ockham 0.1.0

A comprehensive Operations Research toolkit for linear programming, optimization, and mathematical modeling
Documentation
# Ockham - OR toolkit

[![CI](https://github.com/yourusername/ockham-rs/workflows/CI/badge.svg)](https://github.com/yourusername/ockham-rs/actions)
[![codecov](https://codecov.io/gh/yourusername/ockham-rs/branch/main/graph/badge.svg)](https://codecov.io/gh/yourusername/ockham-rs)
[![Crates.io](https://img.shields.io/crates/v/ockham.svg)](https://crates.io/crates/ockham)
[![Documentation](https://docs.rs/ockham/badge.svg)](https://docs.rs/ockham)

comprehensive OR toolkit for LP, optimization & math modeling in rust. provides efficient, numerically stable algorithms w/ clean API.

## features

- **performance**: optimized simplex solver w/ multiple pivot rules  
- **intuitive API**: builder pattern for easy problem construction
- **variable types**: continuous, int & binary vars
- **robust numerics**: scaling, presolve & validation utils
- **extensible**: plugin arch for custom solvers
- **comprehensive**: detailed diagnostics & solution analysis  
- **pure rust**: memory-safe, concurrent & cross-platform

## Quick Start

Add Ockham to your `Cargo.toml`:

```toml
[dependencies]
ockham = "0.1.0"
```

### Basic Example

```rust
use ockham::prelude::*;

fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create a simple linear program: maximize 3x + 2y subject to x + y <= 10, x,y >= 0
    let problem = ProblemBuilder::new()
        .add_non_negative_variable("x")?
        .add_non_negative_variable("y")?
        .add_constraint_by_name(
            &[("x", 1.0), ("y", 1.0)],
            ConstraintType::LessEqual,
            10.0,
        )?
        .objective_by_name(
            &[("x", 3.0), ("y", 2.0)],
            ObjectiveType::Maximize,
        )?
        .build()?;

    // Solve the problem
    let solution = solve(&problem)?;

    if solution.is_optimal() {
        println!("Optimal solution found!");
        println!("x = {:.2}", solution.variables[0]);
        println!("y = {:.2}", solution.variables[1]);
        println!("Objective value = {:.2}", solution.objective_value);
    }

    Ok(())
}
```

## Examples

The repository includes several detailed examples:

- **Basic LP**: Simple linear programming problem
- **Production Planning**: Resource allocation optimization  
- **Diet Problem**: Cost minimization with nutritional constraints

Run examples with:

```bash
cargo run --example basic_lp
cargo run --example production_planning
cargo run --example diet_problem
```

## 🏗️ Problem Modeling

### Variables

```rust
use ockham::prelude::*;

let mut builder = ProblemBuilder::new();

// Continuous variables
builder = builder.add_variable("x", 0.0, 100.0)?;           // Bounded
builder = builder.add_non_negative_variable("y")?;          // Non-negative
builder = builder.add_free_variable("z")?;                  // Unbounded

// Integer variables
builder = builder.add_integer_variable("i", 0.0, 10.0)?;    // Integer
builder = builder.add_binary_variable("b")?;                // Binary (0 or 1)
```

### Constraints

```rust
// Using variable names (recommended)
builder = builder.add_constraint_by_name(
    &[("x", 2.0), ("y", 3.0)],
    ConstraintType::LessEqual,
    15.0,
)?;

// Using coefficient vectors
builder = builder.add_constraint(
    vec![1.0, 1.0, 0.0],
    ConstraintType::Equal,
    5.0,
)?;

// Named constraints for debugging
builder = builder.add_named_constraint(
    "capacity",
    vec![2.0, 3.0],
    ConstraintType::LessEqual,
    100.0,
)?;
```

### Objectives

```rust
// Maximize profit
builder = builder.objective_by_name(
    &[("x", 10.0), ("y", 15.0)],
    ObjectiveType::Maximize,
)?;

// Minimize cost with constant term
let objective = Objective::new_with_constant(
    vec![2.0, 3.0],
    ObjectiveType::Minimize,
    100.0, // Fixed cost
)?;
```

## Advanced Features

### Presolve

Automatically simplify problems before solving:

```rust
let presolve = Presolve::new();
let result = presolve.apply(&problem)?;
println!("{}", result.statistics);
```

### Scaling

Improve numerical stability:

```rust
let scaling = Scaling::new(ScalingMethod::Equilibration);
let scaled_problem = scaling.apply(&problem)?;
```

### Custom Solver Configuration

```rust
let config = SolverConfig::new()
    .with_max_iterations(10_000)
    .with_optimality_tolerance(1e-9)
    .verbose()
    .with_option("pivot_rule", "steepest_edge");

let solution = solve_with_config(&problem, &config)?;
```

### Problem Validation

```rust
let validator = Validator::new();
let validation = validator.validate(&problem);

if !validation.is_valid {
    for error in &validation.errors {
        eprintln!("Error: {}", error);
    }
}
```

## Solver Algorithms

### Simplex Method

- **Two-phase method** for handling artificial variables
- **Multiple pivot rules**: Most negative, first negative, steepest edge
- **Degeneracy handling** with Bland's anti-cycling rule
- **Numerical stability** with careful pivot selection

### Future Algorithms

- Interior Point Methods
- Branch and Bound (for integer programming)
- Cutting Plane Methods
- Heuristic Algorithms

## Performance

Ockham is designed for performance:

- **Efficient data structures** minimize memory allocation
- **SIMD optimizations** for linear algebra operations (optional)
- **Parallel processing** support (optional)
- **Benchmark suite** for performance regression testing

Run benchmarks:

```bash
cargo bench
```

## Features Flags

- `default = ["serde"]`
- `serde`: Serialization support for problems and solutions  
- `parallel`: Parallel processing with Rayon
- `linalg`: Advanced linear algebra with nalgebra


## License

Licensed under MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)