1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
#![allow(
	unused_parens,
	clippy::excessive_precision,
	clippy::missing_safety_doc,
	clippy::not_unsafe_ptr_arg_deref,
	clippy::should_implement_trait,
	clippy::too_many_arguments,
	clippy::unused_unit,
)]
//! # Custom Calibration Pattern for 3D reconstruction
use crate::{mod_prelude::*, core, sys, types};
pub mod prelude {
	pub use { super::CustomPatternTraitConst, super::CustomPatternTrait, super::RandomPatternCornerFinderTraitConst, super::RandomPatternCornerFinderTrait, super::RandomPatternGeneratorTraitConst, super::RandomPatternGeneratorTrait, super::MultiCameraCalibration_edgeTraitConst, super::MultiCameraCalibration_edgeTrait, super::MultiCameraCalibration_vertexTraitConst, super::MultiCameraCalibration_vertexTrait, super::MultiCameraCalibrationTraitConst, super::MultiCameraCalibrationTrait };
}

pub const CALIB_FIX_CENTER: i32 = 256;
pub const CALIB_FIX_GAMMA: i32 = 128;
pub const CALIB_FIX_K1: i32 = 4;
pub const CALIB_FIX_K2: i32 = 8;
pub const CALIB_FIX_P1: i32 = 16;
pub const CALIB_FIX_P2: i32 = 32;
pub const CALIB_FIX_SKEW: i32 = 2;
pub const CALIB_FIX_XI: i32 = 64;
pub const CALIB_USE_GUESS: i32 = 1;
pub const HEAD: i32 = -1;
pub const INVALID: i32 = -2;
pub const MultiCameraCalibration_OMNIDIRECTIONAL: i32 = 1;
pub const MultiCameraCalibration_PINHOLE: i32 = 0;
pub const RECTIFY_CYLINDRICAL: i32 = 2;
pub const RECTIFY_LONGLATI: i32 = 3;
pub const RECTIFY_PERSPECTIVE: i32 = 1;
pub const RECTIFY_STEREOGRAPHIC: i32 = 4;
pub const XYZ: i32 = 2;
pub const XYZRGB: i32 = 1;
/// Perform omnidirectional camera calibration, the default depth of outputs is CV_64F.
/// 
/// ## Parameters
/// * objectPoints: Vector of vector of Vec3f object points in world (pattern) coordinate.
/// It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.
/// * imagePoints: Vector of vector of Vec2f corresponding image points of objectPoints. It must be the same
/// size and the same type with objectPoints.
/// * size: Image size of calibration images.
/// * K: Output calibrated camera matrix.
/// * xi: Output parameter xi for CMei's model
/// * D: Output distortion parameters ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29)
/// * rvecs: Output rotations for each calibration images
/// * tvecs: Output translation for each calibration images
/// * flags: The flags that control calibrate
/// * criteria: Termination criteria for optimization
/// * idx: Indices of images that pass initialization, which are really used in calibration. So the size of rvecs is the
/// same as idx.total().
/// 
/// ## C++ default parameters
/// * idx: noArray()
#[inline]
pub fn calibrate(object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, size: core::Size, k: &mut dyn core::ToInputOutputArray, xi: &mut dyn core::ToInputOutputArray, d: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria, idx: &mut dyn core::ToOutputArray) -> Result<f64> {
	input_array_arg!(object_points);
	input_array_arg!(image_points);
	input_output_array_arg!(k);
	input_output_array_arg!(xi);
	input_output_array_arg!(d);
	output_array_arg!(rvecs);
	output_array_arg!(tvecs);
	output_array_arg!(idx);
	let ret = unsafe { sys::cv_omnidir_calibrate_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), size.opencv_as_extern(), k.as_raw__InputOutputArray(), xi.as_raw__InputOutputArray(), d.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), idx.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R.
/// It output two maps that are used for cv::remap(). If D is empty then zero distortion is used,
/// if R or P is empty then identity matrices are used.
/// 
/// ## Parameters
/// * K: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%20s%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%20%5F1%20%5Cend%7Bbmatrix%7D), with depth CV_32F or CV_64F
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29), with depth CV_32F or CV_64F
/// * xi: The parameter xi for CMei's model
/// * R: Rotation transform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3, with depth CV_32F or CV_64F
/// * P: New camera matrix (3x3) or new projection matrix (3x4)
/// * size: Undistorted image size.
/// * m1type: Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
/// for details.
/// * map1: The first output map.
/// * map2: The second output map.
/// * flags: Flags indicates the rectification type,  RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
/// are supported.
#[inline]
pub fn init_undistort_rectify_map(k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, xi: &dyn core::ToInputArray, r: &dyn core::ToInputArray, p: &dyn core::ToInputArray, size: core::Size, m1type: i32, map1: &mut dyn core::ToOutputArray, map2: &mut dyn core::ToOutputArray, flags: i32) -> Result<()> {
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(xi);
	input_array_arg!(r);
	input_array_arg!(p);
	output_array_arg!(map1);
	output_array_arg!(map2);
	let ret = unsafe { sys::cv_omnidir_initUndistortRectifyMap_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const_SizeR_int_const__OutputArrayR_const__OutputArrayR_int(k.as_raw__InputArray(), d.as_raw__InputArray(), xi.as_raw__InputArray(), r.as_raw__InputArray(), p.as_raw__InputArray(), &size, m1type, map1.as_raw__OutputArray(), map2.as_raw__OutputArray(), flags) }.into_result()?;
	Ok(ret)
}

/// Projects points for omnidirectional camera using CMei's model
/// 
/// ## Parameters
/// * objectPoints: Object points in world coordinate, vector of vector of Vec3f or Mat of
/// 1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable.
/// * imagePoints: Output array of image points, vector of vector of Vec2f or
/// 1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable.
/// * rvec: vector of rotation between world coordinate and camera coordinate, i.e., om
/// * tvec: vector of translation between pattern coordinate and camera coordinate
/// * K: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%20s%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%20%5F1%20%5Cend%7Bbmatrix%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29).
/// * xi: The parameter xi for CMei's model
/// * jacobian: Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of
/// image pixel points wrt parameters including ![inline formula](https://latex.codecogs.com/png.latex?om%2C%20T%2C%20f%5Fx%2C%20f%5Fy%2C%20s%2C%20c%5Fx%2C%20c%5Fy%2C%20xi%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2).
/// This matrix will be used in calibration by optimization.
/// 
/// The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic
/// and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing
/// contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters.
/// 
/// ## Overloaded parameters
/// 
/// ## C++ default parameters
/// * jacobian: noArray()
#[inline]
pub fn project_points_1(object_points: &dyn core::ToInputArray, image_points: &mut dyn core::ToOutputArray, affine: core::Affine3d, k: &dyn core::ToInputArray, xi: f64, d: &dyn core::ToInputArray, jacobian: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(object_points);
	output_array_arg!(image_points);
	input_array_arg!(k);
	input_array_arg!(d);
	output_array_arg!(jacobian);
	let ret = unsafe { sys::cv_omnidir_projectPoints_const__InputArrayR_const__OutputArrayR_const_Affine3dR_const__InputArrayR_double_const__InputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), &affine, k.as_raw__InputArray(), xi, d.as_raw__InputArray(), jacobian.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Projects points for omnidirectional camera using CMei's model
/// 
/// ## Parameters
/// * objectPoints: Object points in world coordinate, vector of vector of Vec3f or Mat of
/// 1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable.
/// * imagePoints: Output array of image points, vector of vector of Vec2f or
/// 1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable.
/// * rvec: vector of rotation between world coordinate and camera coordinate, i.e., om
/// * tvec: vector of translation between pattern coordinate and camera coordinate
/// * K: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%20s%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%20%5F1%20%5Cend%7Bbmatrix%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29).
/// * xi: The parameter xi for CMei's model
/// * jacobian: Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of
/// image pixel points wrt parameters including ![inline formula](https://latex.codecogs.com/png.latex?om%2C%20T%2C%20f%5Fx%2C%20f%5Fy%2C%20s%2C%20c%5Fx%2C%20c%5Fy%2C%20xi%2C%20k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2).
/// This matrix will be used in calibration by optimization.
/// 
/// The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic
/// and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing
/// contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters.
/// 
/// ## C++ default parameters
/// * jacobian: noArray()
#[inline]
pub fn project_points(object_points: &dyn core::ToInputArray, image_points: &mut dyn core::ToOutputArray, rvec: &dyn core::ToInputArray, tvec: &dyn core::ToInputArray, k: &dyn core::ToInputArray, xi: f64, d: &dyn core::ToInputArray, jacobian: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(object_points);
	output_array_arg!(image_points);
	input_array_arg!(rvec);
	input_array_arg!(tvec);
	input_array_arg!(k);
	input_array_arg!(d);
	output_array_arg!(jacobian);
	let ret = unsafe { sys::cv_omnidir_projectPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_double_const__InputArrayR_const__OutputArrayR(object_points.as_raw__InputArray(), image_points.as_raw__OutputArray(), rvec.as_raw__InputArray(), tvec.as_raw__InputArray(), k.as_raw__InputArray(), xi, d.as_raw__InputArray(), jacobian.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two
/// cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F.
/// 
/// ## Parameters
/// * objectPoints: Object points in world (pattern) coordinate. Its type is vector<vector<Vec3f> >.
/// It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable.
/// * imagePoints1: The corresponding image points of the first camera, with type vector<vector<Vec2f> >.
/// It must be the same size and the same type as objectPoints.
/// * imagePoints2: The corresponding image points of the second camera, with type vector<vector<Vec2f> >.
/// It must be the same size and the same type as objectPoints.
/// * imageSize1: Image size of calibration images of the first camera.
/// * imageSize2: Image size of calibration images of the second camera.
/// * K1: Output camera matrix for the first camera.
/// * xi1: Output parameter xi of Mei's model for the first camera
/// * D1: Output distortion parameters ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29) for the first camera
/// * K2: Output camera matrix for the first camera.
/// * xi2: Output parameter xi of CMei's model for the second camera
/// * D2: Output distortion parameters ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29) for the second camera
/// * rvec: Output rotation between the first and second camera
/// * tvec: Output translation between the first and second camera
/// * rvecsL: Output rotation for each image of the first camera
/// * tvecsL: Output translation for each image of the first camera
/// * flags: The flags that control stereoCalibrate
/// * criteria: Termination criteria for optimization
/// * idx: Indices of image pairs that pass initialization, which are really used in calibration. So the size of rvecs is the
/// same as idx.total().
/// @
/// 
/// ## C++ default parameters
/// * idx: noArray()
#[inline]
pub fn stereo_calibrate(object_points: &mut dyn core::ToInputOutputArray, image_points1: &mut dyn core::ToInputOutputArray, image_points2: &mut dyn core::ToInputOutputArray, image_size1: core::Size, image_size2: core::Size, k1: &mut dyn core::ToInputOutputArray, xi1: &mut dyn core::ToInputOutputArray, d1: &mut dyn core::ToInputOutputArray, k2: &mut dyn core::ToInputOutputArray, xi2: &mut dyn core::ToInputOutputArray, d2: &mut dyn core::ToInputOutputArray, rvec: &mut dyn core::ToOutputArray, tvec: &mut dyn core::ToOutputArray, rvecs_l: &mut dyn core::ToOutputArray, tvecs_l: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria, idx: &mut dyn core::ToOutputArray) -> Result<f64> {
	input_output_array_arg!(object_points);
	input_output_array_arg!(image_points1);
	input_output_array_arg!(image_points2);
	input_output_array_arg!(k1);
	input_output_array_arg!(xi1);
	input_output_array_arg!(d1);
	input_output_array_arg!(k2);
	input_output_array_arg!(xi2);
	input_output_array_arg!(d2);
	output_array_arg!(rvec);
	output_array_arg!(tvec);
	output_array_arg!(rvecs_l);
	output_array_arg!(tvecs_l);
	output_array_arg!(idx);
	let ret = unsafe { sys::cv_omnidir_stereoCalibrate_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const_SizeR_const_SizeR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria_const__OutputArrayR(object_points.as_raw__InputOutputArray(), image_points1.as_raw__InputOutputArray(), image_points2.as_raw__InputOutputArray(), &image_size1, &image_size2, k1.as_raw__InputOutputArray(), xi1.as_raw__InputOutputArray(), d1.as_raw__InputOutputArray(), k2.as_raw__InputOutputArray(), xi2.as_raw__InputOutputArray(), d2.as_raw__InputOutputArray(), rvec.as_raw__OutputArray(), tvec.as_raw__OutputArray(), rvecs_l.as_raw__OutputArray(), tvecs_l.as_raw__OutputArray(), flags, criteria.opencv_as_extern(), idx.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Stereo 3D reconstruction from a pair of images
/// 
/// ## Parameters
/// * image1: The first input image
/// * image2: The second input image
/// * K1: Input camera matrix of the first camera
/// * D1: Input distortion parameters ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29) for the first camera
/// * xi1: Input parameter xi for the first camera for CMei's model
/// * K2: Input camera matrix of the second camera
/// * D2: Input distortion parameters ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29) for the second camera
/// * xi2: Input parameter xi for the second camera for CMei's model
/// * R: Rotation between the first and second camera
/// * T: Translation between the first and second camera
/// * flag: Flag of rectification type, RECTIFY_PERSPECTIVE or RECTIFY_LONGLATI
/// * numDisparities: The parameter 'numDisparities' in StereoSGBM, see StereoSGBM for details.
/// * SADWindowSize: The parameter 'SADWindowSize' in StereoSGBM, see StereoSGBM for details.
/// * disparity: Disparity map generated by stereo matching
/// * image1Rec: Rectified image of the first image
/// * image2Rec: rectified image of the second image
/// * newSize: Image size of rectified image, see omnidir::undistortImage
/// * Knew: New camera matrix of rectified image, see omnidir::undistortImage
/// * pointCloud: Point cloud of 3D reconstruction, with type CV_64FC3
/// * pointType: Point cloud type, it can be XYZRGB or XYZ
/// 
/// ## C++ default parameters
/// * new_size: Size()
/// * knew: cv::noArray()
/// * point_cloud: cv::noArray()
/// * point_type: XYZRGB
#[inline]
pub fn stereo_reconstruct(image1: &dyn core::ToInputArray, image2: &dyn core::ToInputArray, k1: &dyn core::ToInputArray, d1: &dyn core::ToInputArray, xi1: &dyn core::ToInputArray, k2: &dyn core::ToInputArray, d2: &dyn core::ToInputArray, xi2: &dyn core::ToInputArray, r: &dyn core::ToInputArray, t: &dyn core::ToInputArray, flag: i32, num_disparities: i32, sad_window_size: i32, disparity: &mut dyn core::ToOutputArray, image1_rec: &mut dyn core::ToOutputArray, image2_rec: &mut dyn core::ToOutputArray, new_size: core::Size, knew: &dyn core::ToInputArray, point_cloud: &mut dyn core::ToOutputArray, point_type: i32) -> Result<()> {
	input_array_arg!(image1);
	input_array_arg!(image2);
	input_array_arg!(k1);
	input_array_arg!(d1);
	input_array_arg!(xi1);
	input_array_arg!(k2);
	input_array_arg!(d2);
	input_array_arg!(xi2);
	input_array_arg!(r);
	input_array_arg!(t);
	output_array_arg!(disparity);
	output_array_arg!(image1_rec);
	output_array_arg!(image2_rec);
	input_array_arg!(knew);
	output_array_arg!(point_cloud);
	let ret = unsafe { sys::cv_omnidir_stereoReconstruct_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_int_int_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR_const_SizeR_const__InputArrayR_const__OutputArrayR_int(image1.as_raw__InputArray(), image2.as_raw__InputArray(), k1.as_raw__InputArray(), d1.as_raw__InputArray(), xi1.as_raw__InputArray(), k2.as_raw__InputArray(), d2.as_raw__InputArray(), xi2.as_raw__InputArray(), r.as_raw__InputArray(), t.as_raw__InputArray(), flag, num_disparities, sad_window_size, disparity.as_raw__OutputArray(), image1_rec.as_raw__OutputArray(), image2_rec.as_raw__OutputArray(), &new_size, knew.as_raw__InputArray(), point_cloud.as_raw__OutputArray(), point_type) }.into_result()?;
	Ok(ret)
}

/// Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras
/// 
/// ## Parameters
/// * R: Rotation between the first and second camera
/// * T: Translation between the first and second camera
/// * R1: Output 3x3 rotation matrix for the first camera
/// * R2: Output 3x3 rotation matrix for the second camera
#[inline]
pub fn stereo_rectify(r: &dyn core::ToInputArray, t: &dyn core::ToInputArray, r1: &mut dyn core::ToOutputArray, r2: &mut dyn core::ToOutputArray) -> Result<()> {
	input_array_arg!(r);
	input_array_arg!(t);
	output_array_arg!(r1);
	output_array_arg!(r2);
	let ret = unsafe { sys::cv_omnidir_stereoRectify_const__InputArrayR_const__InputArrayR_const__OutputArrayR_const__OutputArrayR(r.as_raw__InputArray(), t.as_raw__InputArray(), r1.as_raw__OutputArray(), r2.as_raw__OutputArray()) }.into_result()?;
	Ok(ret)
}

/// Undistort omnidirectional images to perspective images
/// 
/// ## Parameters
/// * distorted: The input omnidirectional image.
/// * undistorted: The output undistorted image.
/// * K: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%20s%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%20%5F1%20%5Cend%7Bbmatrix%7D).
/// * D: Input vector of distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29).
/// * xi: The parameter xi for CMei's model.
/// * flags: Flags indicates the rectification type,  RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC
/// * Knew: Camera matrix of the distorted image. If it is not assigned, it is just K.
/// * new_size: The new image size. By default, it is the size of distorted.
/// * R: Rotation matrix between the input and output images. By default, it is identity matrix.
/// 
/// ## C++ default parameters
/// * knew: cv::noArray()
/// * new_size: Size()
/// * r: Mat::eye(3,3,CV_64F)
#[inline]
pub fn undistort_image(distorted: &dyn core::ToInputArray, undistorted: &mut dyn core::ToOutputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, xi: &dyn core::ToInputArray, flags: i32, knew: &dyn core::ToInputArray, new_size: core::Size, r: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(distorted);
	output_array_arg!(undistorted);
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(xi);
	input_array_arg!(knew);
	input_array_arg!(r);
	let ret = unsafe { sys::cv_omnidir_undistortImage_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_int_const__InputArrayR_const_SizeR_const__InputArrayR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), xi.as_raw__InputArray(), flags, knew.as_raw__InputArray(), &new_size, r.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

/// Undistort 2D image points for omnidirectional camera using CMei's model
/// 
/// ## Parameters
/// * distorted: Array of distorted image points, vector of Vec2f
/// or 1xN/Nx1 2-channel Mat of type CV_32F, 64F depth is also acceptable
/// * K: Camera matrix ![inline formula](https://latex.codecogs.com/png.latex?K%20%3D%20%5Cbegin%7Bbmatrix%7D%20f%5Fx%20%26%20s%20%26%20c%5Fx%5C%5C%200%20%26%20f%5Fy%20%26%20c%5Fy%5C%5C%200%20%26%200%20%26%20%5F1%20%5Cend%7Bbmatrix%7D).
/// * D: Distortion coefficients ![inline formula](https://latex.codecogs.com/png.latex?%28k%5F1%2C%20k%5F2%2C%20p%5F1%2C%20p%5F2%29).
/// * xi: The parameter xi for CMei's model
/// * R: Rotation trainsform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3
/// 1-channel or 1x1 3-channel
/// * undistorted: array of normalized object points, vector of Vec2f/Vec2d or 1xN/Nx1 2-channel Mat with the same
/// depth of distorted points.
#[inline]
pub fn undistort_points(distorted: &dyn core::ToInputArray, undistorted: &mut dyn core::ToOutputArray, k: &dyn core::ToInputArray, d: &dyn core::ToInputArray, xi: &dyn core::ToInputArray, r: &dyn core::ToInputArray) -> Result<()> {
	input_array_arg!(distorted);
	output_array_arg!(undistorted);
	input_array_arg!(k);
	input_array_arg!(d);
	input_array_arg!(xi);
	input_array_arg!(r);
	let ret = unsafe { sys::cv_omnidir_undistortPoints_const__InputArrayR_const__OutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR(distorted.as_raw__InputArray(), undistorted.as_raw__OutputArray(), k.as_raw__InputArray(), d.as_raw__InputArray(), xi.as_raw__InputArray(), r.as_raw__InputArray()) }.into_result()?;
	Ok(ret)
}

pub trait CustomPatternTraitConst: core::AlgorithmTraitConst {
	fn as_raw_CustomPattern(&self) -> *const c_void;

}

pub trait CustomPatternTrait: core::AlgorithmTrait + crate::ccalib::CustomPatternTraitConst {
	fn as_raw_mut_CustomPattern(&mut self) -> *mut c_void;

	/// ## C++ default parameters
	/// * output: noArray()
	#[inline]
	fn create(&mut self, pattern: &dyn core::ToInputArray, board_size: core::Size2f, output: &mut dyn core::ToOutputArray) -> Result<bool> {
		input_array_arg!(pattern);
		output_array_arg!(output);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_create_const__InputArrayR_const_Size2f_const__OutputArrayR(self.as_raw_mut_CustomPattern(), pattern.as_raw__InputArray(), board_size.opencv_as_extern(), output.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * ratio: 0.7
	/// * proj_error: 8.0
	/// * refine_position: false
	/// * out: noArray()
	/// * h: noArray()
	/// * pattern_corners: noArray()
	#[inline]
	fn find_pattern(&mut self, image: &dyn core::ToInputArray, matched_features: &mut dyn core::ToOutputArray, pattern_points: &mut dyn core::ToOutputArray, ratio: f64, proj_error: f64, refine_position: bool, out: &mut dyn core::ToOutputArray, h: &mut dyn core::ToOutputArray, pattern_corners: &mut dyn core::ToOutputArray) -> Result<bool> {
		input_array_arg!(image);
		output_array_arg!(matched_features);
		output_array_arg!(pattern_points);
		output_array_arg!(out);
		output_array_arg!(h);
		output_array_arg!(pattern_corners);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_findPattern_const__InputArrayR_const__OutputArrayR_const__OutputArrayR_const_double_const_double_const_bool_const__OutputArrayR_const__OutputArrayR_const__OutputArrayR(self.as_raw_mut_CustomPattern(), image.as_raw__InputArray(), matched_features.as_raw__OutputArray(), pattern_points.as_raw__OutputArray(), ratio, proj_error, refine_position, out.as_raw__OutputArray(), h.as_raw__OutputArray(), pattern_corners.as_raw__OutputArray()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn is_initialized(&mut self) -> Result<bool> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_isInitialized(self.as_raw_mut_CustomPattern()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_pattern_points(&mut self, original_points: &mut core::Vector<core::KeyPoint>) -> Result<()> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_getPatternPoints_vector_KeyPoint_R(self.as_raw_mut_CustomPattern(), original_points.as_raw_mut_VectorOfKeyPoint()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_pixel_size(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_getPixelSize(self.as_raw_mut_CustomPattern()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_feature_detector(&mut self, mut feature_detector: core::Ptr<crate::features2d::Feature2D>) -> Result<bool> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_setFeatureDetector_Ptr_Feature2D_(self.as_raw_mut_CustomPattern(), feature_detector.as_raw_mut_PtrOfFeature2D()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_descriptor_extractor(&mut self, mut extractor: core::Ptr<crate::features2d::Feature2D>) -> Result<bool> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_setDescriptorExtractor_Ptr_Feature2D_(self.as_raw_mut_CustomPattern(), extractor.as_raw_mut_PtrOfFeature2D()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn set_descriptor_matcher(&mut self, mut matcher: core::Ptr<dyn crate::features2d::DescriptorMatcher>) -> Result<bool> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_setDescriptorMatcher_Ptr_DescriptorMatcher_(self.as_raw_mut_CustomPattern(), matcher.as_raw_mut_PtrOfDescriptorMatcher()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_feature_detector(&mut self) -> Result<core::Ptr<crate::features2d::Feature2D>> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_getFeatureDetector(self.as_raw_mut_CustomPattern()) }.into_result()?;
		let ret = unsafe { core::Ptr::<crate::features2d::Feature2D>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	fn get_descriptor_extractor(&mut self) -> Result<core::Ptr<crate::features2d::Feature2D>> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_getDescriptorExtractor(self.as_raw_mut_CustomPattern()) }.into_result()?;
		let ret = unsafe { core::Ptr::<crate::features2d::Feature2D>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	fn get_descriptor_matcher(&mut self) -> Result<core::Ptr<dyn crate::features2d::DescriptorMatcher>> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_getDescriptorMatcher(self.as_raw_mut_CustomPattern()) }.into_result()?;
		let ret = unsafe { core::Ptr::<dyn crate::features2d::DescriptorMatcher>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30,DBL_EPSILON)
	#[inline]
	fn calibrate(&mut self, object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, image_size: core::Size, camera_matrix: &mut dyn core::ToInputOutputArray, dist_coeffs: &mut dyn core::ToInputOutputArray, rvecs: &mut dyn core::ToOutputArray, tvecs: &mut dyn core::ToOutputArray, flags: i32, criteria: core::TermCriteria) -> Result<f64> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_output_array_arg!(camera_matrix);
		input_output_array_arg!(dist_coeffs);
		output_array_arg!(rvecs);
		output_array_arg!(tvecs);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_calibrate_const__InputArrayR_const__InputArrayR_Size_const__InputOutputArrayR_const__InputOutputArrayR_const__OutputArrayR_const__OutputArrayR_int_TermCriteria(self.as_raw_mut_CustomPattern(), object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), image_size.opencv_as_extern(), camera_matrix.as_raw__InputOutputArray(), dist_coeffs.as_raw__InputOutputArray(), rvecs.as_raw__OutputArray(), tvecs.as_raw__OutputArray(), flags, criteria.opencv_as_extern()) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	fn find_rt(&mut self, object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool, flags: i32) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_findRt_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool_int(self.as_raw_mut_CustomPattern(), object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, flags) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	fn find_rt_1(&mut self, image: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool, flags: i32) -> Result<bool> {
		input_array_arg!(image);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_findRt_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool_int(self.as_raw_mut_CustomPattern(), image.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, flags) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * iterations_count: 100
	/// * reprojection_error: 8.0
	/// * min_inliers_count: 100
	/// * inliers: noArray()
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	fn find_rt_ransac(&mut self, object_points: &dyn core::ToInputArray, image_points: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool, iterations_count: i32, reprojection_error: f32, min_inliers_count: i32, inliers: &mut dyn core::ToOutputArray, flags: i32) -> Result<bool> {
		input_array_arg!(object_points);
		input_array_arg!(image_points);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		output_array_arg!(inliers);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_findRtRANSAC_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool_int_float_int_const__OutputArrayR_int(self.as_raw_mut_CustomPattern(), object_points.as_raw__InputArray(), image_points.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, iterations_count, reprojection_error, min_inliers_count, inliers.as_raw__OutputArray(), flags) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * use_extrinsic_guess: false
	/// * iterations_count: 100
	/// * reprojection_error: 8.0
	/// * min_inliers_count: 100
	/// * inliers: noArray()
	/// * flags: SOLVEPNP_ITERATIVE
	#[inline]
	fn find_rt_ransac_1(&mut self, image: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, rvec: &mut dyn core::ToInputOutputArray, tvec: &mut dyn core::ToInputOutputArray, use_extrinsic_guess: bool, iterations_count: i32, reprojection_error: f32, min_inliers_count: i32, inliers: &mut dyn core::ToOutputArray, flags: i32) -> Result<bool> {
		input_array_arg!(image);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		input_output_array_arg!(rvec);
		input_output_array_arg!(tvec);
		output_array_arg!(inliers);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_findRtRANSAC_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputOutputArrayR_const__InputOutputArrayR_bool_int_float_int_const__OutputArrayR_int(self.as_raw_mut_CustomPattern(), image.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), rvec.as_raw__InputOutputArray(), tvec.as_raw__InputOutputArray(), use_extrinsic_guess, iterations_count, reprojection_error, min_inliers_count, inliers.as_raw__OutputArray(), flags) }.into_result()?;
		Ok(ret)
	}
	
	/// ## C++ default parameters
	/// * axis_length: 3
	/// * axis_width: 2
	#[inline]
	fn draw_orientation(&mut self, image: &mut dyn core::ToInputOutputArray, tvec: &dyn core::ToInputArray, rvec: &dyn core::ToInputArray, camera_matrix: &dyn core::ToInputArray, dist_coeffs: &dyn core::ToInputArray, axis_length: f64, axis_width: i32) -> Result<()> {
		input_output_array_arg!(image);
		input_array_arg!(tvec);
		input_array_arg!(rvec);
		input_array_arg!(camera_matrix);
		input_array_arg!(dist_coeffs);
		let ret = unsafe { sys::cv_ccalib_CustomPattern_drawOrientation_const__InputOutputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_const__InputArrayR_double_int(self.as_raw_mut_CustomPattern(), image.as_raw__InputOutputArray(), tvec.as_raw__InputArray(), rvec.as_raw__InputArray(), camera_matrix.as_raw__InputArray(), dist_coeffs.as_raw__InputArray(), axis_length, axis_width) }.into_result()?;
		Ok(ret)
	}
	
}

pub struct CustomPattern {
	ptr: *mut c_void
}

opencv_type_boxed! { CustomPattern }

impl Drop for CustomPattern {
	fn drop(&mut self) {
		extern "C" { fn cv_CustomPattern_delete(instance: *mut c_void); }
		unsafe { cv_CustomPattern_delete(self.as_raw_mut_CustomPattern()) };
	}
}

unsafe impl Send for CustomPattern {}

impl core::AlgorithmTraitConst for CustomPattern {
	#[inline] fn as_raw_Algorithm(&self) -> *const c_void { self.as_raw() }
}

impl core::AlgorithmTrait for CustomPattern {
	#[inline] fn as_raw_mut_Algorithm(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl crate::ccalib::CustomPatternTraitConst for CustomPattern {
	#[inline] fn as_raw_CustomPattern(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::CustomPatternTrait for CustomPattern {
	#[inline] fn as_raw_mut_CustomPattern(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl CustomPattern {
	#[inline]
	pub fn default() -> Result<crate::ccalib::CustomPattern> {
		let ret = unsafe { sys::cv_ccalib_CustomPattern_CustomPattern() }.into_result()?;
		let ret = unsafe { crate::ccalib::CustomPattern::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

boxed_cast_base! { CustomPattern, core::Algorithm, cv_CustomPattern_to_Algorithm }

/// Class for multiple camera calibration that supports pinhole camera and omnidirection camera.
/// For omnidirectional camera model, please refer to omnidir.hpp in ccalib module.
/// It first calibrate each camera individually, then a bundle adjustment like optimization is applied to
/// refine extrinsic parameters. So far, it only support "random" pattern for calibration,
/// see randomPattern.hpp in ccalib module for details.
/// Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp
/// means that they are the same pattern that are photographed. cameraIdx should start from 0.
/// 
/// For more details, please refer to paper
///    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
///    Calibration Toolbox Using A Feature Descriptor-Based Calibration
///    Pattern", in IROS 2013.
pub trait MultiCameraCalibrationTraitConst {
	fn as_raw_MultiCameraCalibration(&self) -> *const c_void;

}

pub trait MultiCameraCalibrationTrait: crate::ccalib::MultiCameraCalibrationTraitConst {
	fn as_raw_mut_MultiCameraCalibration(&mut self) -> *mut c_void;

	#[inline]
	fn load_images(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_loadImages(self.as_raw_mut_MultiCameraCalibration()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn initialize(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_initialize(self.as_raw_mut_MultiCameraCalibration()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn optimize_extrinsics(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_optimizeExtrinsics(self.as_raw_mut_MultiCameraCalibration()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn run(&mut self) -> Result<f64> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_run(self.as_raw_mut_MultiCameraCalibration()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn write_parameters(&mut self, filename: &str) -> Result<()> {
		extern_container_arg!(filename);
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_writeParameters_const_stringR(self.as_raw_mut_MultiCameraCalibration(), filename.opencv_as_extern()) }.into_result()?;
		Ok(ret)
	}
	
}

/// Class for multiple camera calibration that supports pinhole camera and omnidirection camera.
/// For omnidirectional camera model, please refer to omnidir.hpp in ccalib module.
/// It first calibrate each camera individually, then a bundle adjustment like optimization is applied to
/// refine extrinsic parameters. So far, it only support "random" pattern for calibration,
/// see randomPattern.hpp in ccalib module for details.
/// Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp
/// means that they are the same pattern that are photographed. cameraIdx should start from 0.
/// 
/// For more details, please refer to paper
///    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
///    Calibration Toolbox Using A Feature Descriptor-Based Calibration
///    Pattern", in IROS 2013.
pub struct MultiCameraCalibration {
	ptr: *mut c_void
}

opencv_type_boxed! { MultiCameraCalibration }

impl Drop for MultiCameraCalibration {
	fn drop(&mut self) {
		extern "C" { fn cv_MultiCameraCalibration_delete(instance: *mut c_void); }
		unsafe { cv_MultiCameraCalibration_delete(self.as_raw_mut_MultiCameraCalibration()) };
	}
}

unsafe impl Send for MultiCameraCalibration {}

impl crate::ccalib::MultiCameraCalibrationTraitConst for MultiCameraCalibration {
	#[inline] fn as_raw_MultiCameraCalibration(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::MultiCameraCalibrationTrait for MultiCameraCalibration {
	#[inline] fn as_raw_mut_MultiCameraCalibration(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl MultiCameraCalibration {
	/// ## C++ default parameters
	/// * verbose: 0
	/// * show_extration: 0
	/// * n_mini_matches: 20
	/// * flags: 0
	/// * criteria: TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,200,1e-7)
	/// * detector: AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0,3,0.006f)
	/// * descriptor: AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0,3,0.006f)
	/// * matcher: DescriptorMatcher::create("BruteForce-L1")
	#[inline]
	pub fn new(camera_type: i32, n_cameras: i32, file_name: &str, pattern_width: f32, pattern_height: f32, verbose: i32, show_extration: i32, n_mini_matches: i32, flags: i32, criteria: core::TermCriteria, mut detector: core::Ptr<crate::features2d::Feature2D>, mut descriptor: core::Ptr<crate::features2d::Feature2D>, mut matcher: core::Ptr<dyn crate::features2d::DescriptorMatcher>) -> Result<crate::ccalib::MultiCameraCalibration> {
		extern_container_arg!(file_name);
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_MultiCameraCalibration_int_int_const_stringR_float_float_int_int_int_int_TermCriteria_Ptr_Feature2D__Ptr_Feature2D__Ptr_DescriptorMatcher_(camera_type, n_cameras, file_name.opencv_as_extern(), pattern_width, pattern_height, verbose, show_extration, n_mini_matches, flags, criteria.opencv_as_extern(), detector.as_raw_mut_PtrOfFeature2D(), descriptor.as_raw_mut_PtrOfFeature2D(), matcher.as_raw_mut_PtrOfDescriptorMatcher()) }.into_result()?;
		let ret = unsafe { crate::ccalib::MultiCameraCalibration::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

pub trait MultiCameraCalibration_edgeTraitConst {
	fn as_raw_MultiCameraCalibration_edge(&self) -> *const c_void;

	#[inline]
	fn camera_vertex(&self) -> i32 {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_getPropCameraVertex_const(self.as_raw_MultiCameraCalibration_edge()) };
		ret
	}
	
	#[inline]
	fn photo_vertex(&self) -> i32 {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_getPropPhotoVertex_const(self.as_raw_MultiCameraCalibration_edge()) };
		ret
	}
	
	#[inline]
	fn photo_index(&self) -> i32 {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_getPropPhotoIndex_const(self.as_raw_MultiCameraCalibration_edge()) };
		ret
	}
	
	#[inline]
	fn transform(&self) -> core::Mat {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_getPropTransform_const(self.as_raw_MultiCameraCalibration_edge()) };
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		ret
	}
	
}

pub trait MultiCameraCalibration_edgeTrait: crate::ccalib::MultiCameraCalibration_edgeTraitConst {
	fn as_raw_mut_MultiCameraCalibration_edge(&mut self) -> *mut c_void;

	#[inline]
	fn set_camera_vertex(&mut self, val: i32) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_setPropCameraVertex_int(self.as_raw_mut_MultiCameraCalibration_edge(), val) };
		ret
	}
	
	#[inline]
	fn set_photo_vertex(&mut self, val: i32) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_setPropPhotoVertex_int(self.as_raw_mut_MultiCameraCalibration_edge(), val) };
		ret
	}
	
	#[inline]
	fn set_photo_index(&mut self, val: i32) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_setPropPhotoIndex_int(self.as_raw_mut_MultiCameraCalibration_edge(), val) };
		ret
	}
	
	#[inline]
	fn set_transform(&mut self, mut val: core::Mat) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_setPropTransform_Mat(self.as_raw_mut_MultiCameraCalibration_edge(), val.as_raw_mut_Mat()) };
		ret
	}
	
}

pub struct MultiCameraCalibration_edge {
	ptr: *mut c_void
}

opencv_type_boxed! { MultiCameraCalibration_edge }

impl Drop for MultiCameraCalibration_edge {
	fn drop(&mut self) {
		extern "C" { fn cv_MultiCameraCalibration_edge_delete(instance: *mut c_void); }
		unsafe { cv_MultiCameraCalibration_edge_delete(self.as_raw_mut_MultiCameraCalibration_edge()) };
	}
}

unsafe impl Send for MultiCameraCalibration_edge {}

impl crate::ccalib::MultiCameraCalibration_edgeTraitConst for MultiCameraCalibration_edge {
	#[inline] fn as_raw_MultiCameraCalibration_edge(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::MultiCameraCalibration_edgeTrait for MultiCameraCalibration_edge {
	#[inline] fn as_raw_mut_MultiCameraCalibration_edge(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl MultiCameraCalibration_edge {
	#[inline]
	pub fn new(cv: i32, pv: i32, pi: i32, mut trans: core::Mat) -> Result<crate::ccalib::MultiCameraCalibration_edge> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_edge_edge_int_int_int_Mat(cv, pv, pi, trans.as_raw_mut_Mat()) }.into_result()?;
		let ret = unsafe { crate::ccalib::MultiCameraCalibration_edge::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

pub trait MultiCameraCalibration_vertexTraitConst {
	fn as_raw_MultiCameraCalibration_vertex(&self) -> *const c_void;

	#[inline]
	fn pose(&self) -> core::Mat {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_getPropPose_const(self.as_raw_MultiCameraCalibration_vertex()) };
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		ret
	}
	
	#[inline]
	fn timestamp(&self) -> i32 {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_getPropTimestamp_const(self.as_raw_MultiCameraCalibration_vertex()) };
		ret
	}
	
}

pub trait MultiCameraCalibration_vertexTrait: crate::ccalib::MultiCameraCalibration_vertexTraitConst {
	fn as_raw_mut_MultiCameraCalibration_vertex(&mut self) -> *mut c_void;

	#[inline]
	fn set_pose(&mut self, mut val: core::Mat) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_setPropPose_Mat(self.as_raw_mut_MultiCameraCalibration_vertex(), val.as_raw_mut_Mat()) };
		ret
	}
	
	#[inline]
	fn set_timestamp(&mut self, val: i32) {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_setPropTimestamp_int(self.as_raw_mut_MultiCameraCalibration_vertex(), val) };
		ret
	}
	
}

pub struct MultiCameraCalibration_vertex {
	ptr: *mut c_void
}

opencv_type_boxed! { MultiCameraCalibration_vertex }

impl Drop for MultiCameraCalibration_vertex {
	fn drop(&mut self) {
		extern "C" { fn cv_MultiCameraCalibration_vertex_delete(instance: *mut c_void); }
		unsafe { cv_MultiCameraCalibration_vertex_delete(self.as_raw_mut_MultiCameraCalibration_vertex()) };
	}
}

unsafe impl Send for MultiCameraCalibration_vertex {}

impl crate::ccalib::MultiCameraCalibration_vertexTraitConst for MultiCameraCalibration_vertex {
	#[inline] fn as_raw_MultiCameraCalibration_vertex(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::MultiCameraCalibration_vertexTrait for MultiCameraCalibration_vertex {
	#[inline] fn as_raw_mut_MultiCameraCalibration_vertex(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl MultiCameraCalibration_vertex {
	#[inline]
	pub fn new(mut po: core::Mat, ts: i32) -> Result<crate::ccalib::MultiCameraCalibration_vertex> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_vertex_Mat_int(po.as_raw_mut_Mat(), ts) }.into_result()?;
		let ret = unsafe { crate::ccalib::MultiCameraCalibration_vertex::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	pub fn default() -> Result<crate::ccalib::MultiCameraCalibration_vertex> {
		let ret = unsafe { sys::cv_multicalib_MultiCameraCalibration_vertex_vertex() }.into_result()?;
		let ret = unsafe { crate::ccalib::MultiCameraCalibration_vertex::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// Class for finding features points and corresponding 3D in world coordinate of
/// a "random" pattern, which can be to be used in calibration. It is useful when pattern is
/// partly occluded or only a part of pattern can be observed in multiple cameras calibration.
/// The pattern can be generated by RandomPatternGenerator class described in this file.
/// 
/// Please refer to paper
///    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
///    Calibration Toolbox Using A Feature Descriptor-Based Calibration
///    Pattern", in IROS 2013.
pub trait RandomPatternCornerFinderTraitConst {
	fn as_raw_RandomPatternCornerFinder(&self) -> *const c_void;

}

pub trait RandomPatternCornerFinderTrait: crate::ccalib::RandomPatternCornerFinderTraitConst {
	fn as_raw_mut_RandomPatternCornerFinder(&mut self) -> *mut c_void;

	#[inline]
	fn load_pattern(&mut self, pattern_image: &core::Mat) -> Result<()> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_loadPattern_const_MatR(self.as_raw_mut_RandomPatternCornerFinder(), pattern_image.as_raw_Mat()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn load_pattern_1(&mut self, pattern_image: &core::Mat, pattern_key_points: &core::Vector<core::KeyPoint>, pattern_descriptors: &core::Mat) -> Result<()> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_loadPattern_const_MatR_const_vector_KeyPoint_R_const_MatR(self.as_raw_mut_RandomPatternCornerFinder(), pattern_image.as_raw_Mat(), pattern_key_points.as_raw_VectorOfKeyPoint(), pattern_descriptors.as_raw_Mat()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn compute_object_image_points(&mut self, mut input_images: core::Vector<core::Mat>) -> Result<()> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_computeObjectImagePoints_vector_Mat_(self.as_raw_mut_RandomPatternCornerFinder(), input_images.as_raw_mut_VectorOfMat()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn compute_object_image_points_for_single(&mut self, mut input_image: core::Mat) -> Result<core::Vector<core::Mat>> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_computeObjectImagePointsForSingle_Mat(self.as_raw_mut_RandomPatternCornerFinder(), input_image.as_raw_mut_Mat()) }.into_result()?;
		let ret = unsafe { core::Vector::<core::Mat>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	fn get_object_points(&mut self) -> Result<core::Vector<core::Mat>> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_getObjectPoints(self.as_raw_mut_RandomPatternCornerFinder()) }.into_result()?;
		let ret = unsafe { core::Vector::<core::Mat>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
	#[inline]
	fn get_image_points(&mut self) -> Result<core::Vector<core::Mat>> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_getImagePoints(self.as_raw_mut_RandomPatternCornerFinder()) }.into_result()?;
		let ret = unsafe { core::Vector::<core::Mat>::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

/// Class for finding features points and corresponding 3D in world coordinate of
/// a "random" pattern, which can be to be used in calibration. It is useful when pattern is
/// partly occluded or only a part of pattern can be observed in multiple cameras calibration.
/// The pattern can be generated by RandomPatternGenerator class described in this file.
/// 
/// Please refer to paper
///    B. Li, L. Heng, K. Kevin  and M. Pollefeys, "A Multiple-Camera System
///    Calibration Toolbox Using A Feature Descriptor-Based Calibration
///    Pattern", in IROS 2013.
pub struct RandomPatternCornerFinder {
	ptr: *mut c_void
}

opencv_type_boxed! { RandomPatternCornerFinder }

impl Drop for RandomPatternCornerFinder {
	fn drop(&mut self) {
		extern "C" { fn cv_RandomPatternCornerFinder_delete(instance: *mut c_void); }
		unsafe { cv_RandomPatternCornerFinder_delete(self.as_raw_mut_RandomPatternCornerFinder()) };
	}
}

unsafe impl Send for RandomPatternCornerFinder {}

impl crate::ccalib::RandomPatternCornerFinderTraitConst for RandomPatternCornerFinder {
	#[inline] fn as_raw_RandomPatternCornerFinder(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::RandomPatternCornerFinderTrait for RandomPatternCornerFinder {
	#[inline] fn as_raw_mut_RandomPatternCornerFinder(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl RandomPatternCornerFinder {
	/// ## C++ default parameters
	/// * nmini_match: 20
	/// * depth: CV_32F
	/// * verbose: 0
	/// * show_extraction: 0
	/// * detector: AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0,3,0.005f)
	/// * descriptor: AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0,3,0.005f)
	/// * matcher: DescriptorMatcher::create("BruteForce-L1")
	#[inline]
	pub fn new(pattern_width: f32, pattern_height: f32, nmini_match: i32, depth: i32, verbose: i32, show_extraction: i32, mut detector: core::Ptr<crate::features2d::Feature2D>, mut descriptor: core::Ptr<crate::features2d::Feature2D>, mut matcher: core::Ptr<dyn crate::features2d::DescriptorMatcher>) -> Result<crate::ccalib::RandomPatternCornerFinder> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternCornerFinder_RandomPatternCornerFinder_float_float_int_int_int_int_Ptr_Feature2D__Ptr_Feature2D__Ptr_DescriptorMatcher_(pattern_width, pattern_height, nmini_match, depth, verbose, show_extraction, detector.as_raw_mut_PtrOfFeature2D(), descriptor.as_raw_mut_PtrOfFeature2D(), matcher.as_raw_mut_PtrOfDescriptorMatcher()) }.into_result()?;
		let ret = unsafe { crate::ccalib::RandomPatternCornerFinder::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

pub trait RandomPatternGeneratorTraitConst {
	fn as_raw_RandomPatternGenerator(&self) -> *const c_void;

}

pub trait RandomPatternGeneratorTrait: crate::ccalib::RandomPatternGeneratorTraitConst {
	fn as_raw_mut_RandomPatternGenerator(&mut self) -> *mut c_void;

	#[inline]
	fn generate_pattern(&mut self) -> Result<()> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternGenerator_generatePattern(self.as_raw_mut_RandomPatternGenerator()) }.into_result()?;
		Ok(ret)
	}
	
	#[inline]
	fn get_pattern(&mut self) -> Result<core::Mat> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternGenerator_getPattern(self.as_raw_mut_RandomPatternGenerator()) }.into_result()?;
		let ret = unsafe { core::Mat::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}

pub struct RandomPatternGenerator {
	ptr: *mut c_void
}

opencv_type_boxed! { RandomPatternGenerator }

impl Drop for RandomPatternGenerator {
	fn drop(&mut self) {
		extern "C" { fn cv_RandomPatternGenerator_delete(instance: *mut c_void); }
		unsafe { cv_RandomPatternGenerator_delete(self.as_raw_mut_RandomPatternGenerator()) };
	}
}

unsafe impl Send for RandomPatternGenerator {}

impl crate::ccalib::RandomPatternGeneratorTraitConst for RandomPatternGenerator {
	#[inline] fn as_raw_RandomPatternGenerator(&self) -> *const c_void { self.as_raw() }
}

impl crate::ccalib::RandomPatternGeneratorTrait for RandomPatternGenerator {
	#[inline] fn as_raw_mut_RandomPatternGenerator(&mut self) -> *mut c_void { self.as_raw_mut() }
}

impl RandomPatternGenerator {
	#[inline]
	pub fn new(image_width: i32, image_height: i32) -> Result<crate::ccalib::RandomPatternGenerator> {
		let ret = unsafe { sys::cv_randpattern_RandomPatternGenerator_RandomPatternGenerator_int_int(image_width, image_height) }.into_result()?;
		let ret = unsafe { crate::ccalib::RandomPatternGenerator::opencv_from_extern(ret) };
		Ok(ret)
	}
	
}