
# OpenAI Tools
API Wrapper for OpenAI API.
<img src="../LOGO.png" alt="LOGO" width="150" height="150"/>
## Installation
To start using the `openai-tools`, add it to your projects's dependencies in the `Cargo.toml' file:
```bash
cargo add openai-tools
```
## Quick Example
```rust
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::{message::Message, role::Role, models::ChatModel};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let response = ChatCompletion::new()
.model(ChatModel::Gpt4oMini)
.messages(vec![Message::from_string(Role::User, "Hello!")])
.chat()
.await?;
println!("{:?}", response.choices[0].message.content);
Ok(())
}
```
## Environment Setup
### OpenAI API
Set the API key in the `.env` file:
```text
OPENAI_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxx"
```
### Azure OpenAI API
Set Azure-specific environment variables:
```text
AZURE_OPENAI_API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxx"
AZURE_OPENAI_BASE_URL = "https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview"
```
Note: Each API (Chat, Embedding, etc.) requires its own complete endpoint URL including the API path.
### Provider Detection
All API clients support multiple ways to configure authentication:
```rust
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::auth::{AuthProvider, AzureAuth};
// OpenAI (default)
let chat = ChatCompletion::new();
// Azure (from environment variables)
let chat = ChatCompletion::azure()?;
// Auto-detect provider from environment variables
let chat = ChatCompletion::detect_provider()?;
// URL-based detection (auto-detects provider from URL pattern)
// *.openai.azure.com → Azure, all other URLs → OpenAI-compatible
let chat = ChatCompletion::with_url(
"https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview",
"azure-key",
);
// OpenAI-compatible APIs (Ollama, vLLM, LocalAI, etc.)
let chat = ChatCompletion::with_url(
"http://localhost:11434/v1",
"ollama",
);
// Explicit Azure auth configuration
let auth = AuthProvider::Azure(
AzureAuth::new(
"api-key",
"https://my-resource.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-08-01-preview"
)
);
let chat = ChatCompletion::with_auth(auth);
```
## Modules
Import the necessary modules in your code:
```rust
use openai_tools::chat::ChatCompletion;
use openai_tools::responses::Responses;
use openai_tools::embedding::Embedding;
use openai_tools::realtime::RealtimeClient;
use openai_tools::conversations::Conversations;
use openai_tools::models::Models;
use openai_tools::files::Files;
use openai_tools::moderations::Moderations;
use openai_tools::images::Images;
use openai_tools::audio::Audio;
use openai_tools::batch::Batches;
use openai_tools::fine_tuning::FineTuning;
```
# Supported APIs
| **Chat** | `/v1/chat/completions` | Structured Output, Function Calling, Multi-modal Input (Text + Image) |
| **Responses** | `/v1/responses` | CRUD, Structured Output, Function Calling, Image Input, Reasoning, Tool Choice, Prompt Templates |
| **Conversations** | `/v1/conversations` | CRUD |
| **Embedding** | `/v1/embeddings` | Basic |
| **Realtime** | `wss://api.openai.com/v1/realtime` | Function Calling, Audio I/O, VAD, WebSocket |
| **Models** | `/v1/models` | CRUD |
| **Files** | `/v1/files` | CRUD, Multipart Upload |
| **Moderations** | `/v1/moderations` | Basic |
| **Images** | `/v1/images` | Multipart Upload |
| **Audio** | `/v1/audio` | Audio I/O, Multipart Upload |
| **Batch** | `/v1/batches` | CRUD |
| **Fine-tuning** | `/v1/fine_tuning/jobs` | CRUD |
## Chat Completions API
```rust
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::{message::Message, role::Role, models::ChatModel};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let messages = vec![Message::from_string(Role::User, "Hello!")];
let mut chat = ChatCompletion::new();
let response = chat
.model(ChatModel::Gpt4oMini)
.messages(messages)
.temperature(0.7)
.chat()
.await?;
println!("{:?}", response.choices[0].message.content);
Ok(())
}
```
### Multi-modal Input (Text + Image)
```rust
use openai_tools::chat::request::ChatCompletion;
use openai_tools::common::{message::{Message, Content}, role::Role, models::ChatModel};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut chat = ChatCompletion::new();
let message = Message::from_message_array(
Role::User,
vec![
Content::from_text("What do you see in this image?"),
Content::from_image_url("https://example.com/image.jpg"),
],
);
let response = chat
.model(ChatModel::Gpt4oMini)
.messages(vec![message])
.chat()
.await?;
println!("{:?}", response.choices[0].message.content);
Ok(())
}
```
## Responses API
```rust
use openai_tools::responses::request::Responses;
use openai_tools::common::models::ChatModel;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = Responses::new();
let response = client
.model(ChatModel::Gpt4oMini)
.str_message("What is the capital of France?")
.complete()
.await?;
println!("{}", response.output_text().unwrap());
Ok(())
}
```
### Responses API CRUD Operations
```rust
use openai_tools::responses::request::{Responses, ToolChoice, ToolChoiceMode};
use openai_tools::common::models::ChatModel;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = Responses::new();
// Create a response with tool_choice and prompt caching
client.model(ChatModel::Gpt4oMini)
.str_message("Hello!")
.tool_choice(ToolChoice::Simple(ToolChoiceMode::Auto))
.prompt_cache_key("my-cache-key")
.store(true);
let response = client.complete().await?;
let response_id = response.id.as_ref().unwrap();
// Retrieve a stored response
let retrieved = client.retrieve(response_id).await?;
// List input items with pagination
let items = client.list_input_items(response_id, Some(10), None, None).await?;
// Count input tokens before sending a request
let tokens = client.get_input_tokens("gpt-4o-mini", serde_json::json!("Hello!")).await?;
println!("Input tokens: {}", tokens.input_tokens);
// Delete a response when done
client.delete(response_id).await?;
Ok(())
}
```
## Conversations API
Manage long-running conversations with the Responses API:
```rust
use openai_tools::conversations::request::Conversations;
use openai_tools::conversations::response::InputItem;
use std::collections::HashMap;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let conversations = Conversations::new()?;
// Create a conversation with metadata
let mut metadata = HashMap::new();
metadata.insert("user_id".to_string(), "user123".to_string());
let conv = conversations.create(Some(metadata), None).await?;
println!("Created conversation: {}", conv.id);
// Add items to the conversation
let items = vec![InputItem::user_message("Hello!")];
conversations.create_items(&conv.id, items).await?;
// List conversation items
let items = conversations.list_items(&conv.id, Some(10), None, None, None).await?;
for item in &items.data {
println!("Item: {} ({})", item.id, item.item_type);
}
// Delete conversation when done
conversations.delete(&conv.id).await?;
Ok(())
}
```
## Realtime API
Real-time audio and text communication with GPT-4o models through WebSocket:
```rust
use openai_tools::realtime::{RealtimeClient, Modality, Voice};
use openai_tools::realtime::events::server::ServerEvent;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut client = RealtimeClient::new();
client
.model("gpt-4o-realtime-preview")
.modalities(vec![Modality::Text, Modality::Audio])
.voice(Voice::Alloy)
.instructions("You are a helpful assistant.");
let mut session = client.connect().await?;
// Send a text message
session.send_text("Hello!").await?;
session.create_response(None).await?;
// Process events
while let Some(event) = session.recv().await? {
match event {
ServerEvent::ResponseTextDelta(e) => print!("{}", e.delta),
ServerEvent::ResponseDone(_) => break,
_ => {}
}
}
session.close().await?;
Ok(())
}
```
## Models API
List and retrieve available models:
```rust
use openai_tools::models::request::Models;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let models = Models::new()?;
// List all models
let response = models.list().await?;
for model in &response.data {
println!("{}: owned by {}", model.id, model.owned_by);
}
// Retrieve a specific model
let model = models.retrieve("gpt-4o-mini").await?;
println!("Model: {}", model.id);
Ok(())
}
```
## Files API
Upload, manage, and retrieve files:
```rust
use openai_tools::files::request::Files;
use openai_tools::files::response::FilePurpose;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let files = Files::new()?;
// Upload a file for fine-tuning
let file = files.upload_path("training.jsonl", FilePurpose::FineTune).await?;
println!("Uploaded: {}", file.id);
// List files
let response = files.list(None).await?;
for file in &response.data {
println!("{}: {} bytes", file.filename, file.bytes);
}
// Delete file
files.delete(&file.id).await?;
Ok(())
}
```
## Moderations API
Check content for policy violations:
```rust
use openai_tools::moderations::request::Moderations;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let moderations = Moderations::new()?;
// Check a single text
let response = moderations.moderate_text("Hello, world!", None).await?;
if response.results[0].flagged {
println!("Content was flagged!");
} else {
println!("Content is safe.");
}
// Check multiple texts at once
let texts = vec!["Text 1".to_string(), "Text 2".to_string()];
let response = moderations.moderate_texts(texts, None).await?;
Ok(())
}
```
## Images API (DALL-E)
Generate images with DALL-E:
```rust
use openai_tools::images::request::{Images, GenerateOptions, ImageModel, ImageSize, ImageQuality};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let images = Images::new()?;
// Generate an image
let options = GenerateOptions {
model: Some(ImageModel::DallE3),
size: Some(ImageSize::Size1024x1024),
quality: Some(ImageQuality::Hd),
..Default::default()
};
let response = images.generate("A sunset over mountains", options).await?;
println!("Image URL: {:?}", response.data[0].url);
Ok(())
}
```
## Audio API
Text-to-speech and transcription:
```rust
use openai_tools::audio::request::{Audio, TtsOptions, TranscribeOptions};
use openai_tools::audio::response::{TtsModel, Voice};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let audio = Audio::new()?;
// Text-to-speech
let options = TtsOptions {
model: TtsModel::Tts1Hd,
voice: Voice::Nova,
..Default::default()
};
let bytes = audio.text_to_speech("Hello!", options).await?;
std::fs::write("hello.mp3", bytes)?;
// Transcribe audio
let options = TranscribeOptions {
language: Some("en".to_string()),
..Default::default()
};
let response = audio.transcribe("audio.mp3", options).await?;
println!("Transcript: {}", response.text);
Ok(())
}
```
## Batch API
Process large volumes of requests asynchronously with 50% cost savings:
```rust
use openai_tools::batch::request::{Batches, CreateBatchRequest, BatchEndpoint};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let batches = Batches::new()?;
// List all batches
let response = batches.list(Some(20), None).await?;
for batch in &response.data {
println!("Batch: {} - {:?}", batch.id, batch.status);
}
// Create a batch job (input file must be uploaded via Files API with purpose "batch")
let request = CreateBatchRequest::new("file-abc123", BatchEndpoint::ChatCompletions);
let batch = batches.create(request).await?;
println!("Created batch: {}", batch.id);
Ok(())
}
```
## Fine-tuning API
Customize models with your training data:
```rust
use openai_tools::fine_tuning::request::{FineTuning, CreateFineTuningJobRequest};
use openai_tools::fine_tuning::response::Hyperparameters;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let fine_tuning = FineTuning::new()?;
// List fine-tuning jobs
let response = fine_tuning.list(Some(10), None).await?;
for job in &response.data {
println!("Job: {} - {:?}", job.id, job.status);
}
// Create a fine-tuning job
let hyperparams = Hyperparameters {
n_epochs: Some(3),
..Default::default()
};
let request = CreateFineTuningJobRequest::new("gpt-4o-mini-2024-07-18", "file-abc123")
.with_suffix("my-model")
.with_supervised_method(Some(hyperparams));
let job = fine_tuning.create(request).await?;
println!("Created job: {}", job.id);
Ok(())
}
```
## Embedding API
```rust
use openai_tools::embedding::request::Embedding;
use openai_tools::common::models::EmbeddingModel;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut embedding = Embedding::new();
let response = embedding
.model(EmbeddingModel::TextEmbedding3Small)
.input_text("Hello, world!")
.embed()
.await?;
println!("Embedding dimensions: {}", response.data[0].embedding.as_1d().unwrap().len());
Ok(())
}
```
## Update History
<details>
<summary>v1.0.6</summary>
- Fixed Chat Completions API multimodal message serialization
- `Content` type was sending Responses API format (`input_text`, `input_image`) to Chat API
- Chat API requires `text` and `image_url` type names with nested `{"url": "..."}` structure
- Added zero-copy serialization wrappers that automatically convert at request time
- No public API changes - existing code works without modification
</details>
<details>
<summary>v1.0.5</summary>
- Added `instructions` parameter for TTS API (`gpt-4o-mini-tts` model)
- Control voice tone, emotion, and pacing with natural language instructions
- Available via `TtsOptions.instructions` field
- Applied cargo fmt formatting
</details>
<details>
<summary>v1.0.4</summary>
- Added 88 comprehensive model-specific parameter validation tests
- Chat API: 30 tests for parameter restrictions across model generations (GPT-5, o-series, standard models)
- Responses API: 32 tests for temperature, top_p, top_logprobs validation
- Models: 26 tests for reasoning model detection and `ParameterSupport`/`ParameterRestriction` types
- Fixed Responses API integration test assertions (max_output_tokens minimum, JSON formatting)
- Updated documentation to recommend `cargo nextest run` for test execution
</details>
<details>
<summary>v1.0.3</summary>
- **Breaking Change**: Simplified `AzureAuth` to accept complete endpoint URL
- `AzureAuth::new(api_key, base_url)` - simple 2-argument constructor
- `base_url` must be the complete endpoint URL including API path (e.g., `/chat/completions`)
- `endpoint()` method now returns `base_url` as-is (path parameter is ignored)
- Removed `resource_name`, `deployment_name`, `api_version` fields
- Removed `use_entra_id`, `with_entra_id()`, `is_entra_id()` (Entra ID support removed)
- **Breaking Change**: Updated `with_url()` method signature
- Changed from `with_url(url, api_key, deployment_name)` to `with_url(url, api_key)`
- Environment variable changes:
- Use `AZURE_OPENAI_BASE_URL` (complete endpoint URL) instead of separate resource/deployment vars
- Removed `AZURE_OPENAI_TOKEN` (Entra ID token support removed)
</details>
<details>
<summary>v1.0.2</summary>
- Added URL-based provider detection for all API clients
- `with_url(url, api_key, deployment_name)` - auto-detect provider from URL pattern
- `from_url(url)` - auto-detect with env var credentials
- `*.openai.azure.com` → Azure, all other URLs → OpenAI-compatible
- Support for OpenAI-compatible APIs (Ollama, vLLM, LocalAI, etc.)
- Added Azure OpenAI support with `azure()` and environment variable configuration
- Added `AuthProvider` abstraction for unified authentication handling
</details>
<details>
<summary>v1.0.1</summary>
- Added automatic handling for reasoning model (o1, o3 series) parameter restrictions
- Chat API: temperature, frequency_penalty, presence_penalty, logprobs, top_logprobs, logit_bias, n
- Responses API: temperature, top_p, top_logprobs
- Unsupported parameters are automatically ignored with `tracing::warn!` warnings
- Added "Model-Specific Parameter Restrictions" documentation section
</details>
<details>
<summary>v1.0.0</summary>
- Initial release with all OpenAI APIs:
- Chat Completions API
- Responses API
- Conversations API
- Embedding API
- Realtime API (WebSocket)
- Models API
- Files API
- Moderations API
- Images API (DALL-E)
- Audio API (TTS, STT)
- Batch API
- Fine-tuning API
</details>
## License
MIT License