Struct opencv::objdetect::HOGDescriptor[][src]

pub struct HOGDescriptor { /* fields omitted */ }
Expand description

Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.

the HOG descriptor algorithm introduced by Navneet Dalal and Bill Triggs Dalal2005 .

useful links:

https://hal.inria.fr/inria-00548512/document/

https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients

https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor

http://www.learnopencv.com/histogram-of-oriented-gradients

http://www.learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial

Implementations

Creates the HOG descriptor and detector with default params.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Creates the HOG descriptor and detector with default params.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters
Parameters
  • _winSize: sets winSize with given value.
  • _blockSize: sets blockSize with given value.
  • _blockStride: sets blockStride with given value.
  • _cellSize: sets cellSize with given value.
  • _nbins: sets nbins with given value.
  • _derivAperture: sets derivAperture with given value.
  • _winSigma: sets winSigma with given value.
  • _histogramNormType: sets histogramNormType with given value.
  • _L2HysThreshold: sets L2HysThreshold with given value.
  • _gammaCorrection: sets gammaCorrection with given value.
  • _nlevels: sets nlevels with given value.
  • _signedGradient: sets signedGradient with given value.
C++ default parameters
  • _deriv_aperture: 1
  • _win_sigma: -1
  • _histogram_norm_type: HOGDescriptor::L2Hys
  • _l2_hys_threshold: 0.2
  • _gamma_correction: false
  • _nlevels: HOGDescriptor::DEFAULT_NLEVELS
  • _signed_gradient: false

Creates the HOG descriptor and detector with default params.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters
Parameters
  • filename: The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.

Creates the HOG descriptor and detector with default params.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

Overloaded parameters
Parameters
  • d: the HOGDescriptor which cloned to create a new one.

Returns coefficients of the classifier trained for people detection (for 64x128 windows).

@example samples/tapi/hog.cpp / Returns coefficients of the classifier trained for people detection (for 48x96 windows).

Trait Implementations

Wrap the specified raw pointer Read more

Return an the underlying raw pointer while consuming this wrapper. Read more

Return the underlying raw pointer. Read more

Return the underlying mutable raw pointer Read more

Executes the destructor for this type. Read more

Detection window size. Align to block size and block stride. Default value is Size(64,128).

Block size in pixels. Align to cell size. Default value is Size(16,16).

Block stride. It must be a multiple of cell size. Default value is Size(8,8).

Cell size. Default value is Size(8,8).

Number of bins used in the calculation of histogram of gradients. Default value is 9.

not documented

Gaussian smoothing window parameter.

histogramNormType

L2-Hys normalization method shrinkage.

Flag to specify whether the gamma correction preprocessing is required or not.

coefficients for the linear SVM classifier.

coefficients for the linear SVM classifier used when OpenCL is enabled

not documented

Maximum number of detection window increases. Default value is 64

Indicates signed gradient will be used or not

@example samples/cpp/peopledetect.cpp / Sets coefficients for the linear SVM classifier. Read more

Reads HOGDescriptor parameters from a cv::FileNode. Read more

loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file. Read more

Detection window size. Align to block size and block stride. Default value is Size(64,128).

Block size in pixels. Align to cell size. Default value is Size(16,16).

Block stride. It must be a multiple of cell size. Default value is Size(8,8).

Cell size. Default value is Size(8,8).

Number of bins used in the calculation of histogram of gradients. Default value is 9.

not documented

Gaussian smoothing window parameter.

histogramNormType

L2-Hys normalization method shrinkage.

Flag to specify whether the gamma correction preprocessing is required or not.

coefficients for the linear SVM classifier.

coefficients for the linear SVM classifier used when OpenCL is enabled

not documented

Maximum number of detection window increases. Default value is 64

Indicates signed gradient will be used or not

Returns the number of coefficients required for the classification.

Checks if detector size equal to descriptor size.

Returns winSigma value

Stores HOGDescriptor parameters in a cv::FileStorage. Read more

saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file Read more

clones the HOGDescriptor Read more

@example samples/cpp/train_HOG.cpp / Computes HOG descriptors of given image. Read more

Performs object detection without a multi-scale window. Read more

Performs object detection without a multi-scale window. Read more

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles. Read more

Computes gradients and quantized gradient orientations. Read more

evaluate specified ROI and return confidence value for each location Read more

evaluate specified ROI and return confidence value for each location in multiple scales Read more

Groups the object candidate rectangles. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Performs the conversion.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.