1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Operations on Matrices
//!       # Core Operations on Matrices
//!       # Per-element Operations
//!       # Matrix Reductions
//!       # Arithm Operations on Matrices
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::LookUpTableConst, super::LookUpTable, super::DFTConst, super::DFT, super::ConvolutionConst, super::Convolution };
}

/// Returns the sum of absolute values for matrix elements.
/// 
/// ## Parameters
/// * src: Source image of any depth except for CV_64F .
/// * mask: optional operation mask; it must have the same size as src1 and CV_8UC1 type.
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn abs_sum(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray) -> Result<core::Scalar> {
	input_array_arg!(src);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_absSum_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Computes an absolute value of each matrix element.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// ## See also
/// abs
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn abs(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_abs_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes per-element absolute difference of two matrices (or of a matrix and scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * stream: Stream for the asynchronous version.
/// ## See also
/// absdiff
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn absdiff(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_absdiff_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes the weighted sum of two arrays.
/// 
/// ## Parameters
/// * src1: First source array.
/// * alpha: Weight for the first array elements.
/// * src2: Second source array of the same size and channel number as src1 .
/// * beta: Weight for the second array elements.
/// * dst: Destination array that has the same size and number of channels as the input arrays.
/// * gamma: Scalar added to each sum.
/// * dtype: Optional depth of the destination array. When both input arrays have the same depth,
/// dtype can be set to -1, which will be equivalent to src1.depth().
/// * stream: Stream for the asynchronous version.
/// 
/// The function addWeighted calculates the weighted sum of two arrays as follows:
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bdst%7D%20%28I%29%3D%20%5Ctexttt%7Bsaturate%7D%20%28%20%5Ctexttt%7Bsrc1%7D%20%28I%29%2A%20%5Ctexttt%7Balpha%7D%20%2B%20%20%5Ctexttt%7Bsrc2%7D%20%28I%29%2A%20%5Ctexttt%7Bbeta%7D%20%2B%20%20%5Ctexttt%7Bgamma%7D%20%29)
/// 
/// where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
/// channel is processed independently.
/// ## See also
/// addWeighted
/// 
/// ## C++ default parameters
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn add_weighted(src1: &dyn core::ToInputArray, alpha: f64, src2: &dyn core::ToInputArray, beta: f64, gamma: f64, dst: &mut dyn core::ToOutputArray, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_addWeighted_const__InputArrayR_double_const__InputArrayR_double_double_const__OutputArrayR_int_StreamR(src1.as_raw__InputArray(), alpha, src2.as_raw__InputArray(), beta, gamma, dst.as_raw__OutputArray(), dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a matrix-matrix or matrix-scalar sum.
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar. Matrix should have the same size and type as src1 .
/// * dst: Destination matrix that has the same size and number of channels as the input array(s).
/// The depth is defined by dtype or src1 depth.
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * dtype: Optional depth of the output array.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// add
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn add(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_add_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn bitwise_and(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_bitwise_and_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element bitwise inversion.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn bitwise_not(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_bitwise_not_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element bitwise disjunction of two matrices (or of matrix and scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn bitwise_or(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_bitwise_or_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element bitwise exclusive or operation of two matrices (or of matrix and scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn bitwise_xor(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_bitwise_xor_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn calc_abs_sum(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_calcAbsSum_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * norm_type: NORM_L2
/// * stream: Stream::Null()
#[inline]
pub fn calc_norm_diff(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, norm_type: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_calcNormDiff_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), norm_type, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn calc_norm(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, norm_type: i32, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_calcNorm_const__InputArrayR_const__OutputArrayR_int_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), norm_type, mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn calc_sqr_sum(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_calcSqrSum_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn calc_sum(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_calcSum_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Converts Cartesian coordinates into polar.
/// 
/// ## Parameters
/// * x: Source matrix containing real components ( CV_32FC1 ).
/// * y: Source matrix containing imaginary components ( CV_32FC1 ).
/// * magnitude: Destination matrix of float magnitudes ( CV_32FC1 ).
/// * angle: Destination matrix of angles ( CV_32FC1 ).
/// * angleInDegrees: Flag for angles that must be evaluated in degrees.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// cartToPolar
/// 
/// ## C++ default parameters
/// * angle_in_degrees: false
/// * stream: Stream::Null()
#[inline]
pub fn cart_to_polar(x: &dyn core::ToInputArray, y: &dyn core::ToInputArray, magnitude: &mut dyn core::ToOutputArray, angle: &mut dyn core::ToOutputArray, angle_in_degrees: bool, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(x);
	input_array_arg!(y);
	output_array_arg!(magnitude);
	output_array_arg!(angle);
	let ret = unsafe { sys::cv_cuda_cartToPolar_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_StreamR(x.as_raw__InputArray(), y.as_raw__InputArray(), magnitude.as_raw__OutputArray(), angle.as_raw__OutputArray(), angle_in_degrees, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Compares elements of two matrices (or of a matrix and scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size as the input array(s) and type CV_8U.
/// * cmpop: Flag specifying the relation between the elements to be checked:
/// *   **CMP_EQ:** a(.) == b(.)
/// *   **CMP_GT:** a(.) \> b(.)
/// *   **CMP_GE:** a(.) \>= b(.)
/// *   **CMP_LT:** a(.) \< b(.)
/// *   **CMP_LE:** a(.) \<= b(.)
/// *   **CMP_NE:** a(.) != b(.)
/// * stream: Stream for the asynchronous version.
/// ## See also
/// compare
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn compare(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, cmpop: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_compare_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), cmpop, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Forms a border around an image.
/// 
/// ## Parameters
/// * src: Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.
/// * dst: Destination image with the same type as src. The size is
/// Size(src.cols+left+right, src.rows+top+bottom) .
/// * top: Number of top pixels
/// * bottom: Number of bottom pixels
/// * left: Number of left pixels
/// * right: Number of pixels in each direction from the source image rectangle to extrapolate.
/// For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.
/// * borderType: Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
/// BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
/// * value: Border value.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * value: Scalar()
/// * stream: Stream::Null()
#[inline]
pub fn copy_make_border(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, top: i32, bottom: i32, left: i32, right: i32, border_type: i32, value: core::Scalar, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_copyMakeBorder_const__InputArrayR_const__OutputArrayR_int_int_int_int_int_Scalar_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), top, bottom, left, right, border_type, value.opencv_as_extern(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Counts non-zero matrix elements.
/// 
/// ## Parameters
/// * src: Single-channel source image.
/// 
/// The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
/// ## See also
/// countNonZero
#[inline]
pub fn count_non_zero(src: &dyn core::ToInputArray) -> Result<i32> {
	input_array_arg!(src);
	let ret = unsafe { sys::cv_cuda_countNonZero_const__InputArrayR(src.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Counts non-zero matrix elements.
/// 
/// ## Parameters
/// * src: Single-channel source image.
/// 
/// The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
/// ## See also
/// countNonZero
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn count_non_zero_1(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_countNonZero_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Creates implementation for cuda::Convolution .
/// 
/// ## Parameters
/// * user_block_size: Block size. If you leave default value Size(0,0) then automatic
/// estimation of block size will be used (which is optimized for speed). By varying user_block_size
/// you can reduce memory requirements at the cost of speed.
/// 
/// ## C++ default parameters
/// * user_block_size: Size()
#[inline]
pub fn create_convolution(user_block_size: core::Size) -> Result<core::Ptr<dyn crate::cudaarithm::Convolution>> {
	let ret = unsafe { sys::cv_cuda_createConvolution_Size(user_block_size.opencv_as_extern()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::cudaarithm::Convolution>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Creates implementation for cuda::DFT.
/// 
/// ## Parameters
/// * dft_size: The image size.
/// * flags: Optional flags:
/// *   **DFT_ROWS** transforms each individual row of the source matrix.
/// *   **DFT_SCALE** scales the result: divide it by the number of elements in the transform
/// (obtained from dft_size ).
/// *   **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real
/// cases are always forward and inverse, respectively).
/// *   **DFT_COMPLEX_INPUT** Specifies that inputs will be complex with 2 channels.
/// *   **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of
/// real-complex transform, so the destination matrix must be real.
#[inline]
pub fn create_dft(dft_size: core::Size, flags: i32) -> Result<core::Ptr<dyn crate::cudaarithm::DFT>> {
	let ret = unsafe { sys::cv_cuda_createDFT_Size_int(dft_size.opencv_as_extern(), flags) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::cudaarithm::DFT>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Creates implementation for cuda::LookUpTable .
/// 
/// ## Parameters
/// * lut: Look-up table of 256 elements. It is a continuous CV_8U matrix.
#[inline]
pub fn create_look_up_table(lut: &dyn core::ToInputArray) -> Result<core::Ptr<dyn crate::cudaarithm::LookUpTable>> {
	input_array_arg!(lut);
	let ret = unsafe { sys::cv_cuda_createLookUpTable_const__InputArrayR(lut.as_raw__InputArray()) }.into_result()?;
	let ret = unsafe { core::Ptr::<dyn crate::cudaarithm::LookUpTable>::opencv_from_extern(ret) };
	Ok(ret)
}

/// Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix.
/// 
/// ## Parameters
/// * src: Source matrix (real or complex).
/// * dst: Destination matrix (real or complex).
/// * dft_size: Size of a discrete Fourier transform.
/// * flags: Optional flags:
/// *   **DFT_ROWS** transforms each individual row of the source matrix.
/// *   **DFT_SCALE** scales the result: divide it by the number of elements in the transform
/// (obtained from dft_size ).
/// *   **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real
/// cases are always forward and inverse, respectively).
/// *   **DFT_COMPLEX_INPUT** Specifies that input is complex input with 2 channels.
/// *   **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of
/// real-complex transform, so the destination matrix must be real.
/// * stream: Stream for the asynchronous version.
/// 
/// Use to handle real matrices ( CV32FC1 ) and complex matrices in the interleaved format ( CV32FC2 ).
/// 
/// The source matrix should be continuous, otherwise reallocation and data copying is performed. The
/// function chooses an operation mode depending on the flags, size, and channel count of the source
/// matrix:
/// 
/// *   If the source matrix is complex and the output is not specified as real, the destination
/// matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
/// contains a full result of the DFT (forward or inverse).
/// *   If the source matrix is complex and the output is specified as real, the function assumes that
/// its input is the result of the forward transform (see the next item). The destination matrix
/// has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.
/// *   If the source matrix is real (its type is CV_32FC1 ), forward DFT is performed. The result of
/// the DFT is packed into complex ( CV_32FC2 ) matrix. So, the width of the destination matrix
/// is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
/// instead of the width.
/// ## See also
/// dft
/// 
/// ## C++ default parameters
/// * flags: 0
/// * stream: Stream::Null()
#[inline]
pub fn dft(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, dft_size: core::Size, flags: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_dft_const__InputArrayR_const__OutputArrayR_Size_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), dft_size.opencv_as_extern(), flags, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a matrix-matrix or matrix-scalar division.
/// 
/// ## Parameters
/// * src1: First source matrix or a scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and number of channels as the input array(s).
/// The depth is defined by dtype or src1 depth.
/// * scale: Optional scale factor.
/// * dtype: Optional depth of the output array.
/// * stream: Stream for the asynchronous version.
/// 
/// This function, in contrast to divide, uses a round-down rounding mode.
/// ## See also
/// divide
/// 
/// ## C++ default parameters
/// * scale: 1
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn divide(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, scale: f64, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_divide_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), scale, dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes an exponent of each matrix element.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// ## See also
/// exp
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn exp(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_exp_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn find_min_max_loc(src: &dyn core::ToInputArray, min_max_vals: &mut dyn core::ToOutputArray, loc: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(min_max_vals);
	output_array_arg!(loc);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_findMinMaxLoc_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), min_max_vals.as_raw__OutputArray(), loc.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn find_min_max(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_findMinMax_const__InputArrayR_const__OutputArrayR_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Flips a 2D matrix around vertical, horizontal, or both axes.
/// 
/// ## Parameters
/// * src: Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
/// CV_32F depth.
/// * dst: Destination matrix.
/// * flipCode: Flip mode for the source:
/// *   0 Flips around x-axis.
/// *   \> 0 Flips around y-axis.
/// *   \< 0 Flips around both axes.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// flip
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn flip(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, flip_code: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_flip_const__InputArrayR_const__OutputArrayR_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), flip_code, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs generalized matrix multiplication.
/// 
/// ## Parameters
/// * src1: First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
/// CV_64FC2 type.
/// * src2: Second multiplied input matrix of the same type as src1 .
/// * alpha: Weight of the matrix product.
/// * src3: Third optional delta matrix added to the matrix product. It should have the same type
/// as src1 and src2 .
/// * beta: Weight of src3 .
/// * dst: Destination matrix. It has the proper size and the same type as input matrices.
/// * flags: Operation flags:
/// *   **GEMM_1_T** transpose src1
/// *   **GEMM_2_T** transpose src2
/// *   **GEMM_3_T** transpose src3
/// * stream: Stream for the asynchronous version.
/// 
/// The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
/// 3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bdst%7D%20%3D%20%20%5Ctexttt%7Balpha%7D%20%5Ccdot%20%5Ctexttt%7Bsrc1%7D%20%5ET%20%20%5Ccdot%20%5Ctexttt%7Bsrc2%7D%20%2B%20%20%5Ctexttt%7Bbeta%7D%20%5Ccdot%20%5Ctexttt%7Bsrc3%7D%20%5ET)
/// 
/// 
/// Note: Transposition operation doesn't support CV_64FC2 input type.
/// ## See also
/// gemm
/// 
/// ## C++ default parameters
/// * flags: 0
/// * stream: Stream::Null()
#[inline]
pub fn gemm(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, alpha: f64, src3: &dyn core::ToInputArray, beta: f64, dst: &mut dyn core::ToOutputArray, flags: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	input_array_arg!(src3);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_gemm_const__InputArrayR_const__InputArrayR_double_const__InputArrayR_double_const__OutputArrayR_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), alpha, src3.as_raw__InputArray(), beta, dst.as_raw__OutputArray(), flags, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

///  Checks if array elements lie between two scalars.
/// 
/// The function checks the range as follows:
/// *   For every element of a single-channel input array:
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bdst%7D%20%28I%29%3D%20%5Ctexttt%7Blowerb%7D%5F0%20%20%5Cleq%20%5Ctexttt%7Bsrc%7D%20%28I%29%5F0%20%5Cleq%20%20%5Ctexttt%7Bupperb%7D%5F0)
/// *   For two-channel arrays:
///    ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bdst%7D%20%28I%29%3D%20%5Ctexttt%7Blowerb%7D%5F0%20%20%5Cleq%20%5Ctexttt%7Bsrc%7D%20%28I%29%5F0%20%5Cleq%20%20%5Ctexttt%7Bupperb%7D%5F0%20%20%5Cland%20%5Ctexttt%7Blowerb%7D%5F1%20%20%5Cleq%20%5Ctexttt%7Bsrc%7D%20%28I%29%5F1%20%5Cleq%20%20%5Ctexttt%7Bupperb%7D%5F1)
/// *   and so forth.
/// 
/// That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
/// specified 1D, 2D, 3D, ... box and 0 otherwise.
/// 
/// Note that unlike the CPU inRange, this does NOT accept an array for lowerb or
/// upperb, only a cv::Scalar.
/// 
/// ## Parameters
/// * src: first input array.
/// * lowerb: inclusive lower boundary cv::Scalar.
/// * upperb: inclusive upper boundary cv::Scalar.
/// * dst: output array of the same size as src and CV_8U type.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// cv::inRange
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn in_range(src: &dyn core::ToInputArray, lowerb: core::Scalar, upperb: core::Scalar, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_inRange_const__InputArrayR_const_ScalarR_const_ScalarR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), &lowerb, &upperb, dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes an integral image.
/// 
/// ## Parameters
/// * src: Source image. Only CV_8UC1 images are supported for now.
/// * sum: Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .
/// * stream: Stream for the asynchronous version.
/// ## See also
/// integral
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn integral(src: &dyn core::ToInputArray, sum: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(sum);
	let ret = unsafe { sys::cv_cuda_integral_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), sum.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a natural logarithm of absolute value of each matrix element.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// ## See also
/// log
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn log(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_log_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs pixel by pixel right left of an image by a constant value.
/// 
/// ## Parameters
/// * src: Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
/// depth.
/// * val: Constant values, one per channel.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn lshift(src: &dyn core::ToInputArray, val: core::Scalar_<i32>, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_lshift_const__InputArrayR_Scalar__int__const__OutputArrayR_StreamR(src.as_raw__InputArray(), val.opencv_as_extern(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn lshift_1(src: &dyn core::ToInputArray, val: core::Scalar, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_lshift_const__InputArrayR_Scalar_const__OutputArrayR_StreamR(src.as_raw__InputArray(), val.opencv_as_extern(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes squared magnitudes of complex matrix elements.
/// 
/// ## Parameters
/// * xy: Source complex matrix in the interleaved format ( CV_32FC2 ).
/// * magnitude: Destination matrix of float magnitude squares ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// 
/// ## Overloaded parameters
/// 
///  computes squared magnitude of each (x(i), y(i)) vector
///  supports only floating-point source
/// * x: Source matrix containing real components ( CV_32FC1 ).
/// * y: Source matrix containing imaginary components ( CV_32FC1 ).
/// * magnitude: Destination matrix of float magnitude squares ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn magnitude_sqr_1(x: &dyn core::ToInputArray, y: &dyn core::ToInputArray, magnitude: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(x);
	input_array_arg!(y);
	output_array_arg!(magnitude);
	let ret = unsafe { sys::cv_cuda_magnitudeSqr_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(x.as_raw__InputArray(), y.as_raw__InputArray(), magnitude.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes squared magnitudes of complex matrix elements.
/// 
/// ## Parameters
/// * xy: Source complex matrix in the interleaved format ( CV_32FC2 ).
/// * magnitude: Destination matrix of float magnitude squares ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn magnitude_sqr(xy: &dyn core::ToInputArray, magnitude: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(xy);
	output_array_arg!(magnitude);
	let ret = unsafe { sys::cv_cuda_magnitudeSqr_const__InputArrayR_const__OutputArrayR_StreamR(xy.as_raw__InputArray(), magnitude.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes magnitudes of complex matrix elements.
/// 
/// ## Parameters
/// * xy: Source complex matrix in the interleaved format ( CV_32FC2 ).
/// * magnitude: Destination matrix of float magnitudes ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// ## See also
/// magnitude
/// 
/// ## Overloaded parameters
/// 
///  computes magnitude of each (x(i), y(i)) vector
///  supports only floating-point source
/// * x: Source matrix containing real components ( CV_32FC1 ).
/// * y: Source matrix containing imaginary components ( CV_32FC1 ).
/// * magnitude: Destination matrix of float magnitudes ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn magnitude_1(x: &dyn core::ToInputArray, y: &dyn core::ToInputArray, magnitude: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(x);
	input_array_arg!(y);
	output_array_arg!(magnitude);
	let ret = unsafe { sys::cv_cuda_magnitude_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(x.as_raw__InputArray(), y.as_raw__InputArray(), magnitude.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes magnitudes of complex matrix elements.
/// 
/// ## Parameters
/// * xy: Source complex matrix in the interleaved format ( CV_32FC2 ).
/// * magnitude: Destination matrix of float magnitudes ( CV_32FC1 ).
/// * stream: Stream for the asynchronous version.
/// ## See also
/// magnitude
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn magnitude(xy: &dyn core::ToInputArray, magnitude: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(xy);
	output_array_arg!(magnitude);
	let ret = unsafe { sys::cv_cuda_magnitude_const__InputArrayR_const__OutputArrayR_StreamR(xy.as_raw__InputArray(), magnitude.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes the per-element maximum of two matrices (or a matrix and a scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * stream: Stream for the asynchronous version.
/// ## See also
/// max
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn max(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_max_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a mean value and a standard deviation of matrix elements.
/// 
/// ## Parameters
/// * mtx: Source matrix. CV_8UC1 matrices are supported for now.
/// * mean: Mean value.
/// * stddev: Standard deviation value.
/// ## See also
/// meanStdDev
#[inline]
pub fn mean_std_dev(mtx: &dyn core::ToInputArray, mean: &mut core::Scalar, stddev: &mut core::Scalar) -> Result<()> {
	input_array_arg!(mtx);
	let ret = unsafe { sys::cv_cuda_meanStdDev_const__InputArrayR_ScalarR_ScalarR(mtx.as_raw__InputArray(), mean, stddev) }.into_result()?;
	Ok(ret)
}

/// Computes a mean value and a standard deviation of matrix elements.
/// 
/// ## Parameters
/// * mtx: Source matrix. CV_8UC1 matrices are supported for now.
/// * mean: Mean value.
/// * stddev: Standard deviation value.
/// ## See also
/// meanStdDev
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn mean_std_dev_1(mtx: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(mtx);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_meanStdDev_const__InputArrayR_const__OutputArrayR_StreamR(mtx.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Makes a multi-channel matrix out of several single-channel matrices.
/// 
/// ## Parameters
/// * src: Array/vector of source matrices.
/// * n: Number of source matrices.
/// * dst: Destination matrix.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// merge
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn merge(src: &core::GpuMat, n: size_t, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_merge_const_GpuMatX_size_t_const__OutputArrayR_StreamR(src.as_raw_GpuMat(), n, dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Makes a multi-channel matrix out of several single-channel matrices.
/// 
/// ## Parameters
/// * src: Array/vector of source matrices.
/// * n: Number of source matrices.
/// * dst: Destination matrix.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// merge
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn merge_1(src: &core::Vector<core::GpuMat>, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_merge_const_vector_GpuMat_R_const__OutputArrayR_StreamR(src.as_raw_VectorOfGpuMat(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Finds global minimum and maximum matrix elements and returns their values with locations.
/// 
/// ## Parameters
/// * src: Single-channel source image.
/// * minVal: Pointer to the returned minimum value. Use NULL if not required.
/// * maxVal: Pointer to the returned maximum value. Use NULL if not required.
/// * minLoc: Pointer to the returned minimum location. Use NULL if not required.
/// * maxLoc: Pointer to the returned maximum location. Use NULL if not required.
/// * mask: Optional mask to select a sub-matrix.
/// 
/// The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
/// ## See also
/// minMaxLoc
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn min_max_loc(src: &dyn core::ToInputArray, min_val: &mut f64, max_val: &mut f64, min_loc: &mut core::Point, max_loc: &mut core::Point, mask: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(src);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_minMaxLoc_const__InputArrayR_doubleX_doubleX_PointX_PointX_const__InputArrayR(src.as_raw__InputArray(), min_val, max_val, min_loc, max_loc, mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Finds global minimum and maximum matrix elements and returns their values.
/// 
/// ## Parameters
/// * src: Single-channel source image.
/// * minVal: Pointer to the returned minimum value. Use NULL if not required.
/// * maxVal: Pointer to the returned maximum value. Use NULL if not required.
/// * mask: Optional mask to select a sub-matrix.
/// 
/// The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
/// ## See also
/// minMaxLoc
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn min_max(src: &dyn core::ToInputArray, min_val: &mut f64, max_val: &mut f64, mask: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(src);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_minMax_const__InputArrayR_doubleX_doubleX_const__InputArrayR(src.as_raw__InputArray(), min_val, max_val, mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Computes the per-element minimum of two matrices (or a matrix and a scalar).
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and type as the input array(s).
/// * stream: Stream for the asynchronous version.
/// ## See also
/// min
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn min(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_min_const__InputArrayR_const__InputArrayR_const__OutputArrayR_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element multiplication of two Fourier spectrums and scales the result.
/// 
/// ## Parameters
/// * src1: First spectrum.
/// * src2: Second spectrum with the same size and type as a .
/// * dst: Destination spectrum.
/// * flags: Mock parameter used for CPU/CUDA interfaces similarity, simply add a `0` value.
/// * scale: Scale constant.
/// * conjB: Optional flag to specify if the second spectrum needs to be conjugated before the
/// multiplication.
/// * stream: Stream for the asynchronous version.
/// 
/// Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
/// ## See also
/// mulSpectrums
/// 
/// ## C++ default parameters
/// * conj_b: false
/// * stream: Stream::Null()
#[inline]
pub fn mul_and_scale_spectrums(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, flags: i32, scale: f32, conj_b: bool, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_mulAndScaleSpectrums_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_float_bool_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), flags, scale, conj_b, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs a per-element multiplication of two Fourier spectrums.
/// 
/// ## Parameters
/// * src1: First spectrum.
/// * src2: Second spectrum with the same size and type as a .
/// * dst: Destination spectrum.
/// * flags: Mock parameter used for CPU/CUDA interfaces similarity.
/// * conjB: Optional flag to specify if the second spectrum needs to be conjugated before the
/// multiplication.
/// * stream: Stream for the asynchronous version.
/// 
/// Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
/// ## See also
/// mulSpectrums
/// 
/// ## C++ default parameters
/// * conj_b: false
/// * stream: Stream::Null()
#[inline]
pub fn mul_spectrums(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, flags: i32, conj_b: bool, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_mulSpectrums_const__InputArrayR_const__InputArrayR_const__OutputArrayR_int_bool_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), flags, conj_b, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a matrix-matrix or matrix-scalar per-element product.
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar.
/// * dst: Destination matrix that has the same size and number of channels as the input array(s).
/// The depth is defined by dtype or src1 depth.
/// * scale: Optional scale factor.
/// * dtype: Optional depth of the output array.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// multiply
/// 
/// ## C++ default parameters
/// * scale: 1
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn multiply(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, scale: f64, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_multiply_const__InputArrayR_const__InputArrayR_const__OutputArrayR_double_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), scale, dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Returns the difference of two matrices.
/// 
/// ## Parameters
/// * src1: Source matrix. Any matrices except 64F are supported.
/// * src2: Second source matrix (if any) with the same size and type as src1.
/// * normType: Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.
/// ## See also
/// norm
/// 
/// ## C++ default parameters
/// * norm_type: NORM_L2
#[inline]
pub fn norm_1(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, norm_type: i32) -> Result<f64> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	let ret = unsafe { sys::cv_cuda_norm_const__InputArrayR_const__InputArrayR_int(src1.as_raw__InputArray(), src2.as_raw__InputArray(), norm_type) }.into_result()?;
	Ok(ret)
}

/// Returns the norm of a matrix (or difference of two matrices).
/// 
/// ## Parameters
/// * src1: Source matrix. Any matrices except 64F are supported.
/// * normType: Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.
/// * mask: optional operation mask; it must have the same size as src1 and CV_8UC1 type.
/// ## See also
/// norm
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn norm(src1: &dyn core::ToInputArray, norm_type: i32, mask: &dyn core::ToInputArray) -> Result<f64> {
	input_array_arg!(src1);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_norm_const__InputArrayR_int_const__InputArrayR(src1.as_raw__InputArray(), norm_type, mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Normalizes the norm or value range of an array.
/// 
/// ## Parameters
/// * src: Input array.
/// * dst: Output array of the same size as src .
/// * alpha: Norm value to normalize to or the lower range boundary in case of the range
/// normalization.
/// * beta: Upper range boundary in case of the range normalization; it is not used for the norm
/// normalization.
/// * norm_type: Normalization type ( NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF ).
/// * dtype: When negative, the output array has the same type as src; otherwise, it has the same
/// number of channels as src and the depth =CV_MAT_DEPTH(dtype).
/// * mask: Optional operation mask.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// normalize
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * stream: Stream::Null()
#[inline]
pub fn normalize(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, alpha: f64, beta: f64, norm_type: i32, dtype: i32, mask: &dyn core::ToInputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_normalize_const__InputArrayR_const__OutputArrayR_double_double_int_int_const__InputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), alpha, beta, norm_type, dtype, mask.as_raw__InputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes polar angles of complex matrix elements.
/// 
/// ## Parameters
/// * x: Source matrix containing real components ( CV_32FC1 ).
/// * y: Source matrix containing imaginary components ( CV_32FC1 ).
/// * angle: Destination matrix of angles ( CV_32FC1 ).
/// * angleInDegrees: Flag for angles that must be evaluated in degrees.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// phase
/// 
/// ## C++ default parameters
/// * angle_in_degrees: false
/// * stream: Stream::Null()
#[inline]
pub fn phase(x: &dyn core::ToInputArray, y: &dyn core::ToInputArray, angle: &mut dyn core::ToOutputArray, angle_in_degrees: bool, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(x);
	input_array_arg!(y);
	output_array_arg!(angle);
	let ret = unsafe { sys::cv_cuda_phase_const__InputArrayR_const__InputArrayR_const__OutputArrayR_bool_StreamR(x.as_raw__InputArray(), y.as_raw__InputArray(), angle.as_raw__OutputArray(), angle_in_degrees, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Converts polar coordinates into Cartesian.
/// 
/// ## Parameters
/// * magnitude: Source matrix containing magnitudes ( CV_32FC1 or CV_64FC1 ).
/// * angle: Source matrix containing angles ( same type as magnitude ).
/// * x: Destination matrix of real components ( same type as magnitude ).
/// * y: Destination matrix of imaginary components ( same type as magnitude ).
/// * angleInDegrees: Flag that indicates angles in degrees.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * angle_in_degrees: false
/// * stream: Stream::Null()
#[inline]
pub fn polar_to_cart(magnitude: &dyn core::ToInputArray, angle: &dyn core::ToInputArray, x: &mut dyn core::ToOutputArray, y: &mut dyn core::ToOutputArray, angle_in_degrees: bool, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(magnitude);
	input_array_arg!(angle);
	output_array_arg!(x);
	output_array_arg!(y);
	let ret = unsafe { sys::cv_cuda_polarToCart_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_bool_StreamR(magnitude.as_raw__InputArray(), angle.as_raw__InputArray(), x.as_raw__OutputArray(), y.as_raw__OutputArray(), angle_in_degrees, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Raises every matrix element to a power.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * power: Exponent of power.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// 
/// The function pow raises every element of the input matrix to power :
/// 
/// ![block formula](https://latex.codecogs.com/png.latex?%5Ctexttt%7Bdst%7D%20%28I%29%20%3D%20%20%5Cfork%7B%5Ctexttt%7Bsrc%7D%28I%29%5Epower%7D%7Bif%20%5Ctexttt%7Bpower%7D%20is%20integer%7D%7B%7C%5Ctexttt%7Bsrc%7D%28I%29%7C%5Epower%7D%7Botherwise%7D)
/// ## See also
/// pow
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn pow(src: &dyn core::ToInputArray, power: f64, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_pow_const__InputArrayR_double_const__OutputArrayR_StreamR(src.as_raw__InputArray(), power, dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a standard deviation of integral images.
/// 
/// ## Parameters
/// * src: Source image. Only the CV_32SC1 type is supported.
/// * sqr: Squared source image. Only the CV_32FC1 type is supported.
/// * dst: Destination image with the same type and size as src .
/// * rect: Rectangular window.
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn rect_std_dev(src: &dyn core::ToInputArray, sqr: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, rect: core::Rect, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	input_array_arg!(sqr);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_rectStdDev_const__InputArrayR_const__InputArrayR_const__OutputArrayR_Rect_StreamR(src.as_raw__InputArray(), sqr.as_raw__InputArray(), dst.as_raw__OutputArray(), rect.opencv_as_extern(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Reduces a matrix to a vector.
/// 
/// ## Parameters
/// * mtx: Source 2D matrix.
/// * vec: Destination vector. Its size and type is defined by dim and dtype parameters.
/// * dim: Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
/// to a single row. 1 means that the matrix is reduced to a single column.
/// * reduceOp: Reduction operation that could be one of the following:
/// *   **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix.
/// *   **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix.
/// *   **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the
/// matrix.
/// *   **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the
/// matrix.
/// * dtype: When it is negative, the destination vector will have the same type as the source
/// matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .
/// * stream: Stream for the asynchronous version.
/// 
/// The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
/// 1D vectors and performing the specified operation on the vectors until a single row/column is
/// obtained. For example, the function can be used to compute horizontal and vertical projections of a
/// raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG , the output may have a larger element
/// bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
/// modes.
/// ## See also
/// reduce
/// 
/// ## C++ default parameters
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn reduce(mtx: &dyn core::ToInputArray, vec: &mut dyn core::ToOutputArray, dim: i32, reduce_op: i32, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(mtx);
	output_array_arg!(vec);
	let ret = unsafe { sys::cv_cuda_reduce_const__InputArrayR_const__OutputArrayR_int_int_int_StreamR(mtx.as_raw__InputArray(), vec.as_raw__OutputArray(), dim, reduce_op, dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Performs pixel by pixel right shift of an image by a constant value.
/// 
/// ## Parameters
/// * src: Source matrix. Supports 1, 3 and 4 channels images with integers elements.
/// * val: Constant values, one per channel.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn rshift(src: &dyn core::ToInputArray, val: core::Scalar_<i32>, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_rshift_const__InputArrayR_Scalar__int__const__OutputArrayR_StreamR(src.as_raw__InputArray(), val.opencv_as_extern(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn rshift_1(src: &dyn core::ToInputArray, val: core::Scalar, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_rshift_const__InputArrayR_Scalar_const__OutputArrayR_StreamR(src.as_raw__InputArray(), val.opencv_as_extern(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Copies each plane of a multi-channel matrix into an array.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination array/vector of single-channel matrices.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// split
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn split(src: &dyn core::ToInputArray, dst: &mut core::GpuMat, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	let ret = unsafe { sys::cv_cuda_split_const__InputArrayR_GpuMatX_StreamR(src.as_raw__InputArray(), dst.as_raw_mut_GpuMat(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Copies each plane of a multi-channel matrix into an array.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination array/vector of single-channel matrices.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// split
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn split_1(src: &dyn core::ToInputArray, dst: &mut core::Vector<core::GpuMat>, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	let ret = unsafe { sys::cv_cuda_split_const__InputArrayR_vector_GpuMat_R_StreamR(src.as_raw__InputArray(), dst.as_raw_mut_VectorOfGpuMat(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a squared integral image.
/// 
/// ## Parameters
/// * src: Source image. Only CV_8UC1 images are supported for now.
/// * sqsum: Squared integral image containing 64-bit unsigned integer values packed into
/// CV_64FC1 .
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn sqr_integral(src: &dyn core::ToInputArray, sqsum: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(sqsum);
	let ret = unsafe { sys::cv_cuda_sqrIntegral_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), sqsum.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Returns the squared sum of matrix elements.
/// 
/// ## Parameters
/// * src: Source image of any depth except for CV_64F .
/// * mask: optional operation mask; it must have the same size as src1 and CV_8UC1 type.
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn sqr_sum(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray) -> Result<core::Scalar> {
	input_array_arg!(src);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_sqrSum_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Computes a square value of each matrix element.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn sqr(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_sqr_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a square root of each matrix element.
/// 
/// ## Parameters
/// * src: Source matrix.
/// * dst: Destination matrix with the same size and type as src .
/// * stream: Stream for the asynchronous version.
/// ## See also
/// sqrt
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn sqrt(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_sqrt_const__InputArrayR_const__OutputArrayR_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Computes a matrix-matrix or matrix-scalar difference.
/// 
/// ## Parameters
/// * src1: First source matrix or scalar.
/// * src2: Second source matrix or scalar. Matrix should have the same size and type as src1 .
/// * dst: Destination matrix that has the same size and number of channels as the input array(s).
/// The depth is defined by dtype or src1 depth.
/// * mask: Optional operation mask, 8-bit single channel array, that specifies elements of the
/// destination array to be changed. The mask can be used only with single channel images.
/// * dtype: Optional depth of the output array.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// subtract
/// 
/// ## C++ default parameters
/// * mask: noArray()
/// * dtype: -1
/// * stream: Stream::Null()
#[inline]
pub fn subtract(src1: &dyn core::ToInputArray, src2: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, mask: &dyn core::ToInputArray, dtype: i32, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	input_array_arg!(src2);
	output_array_arg!(dst);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_subtract_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__InputArrayR_int_StreamR(src1.as_raw__InputArray(), src2.as_raw__InputArray(), dst.as_raw__OutputArray(), mask.as_raw__InputArray(), dtype, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Returns the sum of matrix elements.
/// 
/// ## Parameters
/// * src: Source image of any depth except for CV_64F .
/// * mask: optional operation mask; it must have the same size as src1 and CV_8UC1 type.
/// ## See also
/// sum
/// 
/// ## C++ default parameters
/// * mask: noArray()
#[inline]
pub fn sum(src: &dyn core::ToInputArray, mask: &dyn core::ToInputArray) -> Result<core::Scalar> {
	input_array_arg!(src);
	input_array_arg!(mask);
	let ret = unsafe { sys::cv_cuda_sum_const__InputArrayR_const__InputArrayR(src.as_raw__InputArray(), mask.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Applies a fixed-level threshold to each array element.
/// 
/// ## Parameters
/// * src: Source array (single-channel).
/// * dst: Destination array with the same size and type as src .
/// * thresh: Threshold value.
/// * maxval: Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.
/// * type: Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
/// threshold types are not supported.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// threshold
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn threshold(src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, thresh: f64, maxval: f64, typ: i32, stream: &mut core::Stream) -> Result<f64> {
	input_array_arg!(src);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_threshold_const__InputArrayR_const__OutputArrayR_double_double_int_StreamR(src.as_raw__InputArray(), dst.as_raw__OutputArray(), thresh, maxval, typ, stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Transposes a matrix.
/// 
/// ## Parameters
/// * src1: Source matrix. 1-, 4-, 8-byte element sizes are supported for now.
/// * dst: Destination matrix.
/// * stream: Stream for the asynchronous version.
/// ## See also
/// transpose
/// 
/// ## C++ default parameters
/// * stream: Stream::Null()
#[inline]
pub fn transpose(src1: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
	input_array_arg!(src1);
	output_array_arg!(dst);
	let ret = unsafe { sys::cv_cuda_transpose_const__InputArrayR_const__OutputArrayR_StreamR(src1.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
	Ok(ret)
}

/// Base class for convolution (or cross-correlation) operator. :
pub trait ConvolutionConst: core::AlgorithmTraitConst {
	fn as_raw_Convolution(&self) -> *const c_void;

}

pub trait Convolution: core::AlgorithmTrait + crate::cudaarithm::ConvolutionConst {
	fn as_raw_mut_Convolution(&mut self) -> *mut c_void;

	/// Computes a convolution (or cross-correlation) of two images.
	/// 
	/// ## Parameters
	/// * image: Source image. Only CV_32FC1 images are supported for now.
	/// * templ: Template image. The size is not greater than the image size. The type is the same as
	/// image .
	/// * result: Result image. If image is *W x H* and templ is *w x h*, then result must be *W-w+1 x
	/// H-h+1*.
	/// * ccorr: Flags to evaluate cross-correlation instead of convolution.
	/// * stream: Stream for the asynchronous version.
	/// 
	/// ## C++ default parameters
	/// * ccorr: false
	/// * stream: Stream::Null()
	#[inline]
	fn convolve(&mut self, image: &dyn core::ToInputArray, templ: &dyn core::ToInputArray, result: &mut dyn core::ToOutputArray, ccorr: bool, stream: &mut core::Stream) -> Result<()> {
		input_array_arg!(image);
		input_array_arg!(templ);
		output_array_arg!(result);
		let ret = unsafe { sys::cv_cuda_Convolution_convolve_const__InputArrayR_const__InputArrayR_const__OutputArrayR_bool_StreamR(self.as_raw_mut_Convolution(), image.as_raw__InputArray(), templ.as_raw__InputArray(), result.as_raw__OutputArray(), ccorr, stream.as_raw_mut_Stream()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Base class for DFT operator as a cv::Algorithm. :
pub trait DFTConst: core::AlgorithmTraitConst {
	fn as_raw_DFT(&self) -> *const c_void;

}

pub trait DFT: core::AlgorithmTrait + crate::cudaarithm::DFTConst {
	fn as_raw_mut_DFT(&mut self) -> *mut c_void;

	/// Computes an FFT of a given image.
	/// 
	/// ## Parameters
	/// * image: Source image. Only CV_32FC1 images are supported for now.
	/// * result: Result image.
	/// * stream: Stream for the asynchronous version.
	/// 
	/// ## C++ default parameters
	/// * stream: Stream::Null()
	#[inline]
	fn compute(&mut self, image: &dyn core::ToInputArray, result: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
		input_array_arg!(image);
		output_array_arg!(result);
		let ret = unsafe { sys::cv_cuda_DFT_compute_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_DFT(), image.as_raw__InputArray(), result.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Base class for transform using lookup table.
pub trait LookUpTableConst: core::AlgorithmTraitConst {
	fn as_raw_LookUpTable(&self) -> *const c_void;

}

pub trait LookUpTable: core::AlgorithmTrait + crate::cudaarithm::LookUpTableConst {
	fn as_raw_mut_LookUpTable(&mut self) -> *mut c_void;

	/// Transforms the source matrix into the destination matrix using the given look-up table:
	/// dst(I) = lut(src(I)) .
	/// 
	/// ## Parameters
	/// * src: Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.
	/// * dst: Destination matrix.
	/// * stream: Stream for the asynchronous version.
	/// 
	/// ## C++ default parameters
	/// * stream: Stream::Null()
	#[inline]
	fn transform(&mut self, src: &dyn core::ToInputArray, dst: &mut dyn core::ToOutputArray, stream: &mut core::Stream) -> Result<()> {
		input_array_arg!(src);
		output_array_arg!(dst);
		let ret = unsafe { sys::cv_cuda_LookUpTable_transform_const__InputArrayR_const__OutputArrayR_StreamR(self.as_raw_mut_LookUpTable(), src.as_raw__InputArray(), dst.as_raw__OutputArray(), stream.as_raw_mut_Stream()) }.into_result()?;
		Ok(ret)
	}
	
}