1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use std::{
    collections::BTreeMap,
    fmt,
    sync::Arc,
    time::{Duration, Instant},
};

use anyhow::{anyhow, Context, Error};
use arc_swap::ArcSwapOption;
use chrono::{DateTime, FixedOffset, TimeDelta, Utc};
use rasn_ocsp::CertStatus;
use rustls::{
    pki_types::CertificateDer,
    server::{ClientHello, ResolvesServerCert},
    sign::CertifiedKey,
};
use sha1::{Digest, Sha1};
use tokio::sync::mpsc;
use tokio_util::{sync::CancellationToken, task::TaskTracker};
use tracing::warn;
use x509_parser::prelude::*;

use super::{client::Client, OcspValidity};

type Storage = BTreeMap<Fingerprint, Cert>;

// Uniquely identifies the certificate, contains SHA-1 of the whole certificate body
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
struct Fingerprint([u8; 20]);

impl From<&CertificateDer<'_>> for Fingerprint {
    fn from(v: &CertificateDer) -> Self {
        let digest = Sha1::digest(v.as_ref());
        Self(digest.into())
    }
}

#[derive(Clone)]
struct Cert {
    ckey: Arc<CertifiedKey>,
    cert_validity: DateTime<FixedOffset>,
    ocsp_validity: Option<OcspValidity>,
}

pub struct Stapler {
    tx: mpsc::Sender<(Fingerprint, Arc<CertifiedKey>)>,
    storage: Arc<ArcSwapOption<Storage>>,
    inner: Arc<dyn ResolvesServerCert>,
    tracker: TaskTracker,
    token: CancellationToken,
}

impl Stapler {
    /// Creates a Stapler with a provided OCSP Client
    pub fn new_with_client(inner: Arc<dyn ResolvesServerCert>, client: Client) -> Self {
        let (tx, rx) = mpsc::channel(1024);
        let storage = Arc::new(ArcSwapOption::empty());
        let tracker = TaskTracker::new();
        let token = CancellationToken::new();

        let mut actor = StaplerActor {
            client,
            storage: BTreeMap::new(),
            rx,
            published: storage.clone(),
        };

        // Spawn the background task
        let actor_token = token.clone();
        tracker.spawn(async move {
            actor.run(actor_token).await;
        });

        Self {
            tx,
            storage,
            inner,
            tracker,
            token,
        }
    }

    /// Creates a Stapler with a default OCSP Client
    pub fn new(inner: Arc<dyn ResolvesServerCert>) -> Self {
        Self::new_with_client(inner, Client::new())
    }

    /// Tells the background worker to stop and waits until it does
    pub async fn stop(&self) {
        self.token.cancel();
        self.tracker.close();
        self.tracker.wait().await;
    }
}

/// Debug is required for ResolvesServerCert trait
impl fmt::Debug for Stapler {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "OcspStapler")
    }
}

impl ResolvesServerCert for Stapler {
    fn resolve(&self, client_hello: ClientHello) -> Option<Arc<CertifiedKey>> {
        // Try to get the cert from the inner resolver
        let ckey = self.inner.resolve(client_hello)?;

        // Check that we have at least two certificates in the chain.
        // Otherwise we can't staple it since we need an issuer certificate too.
        // In this case just return it back unstapled.
        if ckey.cert.len() < 2 {
            return Some(ckey);
        }

        // Compute the fingerprint
        let fp = Fingerprint::from(&ckey.cert[0]);

        // See if the storage has been published
        if let Some(map) = self.storage.load_full() {
            // Check if we have a certificate with this fingerprint already
            if let Some(v) = map.get(&fp) {
                // Check if its OCSP validity is set
                // Otherwise it hasn't been yet stapled or OCSP response has expired
                if v.ocsp_validity.is_some() {
                    return Some(v.ckey.clone());
                }

                // Return unstapled
                return Some(ckey);
            }
        }

        // In some rare cases of very high load the messages can be lost but since they'll be
        // sent again by subsequent requests - it's not a problem.
        let _ = self.tx.try_send((fp, ckey.clone()));

        // Return the original unstapled cert
        Some(ckey)
    }
}

struct StaplerActor {
    client: Client,
    storage: Storage,
    rx: mpsc::Receiver<(Fingerprint, Arc<CertifiedKey>)>,
    published: Arc<ArcSwapOption<Storage>>,
}

impl StaplerActor {
    async fn refresh(&mut self) {
        if self.storage.is_empty() {
            return;
        }

        let now: DateTime<FixedOffset> = Utc::now().into();

        // Remove all expired certificates from the storage to free up resources
        self.storage.retain(|_, v| v.cert_validity > now);

        let start = Instant::now();
        for v in self.storage.values_mut() {
            if let Some(x) = &v.ocsp_validity {
                // See if this OCSP response is still valid
                if !x.time_to_update(now) {
                    continue;
                }

                // If the validity is about to expire - clear it
                // This makes sure we don't serve expired OCSP responses in Stapler::resolve()
                if x.next_update - now < TimeDelta::hours(1) {
                    v.ocsp_validity = None
                }
            }

            // Stapler::resolve() makes sure that we have at least two certificates in the chain
            let cert = v.ckey.cert[0].as_ref();
            let issuer = v.ckey.cert[1].as_ref();

            // Query the OCSP responder
            let resp = match self.client.query(cert, issuer).await {
                Err(e) => {
                    warn!("OCSP-Stapler: unable to perform OCSP request: {e:#}");
                    continue;
                }

                Ok(v) => v,
            };

            if let CertStatus::Revoked(x) = resp.cert_status {
                warn!("OCSP-Stapler: certificate was revoked: {x:?}");
            }

            // Update the OCSP response on the key
            let mut ckey = v.ckey.as_ref().clone();
            ckey.ocsp = Some(resp.raw);

            // Update values
            v.ckey = Arc::new(ckey);
            v.ocsp_validity = Some(resp.ocsp_validity);
        }

        // Publish the updated storage version
        let new = Arc::new(self.storage.clone());
        self.published.store(Some(new));

        warn!(
            "OCSP-Stapler: certificates refreshed in {}ms",
            start.elapsed().as_millis()
        );
    }

    async fn process_certificate(
        &mut self,
        fp: Fingerprint,
        ckey: Arc<CertifiedKey>,
    ) -> Result<(), Error> {
        if self.storage.contains_key(&fp) {
            return Ok(());
        }

        // Parse the DER-encoded certificate
        let cert = X509Certificate::from_der(ckey.end_entity_cert().unwrap())
            .context("unable to parse certificate as X.509")?
            .1;

        let cert_validity = DateTime::from_timestamp(cert.validity.not_after.timestamp(), 0)
            .ok_or_else(|| anyhow!("unable to parse NotAfter"))?
            .into();

        let cert = Cert {
            ckey: ckey.clone(),
            cert_validity,
            ocsp_validity: None,
        };

        self.storage.insert(fp, cert);
        self.refresh().await;

        Ok(())
    }

    async fn run(&mut self, token: CancellationToken) {
        let mut interval = tokio::time::interval(Duration::from_secs(60));

        loop {
            tokio::select! {
                biased;

                () = token.cancelled() => {
                    warn!("OCSP-Stapler: exiting");
                    return;
                }

                _ = interval.tick() => {
                    self.refresh().await;
                },

                msg = self.rx.recv() => {
                    if let Some((fp, ckey)) = msg {
                        if let Err(e) = self.process_certificate(fp, ckey).await {
                            warn!("OCSP-Stapler: unable to process certificate: {e:#}");
                        }
                    }
                }
            }
        }
    }
}