
[](https://deps.rs/repo/github/pymc-devs/nuts-rs)
Sample from posterior distributions using the No U-turn Sampler (NUTS).
For details see the original [NUTS paper](https://arxiv.org/abs/1111.4246)
and the more recent [introduction](https://arxiv.org/abs/1701.02434).
This crate was developed as a faster replacement of the sampler in PyMC,
to be used with the new numba backend of PyTensor. The python wrapper
for this sampler is [nutpie](https://github.com/pymc-devs/nutpie).
## Usage
```rust
use nuts_rs::{CpuLogpFunc, CpuMath, LogpError, DiagGradNutsSettings, Chain, SampleStats,
Settings};
use thiserror::Error;
use rand::thread_rng;
// Define a function that computes the unnormalized posterior density
// and its gradient.
#[derive(Debug)]
struct PosteriorDensity {}
// The density might fail in a recoverable or non-recoverable manner...
#[derive(Debug, Error)]
enum PosteriorLogpError {}
impl LogpError for PosteriorLogpError {
fn is_recoverable(&self) -> bool { false }
}
impl CpuLogpFunc for PosteriorDensity {
type LogpError = PosteriorLogpError;
// Only used for transforming adaptation.
type TransformParams = ();
// We define a 10 dimensional normal distribution
fn dim(&self) -> usize { 10 }
// The normal likelihood with mean 3 and its gradient.
fn logp(&mut self, position: &[f64], grad: &mut [f64]) -> Result<f64, Self::LogpError> {
let mu = 3f64;
let logp = position
.iter()
.copied()
.zip(grad.iter_mut())
.map(|(x, grad)| {
let diff = x - mu;
*grad = -diff;
-diff * diff / 2f64
})
.sum();
return Ok(logp)
}
}
fn main() {
// We get the default sampler arguments
let mut settings = DiagGradNutsSettings::default();
// and modify as we like
settings.num_tune = 1000;
settings.maxdepth = 3; // small value just for testing...
// We instanciate our posterior density function
let logp_func = PosteriorDensity {};
let math = CpuMath::new(logp_func);
let chain = 0;
let mut rng = thread_rng();
let mut sampler = settings.new_chain(0, math, &mut rng);
// Set to some initial position and start drawing samples.
sampler
.set_position(&vec![0f64; 10])
.expect("Unrecoverable error during init");
let mut trace = vec![]; // Collection of all draws
for _ in 0..2000 {
let (draw, info) = sampler.draw().expect("Unrecoverable error during sampling");
trace.push(draw.clone());
println!("Draw: {:?}", draw);
}
}
```
Users can also implement the `Model` trait for more control and parallel sampling.
## Implementation details
This crate mostly follows the implementation of NUTS in [Stan](https://mc-stan.org) and
[PyMC](https://docs.pymc.io/en/v3/), only tuning of mass matrix and step size differs
somewhat.