# OpenCrates: AI-Powered Rust Crate Engine
[](https://github.com/your-username/opencrates/actions/workflows/rust.yml)
[](./LICENSE-MIT)
OpenCrates is a comprehensive, AI-driven toolkit designed to revolutionize the Rust development experience. It empowers developers by automating and enhancing various stages of the crate lifecycle, from initial concept to deployment and maintenance. By leveraging cutting-edge AI models, OpenCrates assists in generating, analyzing, optimizing, and testing Rust code, making development faster, more efficient, and more robust.
## Table of Contents
- [Features](#features)
- [Why OpenCrates?](#why-opencrates)
- [Installation](#installation)
- [Using `install.sh` (Recommended for Linux/macOS)](#using-installsh-recommended-for-linuxmacos)
- [Using Docker](#using-docker)
- [Manual Build from Source](#manual-build-from-source)
- [Configuration](#configuration)
- [Environment Variables](#environment-variables)
- [Configuration File (`opencrates.toml` or `config.toml`)](#configuration-file-opencratestoml-or-configtoml)
- [Quick Start](#quick-start)
- [Command-Line Interface (CLI) Usage](#command-line-interface-cli-usage)
- [`opencrates init`](#opencrates-init)
- [`opencrates generate`](#opencrates-generate)
- [`opencrates analyze`](#opencrates-analyze)
- [`opencrates optimize`](#opencrates-optimize)
- [`opencrates test`](#opencrates-test)
- [`opencrates search`](#opencrates-search)
- [`opencrates chat`](#opencrates-chat)
- [`opencrates aider`](#opencrates-aider)
- [`opencrates aichat`](#opencrates-aichat)
- [`opencrates serve`](#opencrates-serve)
- [API Endpoints (when using `opencrates serve`)](#api-endpoints-when-using-opencrates-serve)
- [`/health`](#health)
- [`/api/v1/crates`](#apiv1crates)
- [`/api/v1/generate`](#apiv1generate)
- [`/api/v1/analyze`](#apiv1analyze)
- [`/api/v1/status`](#apiv1status)
- [AI Integration Details](#ai-integration-details)
- [Supported Providers](#supported-providers)
- [Using Aider Integration](#using-aider-integration)
- [Using AIChat Integration](#using-aichat-integration)
- [Core Concepts & Architecture](#core-concepts--architecture)
- [Providers (AI, Search)](#providers-ai-search)
- [Stages (Conceptualization, Architecture, etc.)](#stages-conceptualization-architecture-etc)
- [Caching](#caching)
- [Templates](#templates)
- [Database](#database)
- [Development](#development)
- [Prerequisites](#prerequisites)
- [Building](#building)
- [Testing (`test_all.sh`)](#testing-test_allsh)
- [Contributing](#contributing)
- [Troubleshooting](#troubleshooting)
- [License](#license)
## Features
- **AI-Driven Crate Generation**: Scaffold new Rust projects (libraries, binaries) from natural language descriptions. Includes boilerplate, module structure, initial code, `Cargo.toml`, and `README.md`.
- **Smart Code Analysis**: Leverage AI to analyze existing Rust codebases. Identifies potential issues, suggests improvements in style, performance, and safety, and helps understand complex logic.
- **Automated Optimization**: Receive AI-powered suggestions for performance enhancements, dependency version updates, feature flag usage, and code refactoring for better efficiency.
- **Intelligent Testing**: Generate unit, integration, and benchmark tests based on code structure, function signatures, and specifications.
- **Interactive CLI**: A user-friendly command-line interface providing access to all functionalities with clear commands and options.
- **Extensible Provider Model**: Designed to integrate with various AI providers (currently OpenAI) and search services (crates.io, docs.rs).
- **Modular Staged Processing**: Crate generation and analysis follow a defined pipeline of stages: Conceptualization, Architecture, Generation, Optimization, and Testing.
- **Comprehensive Configuration**: Manage API keys, AI model preferences, server settings, database connections, and cache configurations via a TOML file or environment variables.
- **Built-in Web Server**: Expose OpenCrates functionalities via a RESTful API (using Axum) for integration with other tools or web UIs.
- **Health & Metrics**: Includes health check endpoints and Prometheus-compatible metrics for monitoring when run as a server.
- **Database Integration**: Stores crate metadata and other relevant information using SQLite by default, with `sqlx` for database operations. Schema includes `id`, `name`, `description`, `version`, `features`, and timestamps.
- **Caching Layer**: Multi-level caching (in-memory, optional Redis) to improve performance and reduce redundant AI calls.
- **Aider & AIChat CLI Integration**: Directly invoke popular CLI tools like Aider (for AI pair programming) and AIChat (for general LLM interactions) with project context.
- **Template Engine**: Uses Handlebars for flexible and maintainable code and documentation templating.
## Why OpenCrates?
OpenCrates aims to be your AI co-pilot for Rust development. It doesn't just write code; it helps you design, understand, improve, and test it. By automating repetitive tasks and providing intelligent insights, OpenCrates lets you focus on the creative and complex aspects of software engineering.
- **Boost Productivity**: Accelerate project setup and development tasks.
- **Improve Code Quality**: Get AI-driven feedback on best practices, performance, and potential bugs.
- **Learn Faster**: Understand new codebases or explore Rust features with AI assistance.
- **Streamline Workflows**: Integrate AI seamlessly into your existing Rust development process.
## Installation
### Using `install.sh` (Recommended for Linux/macOS)
This script will check for dependencies (Rust), install Aider (if missing and Python/pip are available), build OpenCrates from source, and set up a default configuration.
```bash
# Ensure you are in the root of the cloned OpenCrates repository
chmod +x scripts/install.sh
./scripts/install.sh
```
Ensure `~/.cargo/bin` is in your PATH to use `opencrates` globally.
### Using Docker
A `Dockerfile` and `docker-compose.yml` are provided for containerized deployment.
```bash
# Ensure you are in the root of the cloned OpenCrates repository
# Build the Docker image
docker build -t opencrates-app .
# Run using Docker (example for server mode)
# Ensure OPENAI_API_KEY is set in your environment or a .env file
docker run -p 8080:8080 -e OPENAI_API_KEY="your_key" \
-v ./opencrates_data:/app/data \ # Mount a volume for persistent data (like SQLite DB)
opencrates-app
# Or use Docker Compose (recommended for services like Postgres/Redis)
# Create a .env file in the root with your OPENAI_API_KEY
# Example .env:
# OPENAI_API_KEY=sk-yourkeyhere
# POSTGRES_PASSWORD=mysecretpassword
# (docker-compose.yml uses POSTGRES_PASSWORD from .env if set)
docker-compose up -d # Run in detached mode
```
The `docker-compose.yml` is set up to use a local SQLite database by default (persisted in `./data/opencrates.db` on the host if you adjust the `config.toml` or `OPENCRATES_DATABASE_URL`). For PostgreSQL or Redis, uncomment and configure them in `docker-compose.yml` and `config.toml`.
### Manual Build from Source
1. **Install Rust**: If not already installed, get it from [rustup.rs](https://rustup.rs/).
2. **Install Aider (Optional but Recommended for `aider` command)**:
```bash
pip install aider-chat
```
3. **Install AIChat (Optional but Recommended for `aichat` command)**:
```bash
cargo install aichat
```
4. **Clone the Repository**:
```bash
git clone https://github.com/your-username/opencrates.git cd opencrates
```
5. **Build**:
```bash
cargo build --release
```
The binary will be at `target/release/opencrates`. You can copy this to a directory in your PATH (e.g., `~/.cargo/bin`).
## Configuration
OpenCrates can be configured via a TOML file or environment variables. Environment variables override configuration file settings.
### Environment Variables
- `OPENAI_API_KEY`: **(Required for most AI features)** Your OpenAI API key.
- `ANTHROPIC_API_KEY`: (Optional) Your Anthropic API key.
- `OPENCRATES_CONFIG_PATH`: Path to the configuration TOML file (e.g., `/etc/opencrates/config.toml`).
- `OPENCRATES_LOG_LEVEL`: Logging level (e.g., `info`, `debug`, `warn`, `error`). Defaults to `info`.
- `OPENCRATES_LOG_FORMAT`: Logging format (`text` or `json`). Defaults to `json`.
- `OPENCRATES_SERVER_HOST`: Host for the API server. Defaults to `127.0.0.1`.
- `OPENCRATES_SERVER_PORT`: Port for the API server. Defaults to `8080`.
- `OPENCRATES_DATABASE_URL`: Database connection string.
- SQLite example: `sqlite:./data/opencrates.db` (ensure `./data` directory exists and is writable if using a relative path)
- PostgreSQL example: `postgres://user:password@host:port/database`
- `OPENCRATES_REDIS_URL`: Redis connection URL for caching (e.g., `redis://127.0.0.1:6379/0`). Required if Redis caching is desired.
- `OPENCRATES_AI_DEFAULT_MODEL`: Default AI model to use (e.g., `gpt-4-turbo`).
- `OPENCRATES_ENVIRONMENT_NAME`: Environment name (e.g., `development`, `production`).
### Configuration File (`opencrates.toml` or `config.toml`)
By default, OpenCrates looks for `config.toml` in the current directory. You can specify a different path using the `--config <PATH>` CLI option or the `OPENCRATES_CONFIG_PATH` environment variable. The `opencrates init` command creates a default configuration file.
Example `config.toml`:
```toml
# Server configuration
[server]
host = "127.0.0.1"
port = 8080
workers = 4 # Number of server workers, defaults to number of CPUs
# Database configuration
[database]
url = "sqlite:data/opencrates.db" # Relative to where opencrates is run, or use an absolute path
max_connections = 10
# AI provider configuration (OpenAI example)
[ai]
# openai_api_key can be set via OPENAI_API_KEY environment variable
# openai_api_key = "sk-yourActualOpenAIKey"
default_model = "gpt-4-turbo" # Specify your preferred default model
max_tokens = 4096
temperature = 0.7
# anthropic_api_key = "sk-ant-yourActualAnthropicKey" # If using Anthropic
# Cache configuration
[cache]
redis_url = "redis://127.0.0.1:6379" # Optional: Uncomment and set for Redis backend
default_ttl = 3600 # Default cache TTL in seconds (for in-memory and when Redis TTL isn't specified)
max_size = 1000 # Max items for in-memory cache
max_memory = 104857600 # Max memory in bytes for in-memory cache (100MB)
# Logging configuration
[logging]
level = "info" # trace, debug, info, warn, error
format = "json" # or "text"
# Configuration for interacting with external registries like crates.io
[registry]
url = "https://crates.io"
cache_ttl = 3600 # TTL for caching registry API responses
# Environment settings
[environment]
name = "development" # "production", "staging", etc.
debug = true # Enables more verbose logging or debug features if true
```
## Quick Start
1. **Install OpenCrates**: Follow one of the [Installation](#installation) methods.
2. **Configure API Key**:
- Set the `OPENAI_API_KEY` environment variable:
```bash
export OPENAI_API_KEY="sk-yourActualOpenAIKey"
```
- Or, run `opencrates init .` and edit the `openai_api_key` in the generated `config.toml`.
3. **Generate your first crate**:
```bash
opencrates generate --name my_calculator --description "A simple command-line calculator" --features clap
```
This will create a `my_calculator` directory with the new Rust project.
4. **Analyze an existing project**:
```bash
git clone https://github.com/rust-lang/regex.git opencrates analyze --path ./regex
```
5. **Start the API server (optional)**:
```bash
opencrates serve --port 8000
```
You can then interact with the API, e.g., `curl http://localhost:8000/health`.
## Command-Line Interface (CLI) Usage
The main command is `opencrates`. Use `opencrates --help` or `opencrates <COMMAND> --help` for detailed options.
```bash
opencrates [OPTIONS] <COMMAND>
```
**Global Options:**
- `--config <PATH>`: Path to the configuration TOML file.
### `opencrates init`
Initializes a new OpenCrates configuration file.
```bash
opencrates init [PATH_TO_CONFIG_FILE]
```
- If `PATH_TO_CONFIG_FILE` is omitted, it creates `config.toml` in the current directory.
- Example: `opencrates init ./my_opencrates_config.toml`
### `opencrates generate`
Generates a new Rust crate using AI.
```bash
opencrates generate --name <CRATE_NAME> --description "<DESCRIPTION>" [OPTIONS]
```
- `--name, -n <NAME>`: (Required) Name of the crate (e.g., `image_resizer`).
- `--description, -d <DESC>`: (Required) A clear description of what the crate does.
- `--features <FEATURES>`: Comma-separated list of desired features or core dependencies (e.g., `serde,tokio,clap`).
- `--output-dir <PATH>`: Directory where the new crate folder will be created (default: current directory).
- `--template <TEMPLATE_NAME>`: (Future Enhancement) Specify a custom base template.
### `opencrates analyze`
Analyzes an existing Rust crate for structure, dependencies, metrics, and potential issues.
```bash
opencrates analyze --path <PATH_TO_CRATE_ROOT>
```
- `--path, -p <PATH>`: (Required) Path to the root directory of the crate to analyze.
### `opencrates optimize`
Suggests optimizations for an existing crate based on AI analysis.
```bash
opencrates optimize --path <PATH_TO_CRATE_ROOT>
```
- `--path <PATH>`: (Required) Path to the crate root.
- `--apply`: (Future Enhancement) Automatically attempt to apply suggested optimizations.
### `opencrates test`
Generates and/or runs tests for a crate.
```bash
opencrates test --path <PATH_TO_CRATE_ROOT> [OPTIONS]
```
- `--path <PATH>`: (Required) Path to the crate root.
- `--coverage`: (Future Enhancement) Generate and report test coverage.
- `--generate-only`: (Future Enhancement) Only generate test files, do not run them.
### `opencrates search`
Searches for crates on crates.io.
```bash
opencrates search "<QUERY>" [OPTIONS]
```
- `<QUERY>`: The search term (e.g., `"http client"`).
- `--limit <NUM>`: Maximum number of results to display (default: 10).
### `opencrates chat`
Engages in an interactive chat session with an AI model (via OpenAI).
```bash
opencrates chat "<PROMPT>" [OPTIONS]
```
- `"<PROMPT>"`: The initial prompt or question.
- `--model, -m <MODEL_NAME>`: Specify the AI model (e.g., `gpt-4-turbo`). Defaults to `default_model` from config.
- `--context <CONTEXT_STRING>`: (Future Enhancement) Provide additional text context for the chat.
### `opencrates aider`
Integrates with the Aider CLI tool for AI-assisted pair programming in a specified project.
**Requires `aider-chat` to be installed and in PATH.**
```bash
opencrates aider --path <PROJECT_PATH> "<INSTRUCTIONS_FOR_AIDER>"
```
- `--path, -p <PROJECT_PATH>`: Path to the Git repository or project (default: current directory).
- `"<INSTRUCTIONS_FOR_AIDER>"`: The coding request (e.g., `"add a new function to lib.rs that takes two numbers and returns their sum, include unit tests."`).
### `opencrates aichat`
Integrates with the AIChat CLI tool for general LLM interactions.
**Requires `aichat` to be installed and in PATH.**
```bash
opencrates aichat "<PROMPT>" [OPTIONS]
```
- `"<PROMPT>"`: The prompt for AIChat.
- `--model, -m <MODEL_NAME>`: Specify the model for AIChat (e.g., `openai:gpt-4`, `ollama:llama2`).
### `opencrates serve`
Starts the OpenCrates web server, exposing functionalities via a REST API.
```bash
opencrates serve [OPTIONS]
```
- `--host <HOST>`: Host to bind (default: `127.0.0.1` from config).
- `--port <PORT>`: Port to bind (default: `8080` from config).
## API Endpoints (when using `opencrates serve`)
Base URL: `http://<configured_host>:<configured_port>` (e.g., `http://localhost:8080`)
All responses are JSON and follow the `ApiResponse<T>` structure:
`{"success": true/false, "data": T_OR_NULL, "error": "message_OR_NULL", "metadata": {...}}`
### `/health`
- **GET**: Basic health check.
- Response: `ApiResponse<{"status": "healthy", "timestamp": "...", "version": "..."}>`
### `/health/live`
- **GET**: Liveness probe.
- Response: `ApiResponse<"alive">`
### `/health/ready`
- **GET**: Readiness probe, indicating if services are ready.
- Response: `ApiResponse<{"ready": true, "services": {"database": true, ...}}>`
### `/api/v1/crates`
- **POST**: Create a new crate based on the provided specification.
- Request Body: `{"name": "string", "description": "string", "features": ["string"]}`
- Response: `ApiResponse<CrateContext>` (contains generated crate details and structure)
### `/api/v1/crates/{crate_path_or_id}`
- **GET**: Retrieve analysis of an existing crate. `{crate_path_or_id}` should be a URL-encoded path to the crate root for now.
- Response: `ApiResponse<ProjectAnalysis>`
- **(PUT, DELETE)**: Future enhancements for updating/deleting crates from a registry.
### `/api/v1/generate`
- **POST**: Generate a new crate (same as `/api/v1/crates` POST).
- Request Body: `CreateCrateRequest` (`{"name": ..., "description": ..., "features": ...}`)
- Response: `ApiResponse<CrateContext>`
### `/api/v1/generate/preview`
- **POST**: Get a preview of the file structure and key elements for a crate generation request without full AI processing.
- Request Body: `CreateCrateRequest`
- Response: `ApiResponse<serde_json::Value>` (contains preview data like estimated file list)
### `/api/v1/analyze`
- **POST**: Analyze an existing crate.
- Request Body: `{"path": "/url/encoded/path/to/crate/root"}`
- Response: `ApiResponse<ProjectAnalysis>`
### `/api/v1/optimize`
- **POST**: Get optimization suggestions for a crate.
- Request Body: `{"path": "/url/encoded/path/to/crate/root"}`
- Response: `ApiResponse<String>` (containing optimization suggestions)
### `/api/v1/ai/chat`
- **POST**: Send a message to the configured AI model for a chat-like interaction.
- Request Body: `{"message": "string", "context": "optional_string"}`
- Response: `ApiResponse<String>` (AI's response message)
### `/api/v1/ai/complete`
- **POST**: Request a completion from the AI model.
- Request Body: `{"message": "string", "context": "optional_string"}`
- Response: `ApiResponse<String>` (AI's completion)
### `/metrics`
- **GET**: Exposes application metrics in Prometheus format.
### `/api/v1/status`
- **GET**: Get detailed system status including overall health, aggregated metrics, and resource usage.
- Response: `ApiResponse<SystemStatus>`
## AI Integration Details
### Supported Providers
- **OpenAI**: Primary integration using models like GPT-4, GPT-4-turbo, GPT-3.5-turbo. Requires an `OPENAI_API_KEY` to be configured.
Future support for other providers like Anthropic Claude or local LLMs (via Ollama, etc.) is planned.
### Using Aider Integration
The `opencrates aider` command acts as a wrapper to call the `aider-chat` tool.
1. Ensure `aider-chat` is installed (`pip install aider-chat`).
2. Navigate to your Git project directory.
3. Run `opencrates aider "<Your instructions for Aider>"`.
Example: `opencrates aider --path ./my_project "Add a new function to lib.rs that takes two numbers and returns their sum, include unit tests."`
### Using AIChat Integration
The `opencrates aichat` command interfaces with the `aichat` CLI.
1. Ensure `aichat` is installed (e.g., `cargo install aichat`).
2. Run `opencrates aichat "<Your prompt>" [--model <aichat_model_specifier>]`.
Example: `opencrates aichat "What are the best practices for error handling in Rust async code?" --model openai:gpt-4-turbo`
## Core Concepts & Architecture
OpenCrates is built with a modular architecture:
### Providers (AI, Search)
- **`LLMProvider` Trait**: Defines a common interface for interacting with Large Language Models.
- **`OpenAIProvider`**: Implementation for OpenAI's API.
- **`SearchProvider` Trait**: Defines an interface for searching external resources.
- **`WebSearchProvider`**: Implements search for crates.io and docs.rs (currently basic).
### Stages (Conceptualization, Architecture, etc.)
The crate generation process is a pipeline of distinct stages, each transforming the crate design:
1. **`ConceptualizationStage`**: Takes a `CrateSpec` (name, description, features) and uses AI to define core concepts, data structures, and algorithms, outputting a `ConceptModel`.
2. **`ArchitectStage`**: Takes a `ConceptModel` and designs the high-level architecture: module structure, key interfaces, and data flow, outputting an `Architecture` model.
3. **`CrateGenerationStage`**: Takes an `Architecture` model, generates code for each module and interface using AI, and renders static files using templates, outputting a `CrateContext` (which includes the file structure).
4. **`OptimizationStage`**: Takes a `CrateContext`, analyzes generated code with AI for performance, memory, and idiomatic improvements, and updates the `CrateContext`.
5. **`TestingStage`**: Takes a `CrateContext` and generates unit, integration, and benchmark test skeletons using AI, adding them to the `CrateContext`.
### Caching
- **`CacheManager`**: Provides a unified interface for caching.
- **`CacheBackend` Trait**: Implemented by `MemoryCache` and `RedisCache`.
- **In-Memory Cache**: Default L1 cache for speed.
- **Redis Cache**: Optional L2 persistent cache, enabled via the `redis` feature and `redis_url` configuration.
### Templates
- **`TemplateManager`**: Uses Handlebars for rendering files like `Cargo.toml`, `README.md`, `.gitignore`, and basic `lib.rs`/`main.rs` skeletons.
- Templates are stored in the `templates/` directory.
### Database
- Uses `sqlx` for asynchronous, type-safe SQL interactions.
- Defaults to **SQLite** for local persistence of crate metadata (e.g., name, description, version, features).
- The database URL can be configured to point to PostgreSQL for more robust deployments.
- Schema is created/migrated on startup.
## Development
### Prerequisites
- Rust (latest stable version recommended via `rustup`).
- Cargo (comes with Rust).
- Git.
- Python 3 and Pip (if you want to use and test the `opencrates aider` command locally).
- (Optional) Docker and Docker Compose for containerized development/testing.
- (Optional) `cargo-watch` for automatic recompilation on file changes.
- (Optional) `cargo-audit` for checking security advisories.
### Building
```bash
# For a debug build
cargo build
# For a release build (recommended for performance)
cargo build --release
```
The executable will be in `target/debug/opencrates` or `target/release/opencrates`.
### Testing (`test_all.sh`)
A comprehensive test script is provided:
```bash
chmod +x scripts/test_all.sh
./scripts/test_all.sh
```
This script typically runs:
- `cargo fmt -- --check` (Code formatting check)
- `cargo clippy --all-targets --all-features -- -D warnings` (Linter)
- `cargo test --all-targets --all-features` (Unit and integration tests)
- `cargo audit` (Security vulnerability check, if `cargo-audit` is installed)
### Contributing
We welcome contributions! Please see `CONTRIBUTING.md` (to be created) for detailed guidelines. Generally:
1. Fork the repository.
2. Create a feature branch (`git checkout -b my-new-feature`).
3. Commit your changes (`git commit -am 'Add some feature'`).
4. Ensure all tests and checks pass (`./scripts/test_all.sh`).
5. Push to the branch (`git push origin my-new-feature`).
6. Open a Pull Request.
## Troubleshooting
- **`OPENAI_API_KEY` not found/invalid**:
- Ensure the `OPENAI_API_KEY` environment variable is set correctly.
- Alternatively, make sure it's correctly specified in your `config.toml` under `[ai] openai_api_key = "sk-..."`.
- Verify your OpenAI account has sufficient credits and the API key is active.
- **`aider-chat` or `aichat` command not found**:
- These are external tools. Install them separately if you intend to use the `opencrates aider` or `opencrates aichat` commands.
- `pip install aider-chat`
- `cargo install aichat` (or other methods per AIChat's documentation)
- Ensure their installation locations are in your system's `PATH`.
- **Database connection errors**:
- For SQLite (default): Ensure the directory specified in `database.url` (e.g., `sqlite:data/opencrates.db` means a `data` subdirectory) is writable by the user running `opencrates`.
- For PostgreSQL: Verify the connection string (`postgres://user:pass@host/db`), server status, and network accessibility.
- **"Too many open files" error (Linux/macOS)**:
- The server might be hitting the system's open file descriptor limit. You might need to increase it using `ulimit -n <new_limit>`.
- **Slow AI responses**:
- This can be due to the complexity of the request, the specific AI model chosen, or network latency to the AI provider. Consider using less complex models for quicker, iterative tasks if appropriate.
- **Build Failures**:
- Ensure you have the latest stable Rust toolchain: `rustup update stable`.
- Clean your build directory: `cargo clean` and try building again.
## License
This project is licensed under either of:
- Apache License, Version 2.0 ([LICENSE-APACHE](./LICENSE-APACHE) or <http://www.apache.org/licenses/LICENSE-2.0>)
- MIT license ([LICENSE-MIT](./LICENSE-MIT) or <http://opensource.org/licenses/MIT>)
at your option. Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.