cornerRefinementMethod: corner refinement method. (CORNER_REFINE_NONE, no refinement.
///   CORNER_REFINE_SUBPIX, do subpixel refinement. CORNER_REFINE_CONTOUR use contour-Points,
///   CORNER_REFINE_APRILTAG  use the AprilTag2 approach). (default CORNER_REFINE_NONE)
/// - cornerRefinementWinSize: window size for the corner refinement process (in pixels) (default 5).
/// - cornerRefinementMaxIterations: maximum number of iterations for stop criteria of the corner
///   refinement process (default 30).
/// - cornerRefinementMinAccuracy: minimum error for the stop cristeria of the corner refinement
///   process (default: 0.1)
/// - markerBorderBits: number of bits of the marker border, i.e. marker border width (default 1).
/// - perspectiveRemovePixelPerCell: number of bits (per dimension) for each cell of the marker
///   when removing the perspective (default 4).
/// - perspectiveRemoveIgnoredMarginPerCell: width of the margin of pixels on each cell not
///   considered for the determination of the cell bit. Represents the rate respect to the total
///   size of the cell, i.e. perspectiveRemovePixelPerCell (default 0.13)
/// - maxErroneousBitsInBorderRate: maximum number of accepted erroneous bits in the border (i.e.
///   number of allowed white bits in the border). Represented as a rate respect to the total
///   number of bits per marker (default 0.35).
/// - minOtsuStdDev: minimun standard deviation in pixels values during the decodification step to
///   apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher
///   than 128 or not) (default 5.0)
/// - errorCorrectionRate error correction rate respect to the maximun error correction capability
///   for each dictionary. (default 0.6).
/// - aprilTagMinClusterPixels: reject quads containing too few pixels. (default 5)
/// - aprilTagMaxNmaxima: how many corner candidates to consider when segmenting a group of pixels into a quad. (default 10)
/// - aprilTagCriticalRad: Reject quads where pairs of edges have angles that are close to straight or close to
///   180 degrees. Zero means that no quads are rejected. (In radians) (default 10*PI/180)
/// - aprilTagMaxLineFitMse:  When fitting lines to the contours, what is the maximum mean squared error
///   allowed?  This is useful in rejecting contours that are far from being quad shaped; rejecting
///   these quads "early" saves expensive decoding processing. (default 10.0)
/// - aprilTagMinWhiteBlackDiff: When we build our model of black & white pixels, we add an extra check that
///   the white model must be (overall) brighter than the black model.  How much brighter? (in pixel values, [0,255]). (default 5)
/// - aprilTagDeglitch:  should the thresholded image be deglitched? Only useful for very noisy images. (default 0)
/// - aprilTagQuadDecimate: Detection of quads can be done on a lower-resolution image, improving speed at a
///   cost of pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still
///   done at full resolution. (default 0.0)
/// - aprilTagQuadSigma: What Gaussian blur should be applied to the segmented image (used for quad detection?)
///   Parameter is the standard deviation in pixels.  Very noisy images benefit from non-zero values (e.g. 0.8). (default 0.0)
/// - detectInvertedMarker: to check if there is a white marker. In order to generate a "white" marker just
///   invert a normal marker by using a tilde, ~markerImage. (default false)
/// - useAruco3Detection: to enable the new and faster Aruco detection strategy. The most important observation from the authors of
///   Romero-Ramirez et al: Speeded up detection of squared fiducial markers (2018) is, that the binary
///   code of a marker can be reliably detected if the canonical image (that is used to extract the binary code)
///   has a size of minSideLengthCanonicalImg (in practice tau_c=16-32 pixels).
///   Link to article: https://www.researchgate.net/publication/325787310_Speeded_Up_Detection_of_Squared_Fiducial_Markers
///   In addition, very small markers are barely useful for pose estimation and thus a we can define a minimum marker size that we
///   still want to be able to detect (e.g. 50x50 pixel).
///   To decouple this from the initial image size they propose to resize the input image
///   to (I_w_r, I_h_r) = (tau_c / tau_dot_i) * (I_w, I_h), with tau_dot_i = tau_c + max(I_w,I_h) * tau_i.
///   Here tau_i (parameter: minMarkerLengthRatioOriginalImg) is a ratio in the range [0,1].
///   If we set this to 0, the smallest marker we can detect
///   has a side length of tau_c. If we set it to 1 the marker would fill the entire image.
///   For a FullHD video a good value to start with is 0.1.
/// - minSideLengthCanonicalImg: minimum side length of a marker in the canonical image.
///   Latter is the binarized image in which contours are searched.
///   So all contours with a size smaller than minSideLengthCanonicalImg*minSideLengthCanonicalImg will omitted from the search.
/// - minMarkerLengthRatioOriginalImg:  range [0,1], eq (2) from paper
///   The parameter tau_i has a direct influence on the processing speed.
pub struct DetectorParameters {
	ptr: *mut c_void
}

opencv_type_boxed! { DetectorParameters }

impl Drop for DetectorParameters {
	fn drop(&mut self) {
		extern "C" { fn cv_DetectorParameters_delete(instance: *mut c_void); }
		unsafe { cv_DetectorParameters_delete(self.as_raw_mut_DetectorParameters()) };
	}
}

unsafe impl Send for DetectorParameters {}

impl crate::aruco::DetectorParametersTraitConst for DetectorParameters {
	#[inline] fn as_raw_DetectorParameters(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::DetectorParametersTrait for DetectorParameters {
	#[inline] fn as_raw_mut_DetectorParameters(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl DetectorParameters {
	#[inline]
	pub fn default() -> Result<crate::aruco::DetectorParameters> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_DetectorParameters_DetectorParameters(ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { crate::aruco::DetectorParameters::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	pub fn create() -> Result<core::Ptr<crate::aruco::DetectorParameters>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_DetectorParameters_create(ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::DetectorParameters>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// Dictionary/Set of markers. It contains the inner codification
/// 
/// bytesList contains the marker codewords where
/// - bytesList.rows is the dictionary size
/// - each marker is encoded using `nbytes = ceil(markerSize*markerSize/8.)`
/// - each row contains all 4 rotations of the marker, so its length is `4*nbytes`
/// 
/// `bytesList.ptr(i)[k*nbytes + j]` is then the j-th byte of i-th marker, in its k-th rotation.
pub trait DictionaryTraitConst {
	fn as_raw_Dictionary(&self) -> *const c_void;

	#[inline]
	fn bytes_list(&self) -> core::Mat {
		let ret = unsafe { sys::cv_aruco_Dictionary_getPropBytesList_const(self.as_raw_Dictionary()) };
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		ret
	}
	
	#[inline]
	fn marker_size(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_Dictionary_getPropMarkerSize_const(self.as_raw_Dictionary()) };
		ret
	}
	
	#[inline]
	fn max_correction_bits(&self) -> i32 {
		let ret = unsafe { sys::cv_aruco_Dictionary_getPropMaxCorrectionBits_const(self.as_raw_Dictionary()) };
		ret
	}
	
	/// Given a matrix of bits. Returns whether if marker is identified or not.
	/// It returns by reference the correct id (if any) and the correct rotation
	#[inline]
	fn identify(&self, only_bits: &core::Mat, idx: &mut i32, rotation: &mut i32, max_correction_rate: f64) -> Result<bool> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_identify_const_const_MatR_intR_intR_double(self.as_raw_Dictionary(), only_bits.as_raw_Mat(), idx, rotation, max_correction_rate, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Returns the distance of the input bits to the specific id. If allRotations is true,
	/// the four posible bits rotation are considered
	/// 
	/// ## C++ default parameters
	/// * all_rotations: true
	#[inline]
	fn get_distance_to_id(&self, bits: &dyn core::ToInputArray, id: i32, all_rotations: bool) -> Result<i32> {
		input_array_arg!(bits);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_getDistanceToId_const_const__InputArrayR_int_bool(self.as_raw_Dictionary(), bits.as_raw__InputArray(), id, all_rotations, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Draw a canonical marker image
	/// 
	/// ## C++ default parameters
	/// * border_bits: 1
	#[inline]
	fn draw_marker(&self, id: i32, side_pixels: i32, _img: &mut dyn core::ToOutputArray, border_bits: i32) -> Result<()> {
		output_array_arg!(_img);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_drawMarker_const_int_int_const__OutputArrayR_int(self.as_raw_Dictionary(), id, side_pixels, _img.as_raw__OutputArray(), border_bits, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

pub trait DictionaryTrait: crate::aruco::DictionaryTraitConst {
	fn as_raw_mut_Dictionary(&mut self) -> *mut c_void;

	#[inline]
	fn set_bytes_list(&mut self, mut val: core::Mat) {
		let ret = unsafe { sys::cv_aruco_Dictionary_setPropBytesList_Mat(self.as_raw_mut_Dictionary(), val.as_raw_mut_Mat()) };
		ret
	}
	
	#[inline]
	fn set_marker_size(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_Dictionary_setPropMarkerSize_int(self.as_raw_mut_Dictionary(), val) };
		ret
	}
	
	#[inline]
	fn set_max_correction_bits(&mut self, val: i32) {
		let ret = unsafe { sys::cv_aruco_Dictionary_setPropMaxCorrectionBits_int(self.as_raw_mut_Dictionary(), val) };
		ret
	}
	
	/// Read a new dictionary from FileNode. Format:
	/// 
	/// nmarkers: 35
	/// 
	/// markersize: 6
	/// 
	/// maxCorrectionBits: 5
	/// 
	/// marker_0: "101011111011111001001001101100000000"
	/// 
	/// ...
	/// 
	/// marker_34: "011111010000111011111110110101100101"
	#[inline]
	fn read_dictionary(&mut self, fn_: &core::FileNode) -> Result<bool> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_readDictionary_const_FileNodeR(self.as_raw_mut_Dictionary(), fn_.as_raw_FileNode(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	/// Write a dictionary to FileStorage. Format is the same as in readDictionary().
	#[inline]
	fn write_dictionary(&mut self, fs: &mut core::Ptr<core::FileStorage>) -> Result<()> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_writeDictionary_Ptr_FileStorage_R(self.as_raw_mut_Dictionary(), fs.as_raw_mut_PtrOfFileStorage(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

/// Dictionary/Set of markers. It contains the inner codification
/// 
/// bytesList contains the marker codewords where
/// - bytesList.rows is the dictionary size
/// - each marker is encoded using `nbytes = ceil(markerSize*markerSize/8.)`
/// - each row contains all 4 rotations of the marker, so its length is `4*nbytes`
/// 
/// `bytesList.ptr(i)[k*nbytes + j]` is then the j-th byte of i-th marker, in its k-th rotation.
pub struct Dictionary {
	ptr: *mut c_void
}

opencv_type_boxed! { Dictionary }

impl Drop for Dictionary {
	fn drop(&mut self) {
		extern "C" { fn cv_Dictionary_delete(instance: *mut c_void); }
		unsafe { cv_Dictionary_delete(self.as_raw_mut_Dictionary()) };
	}
}

unsafe impl Send for Dictionary {}

impl crate::aruco::DictionaryTraitConst for Dictionary {
	#[inline] fn as_raw_Dictionary(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::DictionaryTrait for Dictionary {
	#[inline] fn as_raw_mut_Dictionary(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl Dictionary {
	/// ## C++ default parameters
	/// * _bytes_list: Mat()
	/// * _marker_size: 0
	/// * _maxcorr: 0
	#[inline]
	pub fn new(_bytes_list: &core::Mat, _marker_size: i32, _maxcorr: i32) -> Result<crate::aruco::Dictionary> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_Dictionary_const_MatR_int_int(_bytes_list.as_raw_Mat(), _marker_size, _maxcorr, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { crate::aruco::Dictionary::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	pub fn copy(_dictionary: &core::Ptr<crate::aruco::Dictionary>) -> Result<crate::aruco::Dictionary> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_Dictionary_const_Ptr_Dictionary_R(_dictionary.as_raw_PtrOfDictionary(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { crate::aruco::Dictionary::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// ## See also
	/// generateCustomDictionary
	/// 
	/// ## C++ default parameters
	/// * random_seed: 0
	#[inline]
	pub fn create(n_markers: i32, marker_size: i32, random_seed: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_create_int_int_int(n_markers, marker_size, random_seed, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// ## See also
	/// generateCustomDictionary
	/// 
	/// ## C++ default parameters
	/// * random_seed: 0
	#[inline]
	pub fn create_from(n_markers: i32, marker_size: i32, base_dictionary: &core::Ptr<crate::aruco::Dictionary>, random_seed: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_create_int_int_const_Ptr_Dictionary_R_int(n_markers, marker_size, base_dictionary.as_raw_PtrOfDictionary(), random_seed, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// ## See also
	/// getPredefinedDictionary
	#[inline]
	pub fn get(dict: i32) -> Result<core::Ptr<crate::aruco::Dictionary>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_get_int(dict, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::Dictionary>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Transform matrix of bits to list of bytes in the 4 rotations
	#[inline]
	pub fn get_byte_list_from_bits(bits: &core::Mat) -> Result<core::Mat> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_getByteListFromBits_const_MatR(bits.as_raw_Mat(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// Transform list of bytes to matrix of bits
	#[inline]
	pub fn get_bits_from_byte_list(byte_list: &core::Mat, marker_size: i32) -> Result<core::Mat> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_Dictionary_getBitsFromByteList_const_MatR_int(byte_list.as_raw_Mat(), marker_size, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// 
/// Pose estimation parameters
/// ## Parameters
/// * pattern: Defines center this system and axes direction (default PatternPos::CCW_center).
/// * useExtrinsicGuess: Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses the provided
/// rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further
/// optimizes them (default false).
/// * solvePnPMethod: Method for solving a PnP problem: see @ref calib3d_solvePnP_flags (default SOLVEPNP_ITERATIVE).
/// ## See also
/// PatternPos, solvePnP(), @ref tutorial_aruco_detection
pub trait EstimateParametersTraitConst {
	fn as_raw_EstimateParameters(&self) -> *const c_void;

	#[inline]
	fn pattern(&self) -> crate::aruco::PatternPos {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_EstimateParameters_getPropPattern_const(self.as_raw_EstimateParameters(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		ret
	}
	
	#[inline]
	fn use_extrinsic_guess(&self) -> bool {
		let ret = unsafe { sys::cv_aruco_EstimateParameters_getPropUseExtrinsicGuess_const(self.as_raw_EstimateParameters()) };
		ret
	}
	
	#[inline]
	fn solve_pnp_method(&self) -> crate::calib3d::SolvePnPMethod {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_EstimateParameters_getPropSolvePnPMethod_const(self.as_raw_EstimateParameters(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		ret
	}
	
}

pub trait EstimateParametersTrait: crate::aruco::EstimateParametersTraitConst {
	fn as_raw_mut_EstimateParameters(&mut self) -> *mut c_void;

	#[inline]
	fn set_pattern(&mut self, val: crate::aruco::PatternPos) {
		let ret = unsafe { sys::cv_aruco_EstimateParameters_setPropPattern_PatternPos(self.as_raw_mut_EstimateParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_use_extrinsic_guess(&mut self, val: bool) {
		let ret = unsafe { sys::cv_aruco_EstimateParameters_setPropUseExtrinsicGuess_bool(self.as_raw_mut_EstimateParameters(), val) };
		ret
	}
	
	#[inline]
	fn set_solve_pnp_method(&mut self, val: crate::calib3d::SolvePnPMethod) {
		let ret = unsafe { sys::cv_aruco_EstimateParameters_setPropSolvePnPMethod_SolvePnPMethod(self.as_raw_mut_EstimateParameters(), val) };
		ret
	}
	
}

/// 
/// Pose estimation parameters
/// ## Parameters
/// * pattern: Defines center this system and axes direction (default PatternPos::CCW_center).
/// * useExtrinsicGuess: Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses the provided
/// rvec and tvec values as initial approximations of the rotation and translation vectors, respectively, and further
/// optimizes them (default false).
/// * solvePnPMethod: Method for solving a PnP problem: see @ref calib3d_solvePnP_flags (default SOLVEPNP_ITERATIVE).
/// ## See also
/// PatternPos, solvePnP(), @ref tutorial_aruco_detection
pub struct EstimateParameters {
	ptr: *mut c_void
}

opencv_type_boxed! { EstimateParameters }

impl Drop for EstimateParameters {
	fn drop(&mut self) {
		extern "C" { fn cv_EstimateParameters_delete(instance: *mut c_void); }
		unsafe { cv_EstimateParameters_delete(self.as_raw_mut_EstimateParameters()) };
	}
}

unsafe impl Send for EstimateParameters {}

impl crate::aruco::EstimateParametersTraitConst for EstimateParameters {
	#[inline] fn as_raw_EstimateParameters(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::EstimateParametersTrait for EstimateParameters {
	#[inline] fn as_raw_mut_EstimateParameters(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl EstimateParameters {
	#[inline]
	pub fn default() -> Result<crate::aruco::EstimateParameters> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_EstimateParameters_EstimateParameters(ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { crate::aruco::EstimateParameters::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	pub fn create() -> Result<core::Ptr<crate::aruco::EstimateParameters>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_EstimateParameters_create(ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::EstimateParameters>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// Planar board with grid arrangement of markers
/// More common type of board. All markers are placed in the same plane in a grid arrangement.
/// The board can be drawn using drawPlanarBoard() function (see also: drawPlanarBoard)
pub trait GridBoardTraitConst: crate::aruco::BoardTraitConst {
	fn as_raw_GridBoard(&self) -> *const c_void;

	#[inline]
	fn get_grid_size(&self) -> Result<core::Size> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_GridBoard_getGridSize_const(self.as_raw_GridBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_marker_length(&self) -> Result<f32> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_GridBoard_getMarkerLength_const(self.as_raw_GridBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_marker_separation(&self) -> Result<f32> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_GridBoard_getMarkerSeparation_const(self.as_raw_GridBoard(), ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

pub trait GridBoardTrait: crate::aruco::BoardTrait + crate::aruco::GridBoardTraitConst {
	fn as_raw_mut_GridBoard(&mut self) -> *mut c_void;

	/// Draw a GridBoard
	/// 
	/// ## Parameters
	/// * outSize: size of the output image in pixels.
	/// * img: output image with the board. The size of this image will be outSize
	/// and the board will be on the center, keeping the board proportions.
	/// * marginSize: minimum margins (in pixels) of the board in the output image
	/// * borderBits: width of the marker borders.
	/// 
	/// This function return the image of the GridBoard, ready to be printed.
	/// 
	/// ## C++ default parameters
	/// * margin_size: 0
	/// * border_bits: 1
	#[inline]
	fn draw(&mut self, out_size: core::Size, img: &mut dyn core::ToOutputArray, margin_size: i32, border_bits: i32) -> Result<()> {
		output_array_arg!(img);
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_GridBoard_draw_Size_const__OutputArrayR_int_int(self.as_raw_mut_GridBoard(), out_size.opencv_as_extern(), img.as_raw__OutputArray(), margin_size, border_bits, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		Ok(ret)
	}
	
}

/// Planar board with grid arrangement of markers
/// More common type of board. All markers are placed in the same plane in a grid arrangement.
/// The board can be drawn using drawPlanarBoard() function (see also: drawPlanarBoard)
pub struct GridBoard {
	ptr: *mut c_void
}

opencv_type_boxed! { GridBoard }

impl Drop for GridBoard {
	fn drop(&mut self) {
		extern "C" { fn cv_GridBoard_delete(instance: *mut c_void); }
		unsafe { cv_GridBoard_delete(self.as_raw_mut_GridBoard()) };
	}
}

unsafe impl Send for GridBoard {}

impl crate::aruco::BoardTraitConst for GridBoard {
	#[inline] fn as_raw_Board(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::BoardTrait for GridBoard {
	#[inline] fn as_raw_mut_Board(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl crate::aruco::GridBoardTraitConst for GridBoard {
	#[inline] fn as_raw_GridBoard(&self) -> *const c_void { self.as_raw() }
}

impl crate::aruco::GridBoardTrait for GridBoard {
	#[inline] fn as_raw_mut_GridBoard(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl GridBoard {
	/// Create a GridBoard object
	/// 
	/// ## Parameters
	/// * markersX: number of markers in X direction
	/// * markersY: number of markers in Y direction
	/// * markerLength: marker side length (normally in meters)
	/// * markerSeparation: separation between two markers (same unit as markerLength)
	/// * dictionary: dictionary of markers indicating the type of markers
	/// * firstMarker: id of first marker in dictionary to use on board.
	/// ## Returns
	/// the output GridBoard object
	/// 
	/// This functions creates a GridBoard object given the number of markers in each direction and
	/// the marker size and marker separation.
	/// 
	/// ## C++ default parameters
	/// * first_marker: 0
	#[inline]
	pub fn create(markers_x: i32, markers_y: i32, marker_length: f32, marker_separation: f32, dictionary: &core::Ptr<crate::aruco::Dictionary>, first_marker: i32) -> Result<core::Ptr<crate::aruco::GridBoard>> {
		return_send!(via ocvrs_return);
		unsafe { sys::cv_aruco_GridBoard_create_int_int_float_float_const_Ptr_Dictionary_R_int(markers_x, markers_y, marker_length, marker_separation, dictionary.as_raw_PtrOfDictionary(), first_marker, ocvrs_return.as_mut_ptr()) };
		return_receive!(unsafe ocvrs_return => ret);
		let ret = ret.into_result()?;
		let ret = unsafe { core::Ptr::<crate::aruco::GridBoard>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

boxed_cast_base! { GridBoard, crate::aruco::Board, cv_GridBoard_to_Board }