1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
//! Given a prompt, the model will return one or more predicted completions,
//! and can also return the probabilities of alternative tokens at each position.
use super::{openai_post, ApiResponseOrError, Usage};
use derive_builder::Builder;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
#[derive(Deserialize, Clone)]
pub struct Completion {
pub id: String,
pub created: u32,
pub model: String,
pub choices: Vec<CompletionChoice>,
pub usage: Usage,
}
#[derive(Deserialize, Clone)]
pub struct CompletionChoice {
pub text: String,
pub index: u16,
pub logprobs: Option<u16>,
pub finish_reason: String,
}
#[derive(Serialize, Builder, Debug, Clone)]
#[builder(pattern = "owned")]
#[builder(name = "CompletionBuilder")]
#[builder(setter(strip_option, into))]
pub struct CompletionRequest {
/// ID of the model to use.
/// You can use the [List models](https://beta.openai.com/docs/api-reference/models/list)
/// API to see all of your available models,
/// or see our [Model overview](https://beta.openai.com/docs/models/overview)
/// for descriptions of them.
pub model: String,
/// The prompt(s) to generate completions for, encoded as a string,
/// array of strings, array of tokens, or array of token arrays.
///
/// Note that <|endoftext|> is the document separator that the model sees during training,
/// so if a prompt is not specified the model will generate as if from the beginning of a new document.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub prompt: Option<String>,
/// The suffix that comes after a completion of inserted text.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub suffix: Option<String>,
/// The maximum number of [tokens](https://beta.openai.com/tokenizer) to generate in the completion.
///
/// The token count of your prompt plus `max_tokens` cannot exceed the model's context length.
/// Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(setter(into = false), default)]
pub max_tokens: Option<u16>,
/// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use.
/// Higher values means the model will take more risks.
/// Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
///
/// We generally recommend altering this or `top_p` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub temperature: Option<f32>,
/// An alternative to sampling with temperature, called nucleus sampling,
/// where the model considers the results of the tokens with top_p probability mass.
/// So 0.1 means only the tokens comprising the top 10% probability mass are considered.
///
/// We generally recommend altering this or `temperature` but not both.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub top_p: Option<f32>,
/// How many completions to generate for each prompt.
///
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub n: Option<u16>,
/// Whether to stream back partial progress. If set, tokens will be sent as data-only
/// [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
/// as they become available, with the stream terminated by a `data: [DONE]` message.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(setter(skip), default)] // skipped until properly implemented
pub stream: Option<bool>,
/// Include the log probabilities on the logprobs most likely tokens, as well the chosen tokens.
/// For example, if logprobs is 5, the API will return a list of the 5 most likely tokens.
/// The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.
///
/// The maximum value for `logprobs` is 5.
/// If you need more than this, please contact us through our Help center and describe your use case.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub logprobs: Option<u8>,
/// Echo back the prompt in addition to the completion
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub echo: Option<bool>,
/// Up to 4 sequences where the API will stop generating further tokens.
/// The returned text will not contain the stop sequence.
#[serde(skip_serializing_if = "Vec::is_empty")]
#[builder(default)]
pub stop: Vec<String>,
/// Number between -2.0 and 2.0.
/// Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics.
///
/// [See more information about frequency and presence penalties](https://beta.openai.com/docs/api-reference/parameter-details).
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub presence_penalty: Option<i8>,
/// Number between -2.0 and 2.0.
/// Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
///
/// [See more information about frequency and presence penalties](https://beta.openai.com/docs/api-reference/parameter-details).
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub frequency_penalty: Option<i8>,
/// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token).
/// Results cannot be streamed.
///
/// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return –
/// `best_of` must be greater than `n`.
///
/// **Note:** Because this parameter generates many completions, it can quickly consume your token quota.
/// Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub best_of: Option<u16>,
/// Modify the likelihood of specified tokens appearing in the completion.
///
/// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100.
/// You can use this [tokenizer tool](https://beta.openai.com/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs.
/// Mathematically, the bias is added to the logits generated by the model prior to sampling.
/// The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection;
/// values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
///
/// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
#[serde(skip_serializing_if = "HashMap::is_empty")]
#[builder(default)]
pub logit_bias: HashMap<String, i16>,
/// A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
/// [Learn more](https://beta.openai.com/docs/guides/safety-best-practices/end-user-ids).
#[serde(skip_serializing_if = "Option::is_none")]
#[builder(default)]
pub user: Option<String>,
}
impl Completion {
/// Creates a completion for the provided prompt and parameters
async fn create(request: &CompletionRequest) -> ApiResponseOrError<Self> {
openai_post("completions", request).await
}
pub fn builder(model: &str) -> CompletionBuilder {
CompletionBuilder::create_empty().model(model)
}
}
impl CompletionBuilder {
pub async fn create(self) -> ApiResponseOrError<Completion> {
Completion::create(&self.build().unwrap()).await
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::set_key;
use dotenvy::dotenv;
use std::env;
#[tokio::test]
async fn completion() {
dotenv().ok();
set_key(env::var("OPENAI_KEY").unwrap());
let completion = Completion::builder("text-davinci-003")
.prompt("Say this is a test")
.max_tokens(7)
.temperature(0.0)
.create()
.await
.unwrap()
.unwrap();
assert_eq!(
completion.choices.first().unwrap().text,
"\n\nThis is indeed a test"
);
}
}