numerated/
numerated.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// This file is part of Gear.

// Copyright (C) 2023-2024 Gear Technologies Inc.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

//! [`Numerated`], [`Bound`] traits definition and implementations for integer types.
//! Also [`OptionBound`] type is defined, which can be used as [`Bound`] for any type `T: Numerated`.

use core::cmp::Ordering;
use num_traits::{One, PrimInt, Unsigned};

/// For any type `T`, `Bound<T>` is a type, which has set of values bigger than `T` by one.
/// - Each value from `T` has unambiguous mapping to `Bound<T>`.
/// - Each value from `Bound<T>`, except one called __upper__, has unambiguous mapping to `T`.
/// - __upper__ value has no mapping to `T`, but can be considered as value equal to `T::max_value + 1`.
///
/// # Examples
/// 1) For any `T`, which max value can be get by calling some static live time function,
///    `Option<T>`` can be used as `Bound<T>`. `None` is __upper__. Mapping: Some(t) -> t, t -> Some(t).
///
/// 2) When `inner` field max value is always smaller than `inner` type max value, then we can use this variant:
/// ```
/// use numerated::Bound;
///
/// /// `inner` is a value from 0 to 99.
/// struct Number { inner: u32 }
///
/// /// `inner` is a value from 0 to 100.
/// #[derive(Clone, Copy)]
/// struct BoundForNumber { inner: u32 }
///
/// impl From<Option<Number>> for BoundForNumber {
///    fn from(t: Option<Number>) -> Self {
///       Self { inner: t.map(|t| t.inner).unwrap_or(100) }
///    }
/// }
///
/// impl Bound<Number> for BoundForNumber {
///    fn unbound(self) -> Option<Number> {
///        (self.inner < 100).then_some(Number { inner: self.inner })
///    }
/// }
/// ```
pub trait Bound<T: Sized>: From<Option<T>> + Copy {
    /// Unbound means mapping bound back to value if possible.
    /// - In case bound is __upper__, then returns [`None`].
    /// - Otherwise returns `Some(p)`, `p: T`.
    fn unbound(self) -> Option<T>;
}

/// Numerated type is a type, which has type for distances between any two values of `Self`,
/// and provide an interface to add/subtract distance to/from value.
///
/// Default implementation is provided for all integer types:
/// [i8] [u8] [i16] [u16] [i32] [u32] [i64] [u64] [i128] [u128] [isize] [usize].
pub trait Numerated: Copy + Sized + Ord + Eq {
    /// Numerate type: type that describes the distances between two values of `Self`.
    type Distance: PrimInt + Unsigned;
    /// Bound type: type for which any value can be mapped to `Self`,
    /// and also has __upper__ value, which is bigger than any value of `Self`.
    type Bound: Bound<Self>;
    /// Adds `num` to `self`, if `self + num` is enclosed by `self` and `other`.
    ///
    /// # Guaranties
    /// - iff `self + num` is enclosed by `self` and `other`, then returns `Some(_)`.
    /// - iff `self.add_if_enclosed_by(num, other) == Some(a)`,
    ///   then `a.sub_if_enclosed_by(num, self) == Some(self)`.
    fn add_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self>;
    /// Subtracts `num` from `self`, if `self - num` is enclosed by `self` and `other`.
    ///
    /// # Guaranties
    /// - iff `self - num` is enclosed by `self` and `other`, then returns `Some(_)`.
    /// - iff `self.sub_if_enclosed_by(num, other) == Some(a)`,
    ///   then `a.add_if_enclosed_by(num, self) == Some(self)`.
    fn sub_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self>;
    /// Returns a distance between `self` and `other`
    ///
    /// # Guaranties
    /// - iff `self == other`, then returns `0`.
    /// - `self.distance(other) == other.distance(self)`.
    /// - iff `self.distance(other) == a` and `self ≥ other` then
    ///   - `self.sub_if_enclosed_by(a, other) == Some(other)`
    ///   - `other.add_if_enclosed_by(a, self) == Some(self)`
    fn distance(self, other: Self) -> Self::Distance;
    /// Increments `self`, if `self < other`.
    fn inc_if_lt(self, other: Self) -> Option<Self> {
        self.add_if_enclosed_by(Self::Distance::one(), other)
    }
    /// Decrements `self`, if `self` > `other`.
    fn dec_if_gt(self, other: Self) -> Option<Self> {
        self.sub_if_enclosed_by(Self::Distance::one(), other)
    }
    /// Returns `true`, if `self` is enclosed by `a` and `b`.
    fn enclosed_by(self, a: &Self, b: &Self) -> bool {
        self <= *a.max(b) && self >= *a.min(b)
    }
}

/// Bound type for `Option<T>`.
#[derive(Clone, Copy, Debug, PartialEq, Eq, derive_more::From)]
pub struct OptionBound<T>(Option<T>);

impl<T> From<T> for OptionBound<T> {
    fn from(value: T) -> Self {
        Some(value).into()
    }
}

impl<T: Copy> Bound<T> for OptionBound<T> {
    fn unbound(self) -> Option<T> {
        self.0
    }
}

impl<T> PartialOrd for OptionBound<T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match (self.0.as_ref(), other.0.as_ref()) {
            (None, None) => Some(Ordering::Equal),
            (None, Some(_)) => Some(Ordering::Greater),
            (Some(_), None) => Some(Ordering::Less),
            (Some(a), Some(b)) => a.partial_cmp(b),
        }
    }
}

impl<T> Ord for OptionBound<T>
where
    T: Ord,
{
    fn cmp(&self, other: &Self) -> Ordering {
        match (self.0.as_ref(), other.0.as_ref()) {
            (None, None) => Ordering::Equal,
            (None, Some(_)) => Ordering::Greater,
            (Some(_), None) => Ordering::Less,
            (Some(a), Some(b)) => a.cmp(b),
        }
    }
}

impl<T> PartialEq<T> for OptionBound<T>
where
    T: PartialEq,
{
    fn eq(&self, other: &T) -> bool {
        self.0.as_ref().map(|a| a.eq(other)).unwrap_or(false)
    }
}

impl<T> PartialEq<Option<T>> for OptionBound<T>
where
    T: PartialEq,
{
    fn eq(&self, other: &Option<T>) -> bool {
        self.0 == *other
    }
}

impl<T> PartialOrd<T> for OptionBound<T>
where
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &T) -> Option<Ordering> {
        self.0
            .as_ref()
            .map(|a| a.partial_cmp(other))
            .unwrap_or(Some(Ordering::Greater))
    }
}

macro_rules! impl_for_unsigned {
    ($($t:ty)*) => ($(
        impl Numerated for $t {
            type Distance = $t;
            type Bound = OptionBound<$t>;
            fn add_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self> {
                self.checked_add(num).and_then(|res| res.enclosed_by(&self, &other).then_some(res))
            }
            fn sub_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self> {
                self.checked_sub(num).and_then(|res| res.enclosed_by(&self, &other).then_some(res))
            }
            fn distance(self, other: Self) -> $t {
                self.abs_diff(other)
            }
        }
    )*)
}

impl_for_unsigned!(u8 u16 u32 u64 u128 usize);

macro_rules! impl_for_signed {
    ($($s:ty => $u:ty),*) => {
        $(
            impl Numerated for $s {
                type Distance = $u;
                type Bound = OptionBound<$s>;
                fn add_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self> {
                    let res = (self as $u).wrapping_add(num) as $s;
                    res.enclosed_by(&self, &other).then_some(res)
                }
                fn sub_if_enclosed_by(self, num: Self::Distance, other: Self) -> Option<Self> {
                    let res = (self as $u).wrapping_sub(num) as $s;
                    res.enclosed_by(&self, &other).then_some(res)
                }
                fn distance(self, other: Self) -> $u {
                    self.abs_diff(other)
                }
            }
        )*
    };
}

impl_for_signed!(i8 => u8, i16 => u16, i32 => u32, i64 => u64, i128 => u128, isize => usize);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_option_bound() {
        let a = OptionBound::from(1);
        let b = OptionBound::from(2);
        let c = OptionBound::from(None);
        assert_eq!(a.unbound(), Some(1));
        assert_eq!(b.unbound(), Some(2));
        assert_eq!(c.unbound(), None);
        assert_eq!(a.partial_cmp(&b), Some(Ordering::Less));
        assert_eq!(b.partial_cmp(&a), Some(Ordering::Greater));
        assert_eq!(a.partial_cmp(&c), Some(Ordering::Less));
        assert_eq!(c.partial_cmp(&a), Some(Ordering::Greater));
        assert_eq!(c.partial_cmp(&c), Some(Ordering::Equal));
        assert_eq!(a.partial_cmp(&2), Some(Ordering::Less));
        assert_eq!(b.partial_cmp(&2), Some(Ordering::Equal));
        assert_eq!(c.partial_cmp(&2), Some(Ordering::Greater));
        assert_eq!(a, 1);
        assert_eq!(b, 2);
        assert_eq!(c, None);
        assert_eq!(a, Some(1));
        assert_eq!(b, Some(2));
    }

    #[test]
    fn test_u8() {
        let a = 1u8;
        let b = 2u8;
        assert_eq!(a.add_if_enclosed_by(1, b), Some(2));
        assert_eq!(a.sub_if_enclosed_by(1, b), None);
        assert_eq!(a.distance(b), 1);
        assert_eq!(a.inc_if_lt(b), Some(2));
        assert_eq!(a.dec_if_gt(b), None);
    }

    #[test]
    fn test_i8() {
        let a = -1i8;
        let b = 1i8;
        assert_eq!(a.add_if_enclosed_by(2, b), Some(1));
        assert_eq!(a.sub_if_enclosed_by(1, b), None);
        assert_eq!(a.distance(b), 2);
        assert_eq!(a.inc_if_lt(b), Some(0));
        assert_eq!(a.dec_if_gt(b), None);
    }
}