# Oak Wolfram Parser
[](https://crates.io/crates/oak-wolfram)
[](https://docs.rs/oak-wolfram)
High-performance incremental Wolfram Language parser for the oak ecosystem with flexible configuration, optimized for mathematical computation and symbolic analysis.
## 🎯 Overview
Oak Wolfram is a robust parser for the Wolfram Language, designed to handle complete Wolfram syntax including mathematical expressions, symbolic computations, and functional programming constructs. Built on the solid foundation of oak-core, it provides both high-level convenience and detailed AST generation for mathematical analysis and code generation.
## ✨ Features
- **Complete Wolfram Syntax**: Supports all Wolfram Language features including mathematical expressions
- **Full AST Generation**: Generates comprehensive Abstract Syntax Trees
- **Lexer Support**: Built-in tokenization with proper span information
- **Error Recovery**: Graceful handling of syntax errors with detailed diagnostics
## 🚀 Quick Start
Basic example:
```rust
use oak_core::{Parser, SourceText, parser::session::ParseSession};
use oak_wolfram::{WolframParser, WolframLanguage};
fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut session = ParseSession::<WolframLanguage>::default();
let parser = WolframParser::new();
let source = SourceText::new(r#"
f[x_] := x^2 + 2*x + 1
Plot[f[x], {x, -10, 10}]
"#);
let result = parser.parse(&source, &[], &mut session);
println!("Parsed Wolfram successfully.");
Ok(())
}
```
## 📋 Parsing Examples
### Function Definition Parsing
```rust
use oak_core::{Parser, SourceText, parser::session::ParseSession};
use oak_wolfram::{WolframParser, WolframLanguage};
let mut session = ParseSession::<WolframLanguage>::default();
let parser = WolframParser::new();
let source = SourceText::new(r#"
factorial[n_] := If[n <= 1, 1, n * factorial[n - 1]]
"#);
let result = parser.parse(&source, &[], &mut session);
println!("Function parsed successfully.");
```
### Expression Parsing
```rust
use oak_core::{Parser, SourceText, parser::session::ParseSession};
use oak_wolfram::{WolframParser, WolframLanguage};
let mut session = ParseSession::<WolframLanguage>::default();
let parser = WolframParser::new();
let source = SourceText::new(r#"
Integrate[Sin[x], {x, 0, Pi}]
"#);
let result = parser.parse(&source, &[], &mut session);
println!("Expression parsed successfully.");
```
## 🔧 Advanced Features
### Token-Level Parsing
```rust
use oak_core::{Parser, SourceText, parser::session::ParseSession};
use oak_wolfram::{WolframParser, WolframLanguage};
let mut session = ParseSession::<WolframLanguage>::default();
let parser = WolframParser::new();
let source = SourceText::new("f[x_] := x^2");
let result = parser.parse(&source, &[], &mut session);
println!("Token parsing completed.");
```
### Error Handling
```rust
use oak_core::{Parser, SourceText, parser::session::ParseSession};
use oak_wolfram::{WolframParser, WolframLanguage};
let mut session = ParseSession::<WolframLanguage>::default();
let parser = WolframParser::new();
let source = SourceText::new(r#"
f[x_ := x^2 + 1
(* Missing closing bracket *)
"#);
let result = parser.parse(&source, &[], &mut session);
if let Some(errors) = result.result.err() {
println!("Parse errors found: {:?}", errors);
} else {
println!("Parsed successfully.");
}
```
## 🏗️ AST Structure
The parser generates a comprehensive AST with the following main structures:
- **Expression**: Mathematical and symbolic expressions
- **FunctionDefinition**: Function definitions with patterns
- **Rule**: Rewrite rules and transformations
- **List**: Ordered collections of expressions
- **Symbol**: Atomic symbols and identifiers
## 📊 Performance
- **Streaming**: Parse large Wolfram expressions without loading entirely into memory
- **Incremental**: Re-parse only changed sections
- **Memory Efficient**: Smart AST node allocation
- **Fast Recovery**: Quick error recovery for better IDE integration
## 🔗 Integration
Oak Wolfram integrates seamlessly with:
- **Mathematical Computation**: Symbolic mathematics and calculus
- **Code Generation**: Generating code from Wolfram expressions
- **IDE Support**: Language server protocol compatibility
- **Educational Tools**: Mathematical expression parsing for learning platforms
- **Scientific Computing**: Parsing and analyzing mathematical models
## 📚 Examples
Check out the [examples](examples/) directory for comprehensive examples:
- Complete Wolfram expression parsing
- Function and rule analysis
- Mathematical expression transformation
- Integration with development workflows
## 🤝 Contributing
Contributions are welcome!
Please feel free to submit pull requests at the [project repository](https://github.com/ygg-lang/oaks/tree/dev/examples/oak-wolfram) or open [issues](https://github.com/ygg-lang/oaks/issues).