#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![no_std]
#[cfg(feature = "std")]
extern crate std;
use core::fmt;
use core::num::Wrapping;
use core::ops::{Add, Div, Mul, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
pub use bounds::Bounded;
#[cfg(feature = "std")]
pub use float::Float;
pub use float::FloatConst;
pub use cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
pub use identities::{one, zero, One, Zero};
pub use int::PrimInt;
pub use ops::checked::{
    CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
};
pub use ops::inv::Inv;
pub use ops::mul_add::{MulAdd, MulAddAssign};
pub use ops::saturating::Saturating;
pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingShl, WrappingShr, WrappingSub};
pub use pow::{checked_pow, pow, Pow};
pub use sign::{abs, abs_sub, signum, Signed, Unsigned};
#[macro_use]
mod macros;
pub mod bounds;
pub mod cast;
pub mod float;
pub mod identities;
pub mod int;
pub mod ops;
pub mod pow;
#[cfg(feature = "std")]
pub mod real;
pub mod sign;
pub trait Num: PartialEq + Zero + One + NumOps {
    type FromStrRadixErr;
    
    
    
    
    
    
    
    
    
    
    
    
    
    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
pub trait NumOps<Rhs = Self, Output = Self>:
    Add<Rhs, Output = Output>
    + Sub<Rhs, Output = Output>
    + Mul<Rhs, Output = Output>
    + Div<Rhs, Output = Output>
    + Rem<Rhs, Output = Output>
{
}
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
    T: Add<Rhs, Output = Output>
        + Sub<Rhs, Output = Output>
        + Mul<Rhs, Output = Output>
        + Div<Rhs, Output = Output>
        + Rem<Rhs, Output = Output>
{
}
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
pub trait NumAssignOps<Rhs = Self>:
    AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
impl<T, Rhs> NumAssignOps<Rhs> for T where
    T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
    ($name:ident for $($t:ty)*) => ($(
        impl $name for $t {
            type FromStrRadixErr = ::core::num::ParseIntError;
            #[inline]
            fn from_str_radix(s: &str, radix: u32)
                              -> Result<Self, ::core::num::ParseIntError>
            {
                <$t>::from_str_radix(s, radix)
            }
        }
    )*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
#[cfg(has_i128)]
int_trait_impl!(Num for u128 i128);
impl<T: Num> Num for Wrapping<T>
where
    Wrapping<T>: Add<Output = Wrapping<T>>
        + Sub<Output = Wrapping<T>>
        + Mul<Output = Wrapping<T>>
        + Div<Output = Wrapping<T>>
        + Rem<Output = Wrapping<T>>,
{
    type FromStrRadixErr = T::FromStrRadixErr;
    fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
        T::from_str_radix(str, radix).map(Wrapping)
    }
}
#[derive(Debug)]
pub enum FloatErrorKind {
    Empty,
    Invalid,
}
#[derive(Debug)]
pub struct ParseFloatError {
    pub kind: FloatErrorKind,
}
impl fmt::Display for ParseFloatError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let description = match self.kind {
            FloatErrorKind::Empty => "cannot parse float from empty string",
            FloatErrorKind::Invalid => "invalid float literal",
        };
        description.fmt(f)
    }
}
macro_rules! float_trait_impl {
    ($name:ident for $($t:ident)*) => ($(
        impl $name for $t {
            type FromStrRadixErr = ParseFloatError;
            fn from_str_radix(src: &str, radix: u32)
                              -> Result<Self, Self::FromStrRadixErr>
            {
                use self::FloatErrorKind::*;
                use self::ParseFloatError as PFE;
                
                match src {
                    "inf"   => return Ok(core::$t::INFINITY),
                    "-inf"  => return Ok(core::$t::NEG_INFINITY),
                    "NaN"   => return Ok(core::$t::NAN),
                    _       => {},
                }
                fn slice_shift_char(src: &str) -> Option<(char, &str)> {
                    src.chars().nth(0).map(|ch| (ch, &src[1..]))
                }
                let (is_positive, src) =  match slice_shift_char(src) {
                    None             => return Err(PFE { kind: Empty }),
                    Some(('-', ""))  => return Err(PFE { kind: Empty }),
                    Some(('-', src)) => (false, src),
                    Some((_, _))     => (true,  src),
                };
                
                let mut sig = if is_positive { 0.0 } else { -0.0 };
                
                let mut prev_sig = sig;
                let mut cs = src.chars().enumerate();
                
                let mut exp_info = None::<(char, usize)>;
                
                for (i, c) in cs.by_ref() {
                    match c.to_digit(radix) {
                        Some(digit) => {
                            
                            sig = sig * (radix as $t);
                            
                            if is_positive {
                                sig = sig + ((digit as isize) as $t);
                            } else {
                                sig = sig - ((digit as isize) as $t);
                            }
                            
                            
                            if prev_sig != 0.0 {
                                if is_positive && sig <= prev_sig
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && sig >= prev_sig
                                    { return Ok(core::$t::NEG_INFINITY); }
                                
                                if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
                                    { return Ok(core::$t::NEG_INFINITY); }
                            }
                            prev_sig = sig;
                        },
                        None => match c {
                            'e' | 'E' | 'p' | 'P' => {
                                exp_info = Some((c, i + 1));
                                break;  
                            },
                            '.' => {
                                break;  
                            },
                            _ => {
                                return Err(PFE { kind: Invalid });
                            },
                        },
                    }
                }
                
                
                if exp_info.is_none() {
                    let mut power = 1.0;
                    for (i, c) in cs.by_ref() {
                        match c.to_digit(radix) {
                            Some(digit) => {
                                
                                power = power / (radix as $t);
                                
                                sig = if is_positive {
                                    sig + (digit as $t) * power
                                } else {
                                    sig - (digit as $t) * power
                                };
                                
                                if is_positive && sig < prev_sig
                                    { return Ok(core::$t::INFINITY); }
                                if !is_positive && sig > prev_sig
                                    { return Ok(core::$t::NEG_INFINITY); }
                                prev_sig = sig;
                            },
                            None => match c {
                                'e' | 'E' | 'p' | 'P' => {
                                    exp_info = Some((c, i + 1));
                                    break; 
                                },
                                _ => {
                                    return Err(PFE { kind: Invalid });
                                },
                            },
                        }
                    }
                }
                
                let exp = match exp_info {
                    Some((c, offset)) => {
                        let base = match c {
                            'E' | 'e' if radix == 10 => 10.0,
                            'P' | 'p' if radix == 16 => 2.0,
                            _ => return Err(PFE { kind: Invalid }),
                        };
                        
                        let src = &src[offset..];
                        let (is_positive, exp) = match slice_shift_char(src) {
                            Some(('-', src)) => (false, src.parse::<usize>()),
                            Some(('+', src)) => (true,  src.parse::<usize>()),
                            Some((_, _))     => (true,  src.parse::<usize>()),
                            None             => return Err(PFE { kind: Invalid }),
                        };
                        #[cfg(feature = "std")]
                        fn pow(base: $t, exp: usize) -> $t {
                            Float::powi(base, exp as i32)
                        }
                        
                        match (is_positive, exp) {
                            (true,  Ok(exp)) => pow(base, exp),
                            (false, Ok(exp)) => 1.0 / pow(base, exp),
                            (_, Err(_))      => return Err(PFE { kind: Invalid }),
                        }
                    },
                    None => 1.0, 
                };
                Ok(sig * exp)
            }
        }
    )*)
}
float_trait_impl!(Num for f32 f64);
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
    debug_assert!(min <= max, "min must be less than or equal to max");
    if input < min {
        min
    } else if input > max {
        max
    } else {
        input
    }
}
#[test]
fn clamp_test() {
    
    assert_eq!(1, clamp(1, -1, 2));
    assert_eq!(-1, clamp(-2, -1, 2));
    assert_eq!(2, clamp(3, -1, 2));
    
    assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
    assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
    assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
}
#[test]
fn from_str_radix_unwrap() {
    
    let i: i32 = Num::from_str_radix("0", 10).unwrap();
    assert_eq!(i, 0);
    let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
    assert_eq!(f, 0.0);
}
#[test]
fn wrapping_is_num() {
    fn require_num<T: Num>(_: &T) {}
    require_num(&Wrapping(42_u32));
    require_num(&Wrapping(-42));
}
#[test]
fn wrapping_from_str_radix() {
    macro_rules! test_wrapping_from_str_radix {
        ($($t:ty)+) => {
            $(
                for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
                    let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
                    assert_eq!(w, <$t as Num>::from_str_radix(s, r));
                }
            )+
        };
    }
    test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn check_num_ops() {
    fn compute<T: Num + Copy>(x: T, y: T) -> T {
        x * y / y % y + y - y
    }
    assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numref_ops() {
    fn compute<T: NumRef>(x: T, y: &T) -> T {
        x * y / y % y + y - y
    }
    assert_eq!(compute(1, &2), 1)
}
#[test]
fn check_refnum_ops() {
    fn compute<T: Copy>(x: &T, y: T) -> T
    where
        for<'a> &'a T: RefNum<T>,
    {
        &(&(&(&(x * y) / y) % y) + y) - y
    }
    assert_eq!(compute(&1, 2), 1)
}
#[test]
fn check_refref_ops() {
    fn compute<T>(x: &T, y: &T) -> T
    where
        for<'a> &'a T: RefNum<T>,
    {
        &(&(&(&(x * y) / y) % y) + y) - y
    }
    assert_eq!(compute(&1, &2), 1)
}
#[test]
fn check_numassign_ops() {
    fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
        x *= y;
        x /= y;
        x %= y;
        x += y;
        x -= y;
        x
    }
    assert_eq!(compute(1, 2), 1)
}