nyx-space 1.1.1

A high-fidelity space mission toolkit, with orbit propagation, estimation and some systems engineering
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2022 Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

extern crate nalgebra as na;
extern crate num;

use self::na::Complex;
use self::num::traits::real::Real;
use crate::cosmic::Orbit;
use crate::linalg::{
    allocator::Allocator, DefaultAllocator, DimName, Matrix3, Matrix6, OVector, Vector3, Vector6,
};

/// Returns the tilde matrix from the provided Vector3.
pub fn tilde_matrix(v: &Vector3<f64>) -> Matrix3<f64> {
    Matrix3::new(
        0.0,
        -v[(2, 0)],
        v[(1, 0)],
        v[(2, 0)],
        0.0,
        -v[(0, 0)],
        -v[(1, 0)],
        v[(0, 0)],
        0.0,
    )
}

/// Returns whether the provided square matrix (3x3) is diagonal
pub fn is_diagonal(m: &Matrix3<f64>) -> bool {
    for i in 1..2 {
        for j in 0..i {
            if i == j && (m[(i, j)] - m[(0, 0)]) > f64::EPSILON
                || i != j
                    && (m[(i, j)].abs() > f64::EPSILON
                        || (m[(i, j)] - m[(j, i)]).abs() > f64::EPSILON)
            {
                return false;
            }
        }
    }
    true
}

/// Returns whether this matrix represent a stable linear system looking at its eigen values.
/// NOTE: This code is not super pretty on purpose to make it clear that we're covering all of the cases
#[allow(clippy::if_same_then_else)]
#[allow(clippy::branches_sharing_code)]
pub fn are_eigenvalues_stable<N: DimName>(eigenvalues: OVector<Complex<f64>, N>) -> bool
where
    DefaultAllocator: Allocator<Complex<f64>, N>,
{
    // Source: https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Controls_(Woolf)/10%3A_Dynamical_Systems_Analysis/10.04%3A_Using_eigenvalues_and_eigenvectors_to_find_stability_and_solve_ODEs#Summary_of_Eigenvalue_Graphs
    for ev in &eigenvalues {
        if ev.im.abs() > 0.0 {
            // There is an imaginary part to this eigenvalue
            if ev.re > 0.0 {
                // At least one of the EVs has a positive real part and a non-zero imaginary part
                // This is sufficient condition for unstability
                return false;
            } else {
                // Option 1: The real part is zero, the system is oscilliatory
                // Option 2: The real part is negative, so the systems tends toward stability
                continue;
            }
        } else {
            // There is no imaginary part
            if ev.re > 0.0 {
                // Real value is positive, so the system is unstable
                return false;
            } else {
                // Option 1: The real value is negative, so the system is stable
                // Option 2: The real value is zero, so the system is invariant
                continue;
            }
        }
    }

    true
}

/// Returns the provided angle bounded between 0.0 and 360.0
pub fn between_0_360(angle: f64) -> f64 {
    let mut bounded = angle;
    while bounded > 360.0 {
        bounded -= 360.0;
    }
    while bounded < 0.0 {
        bounded += 360.0;
    }
    bounded
}

/// Returns the provided angle bounded between -180.0 and +180.0
pub fn between_pm_180(angle: f64) -> f64 {
    between_pm_x(angle, 180.0)
}

/// Returns the provided angle bounded between -x and +x
pub fn between_pm_x(angle: f64, x: f64) -> f64 {
    let mut bounded = angle;
    while bounded > x {
        bounded -= 2.0 * x;
    }
    while bounded < -x {
        bounded += 2.0 * x;
    }
    bounded
}

/// The Kronecker delta function
pub fn kronecker<T: Real>(a: T, b: T) -> T {
    if (a - b).abs() <= T::epsilon() {
        T::one()
    } else {
        T::zero()
    }
}

/// Returns a rotation about the X axis. The angle must be provided in radians.
/// WARNING: this is a COORDINATE SYSTEM rotation by x radians; this matrix, when applied to a vector, rotates the vector by -x  radians, not x radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
/// Source: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html
pub fn r1(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(1.0, 0.0, 0.0, 0.0, c, s, 0.0, -s, c)
}

/// Returns a rotation about the Y axis. The angle must be provided in radians.
/// WARNING: this is a COORDINATE SYSTEM rotation by x radians; this matrix, when applied to a vector, rotates the vector by -x  radians, not x radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
/// Source: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html
pub fn r2(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(c, 0.0, -s, 0.0, 1.0, 0.0, s, 0.0, c)
}

/// Returns a rotation about the Z axis. The angle must be provided in radians.
/// WARNING: this is a COORDINATE SYSTEM rotation by x radians; this matrix, when applied to a vector, rotates the vector by -x  radians, not x radians.
/// Applying the matrix to a vector yields the vector's representation relative to the rotated coordinate system.
/// Source: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/eul2xf_c.html
pub fn r3(angle: f64) -> Matrix3<f64> {
    let (s, c) = angle.sin_cos();
    Matrix3::new(c, s, 0.0, -s, c, 0.0, 0.0, 0.0, 1.0)
}

/// Rotate a vector about a given axis
pub fn rotv(v: &Vector3<f64>, axis: &Vector3<f64>, theta: f64) -> Vector3<f64> {
    let k_hat = axis / axis.norm();
    v * theta.cos() + k_hat.cross(v) * theta.sin() + k_hat.dot(v) * k_hat * (1.0 - theta.cos())
}

/// Returns the components of vector a orthogonal to b
pub fn perpv(a: &Vector3<f64>, b: &Vector3<f64>) -> Vector3<f64> {
    let big_a = a[0].abs().max(a[1].abs().max(a[2].abs()));
    let big_b = b[0].abs().max(b[1].abs().max(b[2].abs()));
    if big_a < f64::EPSILON {
        Vector3::zeros()
    } else if big_b < f64::EPSILON {
        *a
    } else {
        let a_scl = a / big_a;
        let b_scl = b / big_b;
        let v = projv(&a_scl, &b_scl);
        big_a * (a_scl - v)
    }
}

/// Returns the projection of a onto b
pub fn projv(a: &Vector3<f64>, b: &Vector3<f64>) -> Vector3<f64> {
    b * a.dot(b) / b.dot(b)
}

/// Computes the RSS state errors in two provided vectors
pub fn rss_errors<N: DimName>(prop_err: &OVector<f64, N>, cur_state: &OVector<f64, N>) -> f64
where
    DefaultAllocator: Allocator<f64, N>,
{
    let mut v = 0.0;
    for i in 0..N::dim() {
        v += (prop_err[i] - cur_state[i]).powi(2);
    }
    v.sqrt()
}

/// Returns the RSS orbit errors in kilometers and kilometers per second
pub fn rss_orbit_errors(prop_err: &Orbit, cur_state: &Orbit) -> (f64, f64) {
    (
        rss_errors(&prop_err.radius(), &cur_state.radius()),
        rss_errors(&prop_err.velocity(), &cur_state.velocity()),
    )
}

/// Computes the RSS state errors in position and in velocity of two orbit vectors [P V]
pub fn rss_orbit_vec_errors(prop_err: &Vector6<f64>, cur_state: &Vector6<f64>) -> (f64, f64) {
    let err_radius = (prop_err.fixed_rows::<3>(0) - cur_state.fixed_rows::<3>(0)).norm();

    let err_velocity = (prop_err.fixed_rows::<3>(3) - cur_state.fixed_rows::<3>(3)).norm();

    (err_radius, err_velocity)
}

// Normalize between -1.0 and 1.0
pub fn normalize(x: f64, min_x: f64, max_x: f64) -> f64 {
    2.0 * (x - min_x) / (max_x - min_x) - 1.0
}

// Denormalize between -1.0 and 1.0
pub fn denormalize(xp: f64, min_x: f64, max_x: f64) -> f64 {
    (max_x - min_x) * (xp + 1.0) / 2.0 + min_x
}

// Source: https://stackoverflow.com/questions/38406793/why-is-capitalizing-the-first-letter-of-a-string-so-convoluted-in-rust
pub fn capitalize(s: &str) -> String {
    let mut c = s.chars();
    match c.next() {
        None => String::new(),
        Some(f) => f.to_uppercase().collect::<String>() + c.as_str(),
    }
}

/// Builds a 6x6 DCM from the current, previous, and post DCMs, assuming that the previous and post DCMs are exactly one second before and one second after the current DCM.
pub(crate) fn dcm_finite_differencing(
    dcm_pre: Matrix3<f64>,
    dcm_cur: Matrix3<f64>,
    dcm_post: Matrix3<f64>,
) -> Matrix6<f64> {
    let drdt = 0.5 * dcm_post - 0.5 * dcm_pre;

    dcm_assemble(dcm_cur, drdt)
}

pub(crate) fn dcm_assemble(r: Matrix3<f64>, drdt: Matrix3<f64>) -> Matrix6<f64> {
    let mut full_dcm = Matrix6::zeros();
    for i in 0..6 {
        for j in 0..6 {
            if (i < 3 && j < 3) || (i >= 3 && j >= 3) {
                full_dcm[(i, j)] = r[(i % 3, j % 3)];
            } else if i >= 3 && j < 3 {
                full_dcm[(i, j)] = drdt[(i - 3, j)];
            }
        }
    }

    full_dcm
}

#[macro_export]
macro_rules! pseudo_inverse {
    ($mat:expr) => {{
        use crate::NyxError;
        let (rows, cols) = $mat.shape();
        if rows < cols {
            match ($mat * $mat.transpose()).try_inverse() {
                Some(m1_inv) => Ok($mat.transpose() * m1_inv),
                None => Err(NyxError::SingularJacobian),
            }
        } else {
            match ($mat.transpose() * $mat).try_inverse() {
                Some(m2_inv) => Ok(m2_inv * $mat.transpose()),
                None => Err(NyxError::SingularJacobian),
            }
        }
    }};
}

/// Returns the order of mangitude of the provided value
/// ```
/// use nyx_space::utils::mag_order;
/// assert_eq!(mag_order(1000.0), 3);
/// assert_eq!(mag_order(-5000.0), 3);
/// assert_eq!(mag_order(-0.0005), -4);
/// ```
pub fn mag_order(value: f64) -> i32 {
    value.abs().log10().floor() as i32
}

/// Returns the unit vector of the moved input vector
pub fn unitize(v: Vector3<f64>) -> Vector3<f64> {
    if v.norm() < f64::EPSILON {
        v
    } else {
        v / v.norm()
    }
}

/// Converts the input vector V from Cartesian coordinates to spherical coordinates
/// Returns ρ, θ, φ where the range ρ is in the units of the input vector and the angles are in radians
pub fn cartesian_to_spherical(v: &Vector3<f64>) -> (f64, f64, f64) {
    if v.norm() < f64::EPSILON {
        (0.0, 0.0, 0.0)
    } else {
        let range_ρ = v.norm();
        let θ = v.y.atan2(v.x);
        let φ = (v.z / range_ρ).acos();
        (range_ρ, θ, φ)
    }
}

/// Converts the input vector V from Cartesian coordinates to spherical coordinates
/// Returns ρ, θ, φ where the range ρ is in the units of the input vector and the angles are in radians
pub fn spherical_to_cartesian(range_ρ: f64, θ: f64, φ: f64) -> Vector3<f64> {
    if range_ρ < f64::EPSILON {
        // Treat a negative range as a zero vector
        Vector3::zeros()
    } else {
        let x = range_ρ * φ.sin() * θ.cos();
        let y = range_ρ * φ.sin() * θ.sin();
        let z = range_ρ * φ.cos();
        Vector3::new(x, y, z)
    }
}

#[test]
fn test_tilde_matrix() {
    let vec = Vector3::new(1.0, 2.0, 3.0);
    let rslt = Matrix3::new(0.0, -3.0, 2.0, 3.0, 0.0, -1.0, -2.0, 1.0, 0.0);
    assert_eq!(tilde_matrix(&vec), rslt);
}

#[test]
fn test_diagonality() {
    assert!(
        !is_diagonal(&Matrix3::new(10.0, 0.0, 0.0, 1.0, 5.0, 0.0, 0.0, 0.0, 2.0)),
        "lower triangular"
    );

    assert!(
        !is_diagonal(&Matrix3::new(10.0, 1.0, 0.0, 1.0, 5.0, 0.0, 0.0, 0.0, 2.0)),
        "symmetric but not diag"
    );

    assert!(
        !is_diagonal(&Matrix3::new(10.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 2.0)),
        "upper triangular"
    );

    assert!(
        is_diagonal(&Matrix3::new(10.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 2.0)),
        "diagonal"
    );
}

#[test]
fn test_perpv() {
    assert_eq!(
        perpv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(2.0, 0.0, 0.0)),
        Vector3::new(0.0, 6.0, 6.0)
    );
    assert_eq!(
        perpv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(-3.0, 0.0, 0.0)),
        Vector3::new(0.0, 6.0, 6.0)
    );
    assert_eq!(
        perpv(&Vector3::new(6.0, 6.0, 0.0), &Vector3::new(0.0, 7.0, 0.0)),
        Vector3::new(6.0, 0.0, 0.0)
    );
    assert_eq!(
        perpv(&Vector3::new(6.0, 0.0, 0.0), &Vector3::new(0.0, 0.0, 9.0)),
        Vector3::new(6.0, 0.0, 0.0)
    );
}

#[test]
fn test_projv() {
    assert_eq!(
        projv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(2.0, 0.0, 0.0)),
        Vector3::new(6.0, 0.0, 0.0)
    );
    assert_eq!(
        projv(&Vector3::new(6.0, 6.0, 6.0), &Vector3::new(-3.0, 0.0, 0.0)),
        Vector3::new(6.0, 0.0, 0.0)
    );
    assert_eq!(
        projv(&Vector3::new(6.0, 6.0, 0.0), &Vector3::new(0.0, 7.0, 0.0)),
        Vector3::new(0.0, 6.0, 0.0)
    );
    assert_eq!(
        projv(&Vector3::new(6.0, 0.0, 0.0), &Vector3::new(0.0, 0.0, 9.0)),
        Vector3::new(0.0, 0.0, 0.0)
    );
}

#[test]
fn test_angle_bounds() {
    assert!((between_pm_180(181.0) - -179.0).abs() < f64::EPSILON);
    assert!((between_0_360(-179.0) - 181.0).abs() < f64::EPSILON);
}

#[test]
fn test_pseudo_inv() {
    use crate::linalg::{DMatrix, SMatrix};
    let mut mat = DMatrix::from_element(1, 3, 0.0);
    mat[(0, 0)] = -1407.273208782421;
    mat[(0, 1)] = -2146.3100013104886;
    mat[(0, 2)] = 84.05022886527551;

    println!("{}", pseudo_inverse!(&mat).unwrap());

    let mut mat = SMatrix::<f64, 1, 3>::zeros();
    mat[(0, 0)] = -1407.273208782421;
    mat[(0, 1)] = -2146.3100013104886;
    mat[(0, 2)] = 84.05022886527551;

    println!("{}", pseudo_inverse!(&mat).unwrap());

    let mut mat = SMatrix::<f64, 3, 1>::zeros();
    mat[(0, 0)] = -1407.273208782421;
    mat[(1, 0)] = -2146.3100013104886;
    mat[(2, 0)] = 84.05022886527551;

    println!("{}", pseudo_inverse!(&mat).unwrap());

    // Compare a pseudo inverse with a true inverse
    let mat = SMatrix::<f64, 2, 2>::new(3.0, 4.0, -2.0, 1.0);
    println!("{}", mat.try_inverse().unwrap());

    println!("{}", pseudo_inverse!(&mat).unwrap());
}

#[test]
fn spherical() {
    for v in &[
        Vector3::<f64>::x(),
        Vector3::<f64>::y(),
        Vector3::<f64>::z(),
        Vector3::<f64>::zeros(),
        Vector3::<f64>::new(159.1, 561.2, 756.3),
    ] {
        let (range_ρ, θ, φ) = cartesian_to_spherical(v);
        let v_prime = spherical_to_cartesian(range_ρ, θ, φ);

        assert!(rss_errors(v, &v_prime) < 1e-12, "{} != {}", v, &v_prime);
    }
}