nuts-rs 0.16.1

Sample from unnormalized densities using Hamiltonian MCMC
Documentation
//! Sample from posterior distributions using the No U-turn Sampler (NUTS).
//! For details see the original [NUTS paper](https://arxiv.org/abs/1111.4246)
//! and the more recent [introduction](https://arxiv.org/abs/1701.02434).
//!
//! This crate was developed as a faster replacement of the sampler in PyMC,
//! to be used with the new numba backend of PyTensor. The python wrapper
//! for this sampler is [nutpie](https://github.com/pymc-devs/nutpie).
//!
//! ## Usage
//!
//! ```
//! use nuts_rs::{CpuLogpFunc, CpuMath, LogpError, DiagGradNutsSettings, Chain, Progress,
//! Settings};
//! use thiserror::Error;
//! use rand::thread_rng;
//!
//! // Define a function that computes the unnormalized posterior density
//! // and its gradient.
//! #[derive(Debug)]
//! struct PosteriorDensity {}
//!
//! // The density might fail in a recoverable or non-recoverable manner...
//! #[derive(Debug, Error)]
//! enum PosteriorLogpError {}
//! impl LogpError for PosteriorLogpError {
//!     fn is_recoverable(&self) -> bool { false }
//! }
//!
//! impl CpuLogpFunc for PosteriorDensity {
//!     type LogpError = PosteriorLogpError;
//!
//!     // Only used for transforming adaptation.
//!     type TransformParams = ();
//!
//!     // We define a 10 dimensional normal distribution
//!     fn dim(&self) -> usize { 10 }
//!
//!     // The normal likelihood with mean 3 and its gradient.
//!     fn logp(&mut self, position: &[f64], grad: &mut [f64]) -> Result<f64, Self::LogpError> {
//!         let mu = 3f64;
//!         let logp = position
//!             .iter()
//!             .copied()
//!             .zip(grad.iter_mut())
//!             .map(|(x, grad)| {
//!                 let diff = x - mu;
//!                 *grad = -diff;
//!                 -diff * diff / 2f64
//!             })
//!             .sum();
//!         return Ok(logp)
//!     }
//! }
//!
//! // We get the default sampler arguments
//! let mut settings = DiagGradNutsSettings::default();
//!
//! // and modify as we like
//! settings.num_tune = 1000;
//! settings.maxdepth = 3;  // small value just for testing...
//!
//! // We instanciate our posterior density function
//! let logp_func = PosteriorDensity {};
//! let math = CpuMath::new(logp_func);
//!
//! let chain = 0;
//! let mut rng = thread_rng();
//! let mut sampler = settings.new_chain(0, math, &mut rng);
//!
//! // Set to some initial position and start drawing samples.
//! sampler.set_position(&vec![0f64; 10]).expect("Unrecoverable error during init");
//! let mut trace = vec![];  // Collection of all draws
//! for _ in 0..2000 {
//!     let (draw, info) = sampler.draw().expect("Unrecoverable error during sampling");
//!     trace.push(draw);
//! }
//! ```
//!
//! Users can also implement the `Model` trait for more control and parallel sampling.
//!
//! ## Implementation details
//!
//! This crate mostly follows the implementation of NUTS in [Stan](https://mc-stan.org) and
//! [PyMC](https://docs.pymc.io/en/v3/), only tuning of mass matrix and step size differs
//! somewhat.

mod adapt_strategy;
mod chain;
mod cpu_math;
mod euclidean_hamiltonian;
mod hamiltonian;
mod low_rank_mass_matrix;
mod mass_matrix;
mod mass_matrix_adapt;
mod math;
mod math_base;
mod nuts;
mod sampler;
mod sampler_stats;
mod state;
mod stepsize;
mod stepsize_adapt;
mod transform_adapt_strategy;
mod transformed_hamiltonian;

pub use adapt_strategy::EuclideanAdaptOptions;
pub use chain::Chain;
pub use cpu_math::{CpuLogpFunc, CpuMath};
pub use hamiltonian::DivergenceInfo;
pub use math_base::{LogpError, Math};
pub use nuts::NutsError;
pub use sampler::{
    sample_sequentially, ChainOutput, ChainProgress, DiagGradNutsSettings, DrawStorage,
    LowRankNutsSettings, Model, NutsSettings, Progress, ProgressCallback, Sampler,
    SamplerWaitResult, Settings, Trace, TransformedNutsSettings,
};

pub use low_rank_mass_matrix::LowRankSettings;
pub use mass_matrix_adapt::DiagAdaptExpSettings;
pub use stepsize_adapt::DualAverageSettings;
pub use transform_adapt_strategy::TransformedSettings;